Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
2.
Clin Cancer Res ; 29(2): 389-400, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36346687

ABSTRACT

PURPOSE: Predictive biomarkers for capecitabine benefit in triple-negative breast cancer (TNBC) have been recently proposed using samples from phase III clinical trials, including non-basal phenotype and biomarkers related to angiogenesis, stroma, and capecitabine activation genes. We aimed to validate these findings on the larger phase III GEICAM/CIBOMA clinical trial. EXPERIMENTAL DESIGN: Tumor tissues from patients with TNBC randomized to standard (neo)adjuvant chemotherapy followed by capecitabine versus observation were analyzed using a 164-gene NanoString custom nCounter codeset measuring mRNA expression. A prespecified statistical plan sought to verify the predictive capacity of PAM50 non-basal molecular subtype and tested the hypotheses that breast tumors with increased expression of (meta)genes for cytotoxic cells, mast cells, endothelial cells, PDL2, and 38 individual genes benefit from adjuvant capecitabine for distant recurrence-free survival (DRFS; primary endpoint) and overall survival. RESULTS: Of the 876 women enrolled in the GEICAM/CIBOMA trial, 658 (75%) were evaluable for analysis (337 with capecitabine and 321 without). Of these cases, 553 (84%) were profiled as PAM50 basal-like whereas 105 (16%) were PAM50 non-basal. Non-basal subtype was the most significant predictor for capecitabine benefit [HRcapecitabine, 0.19; 95% confidence interval (CI), 0.07-0.54; P < 0.001] when compared with PAM50 basal-like (HRcapecitabine, 0.9; 95% CI, 0.63-1.28; P = 0.55; Pinteraction<0.001, adjusted P value = 0.01). Analysis of biological processes related to PAM50 non-basal subtype revealed its enrichment for mast cells, extracellular matrix, angiogenesis, and features of mesenchymal stem-like TNBC subtype. CONCLUSIONS: In this prespecified correlative analysis of the GEICAM/CIBOMA trial, PAM50 non-basal status identified patients with early-stage TNBC most likely to benefit from capecitabine.


Subject(s)
Breast Neoplasms , Triple Negative Breast Neoplasms , Humans , Female , Capecitabine/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Endothelial Cells/pathology , Adjuvants, Immunologic/therapeutic use , Breast Neoplasms/drug therapy , Chemotherapy, Adjuvant , Antineoplastic Combined Chemotherapy Protocols/adverse effects
3.
J Mol Diagn ; 23(3): 274-284, 2021 03.
Article in English | MEDLINE | ID: mdl-33346147

ABSTRACT

Histologic examination neither reliably distinguishes benign lipomas from atypical lipomatous tumor/well-differentiated liposarcoma, nor dedifferentiated liposarcoma from other pleomorphic sarcomas, entities with different prognoses and management. Molecular confirmation of pathognomonic 12q13-15 amplifications leading to MDM2 overexpression is a diagnostic gold standard. Currently the most commonly used assay for this purpose is fluorescence in situ hybridization (FISH), but this is labor intensive. This study assessed whether newer NanoString-based technology could allow for more rapid and cost-efficient diagnosis of liposarcomas on standard formalin-fixed tissues through gene expression. Leveraging large-scale transcriptome data from The Cancer Genome Atlas, 20 genes were identified, most from the 12q13-15 amplicon, that distinguish dedifferentiated liposarcoma from other sarcomas and can be measured within a single NanoString assay. Using 21 cases of histologically ambiguous low-grade adipocytic tumors with available MDM2 amplification status, a machine learning-based analytical pipeline was built that assigns a given sample as negative or positive for liposarcoma based on quantitative gene expression. The effectiveness of the assay was validated on an independent set of 100 sarcoma samples (including 40 incident prospective cases), where histologic examination was considered insufficient for clinical diagnosis. The NanoString assay had a 93% technical success rate, and an accuracy of 97.8% versus an MDM2 amplification FISH gold standard. NanoString had a considerably faster turnaround time and was cheaper than FISH.


Subject(s)
Biomarkers, Tumor , Gene Expression , Genetic Testing/methods , Liposarcoma/diagnosis , Liposarcoma/genetics , Cost-Benefit Analysis , Gene Expression Profiling , Genetic Testing/economics , Genetic Testing/standards , Humans , Immunohistochemistry , In Situ Hybridization, Fluorescence , Lipoma/diagnosis , Lipoma/genetics , Reproducibility of Results
4.
BMC Res Notes ; 13(1): 273, 2020 Jun 03.
Article in English | MEDLINE | ID: mdl-32493406

ABSTRACT

OBJECTIVE: Ligation-Mediated Amplification (LMA) is a versatile biochemical tool for amplifying selected DNA sequences. LMA has increased in popularity due to its integration within chromosome conformation capture (5C) and chromatin immunoprecipitation (2C-ChIP) methodologies. The output of either 5C or 2C-ChIP protocols is a single-read sequencing library of ligated primer pairs that may or may not be multiplexed. While many computational tools currently exist for read mapping and analysis, these tools neither fully support multiplexed libraries nor provide qualitative reporting on the LMA primers involved. Typically, the task of library demultiplexing or primer analysis is offloaded on to the user. Our aim was to develop an easy-to-use pipeline for processing (multiplexed) single-read sequencing data produced by sequence-specific LMA. RESULTS: Here, we describe the Ligation-mediated Amplified, Multiplexed Primer-pair Sequence (LAMPS) analysis pipeline. LAMPS facilitates the analysis of multiplexed LMA sequencing data and provides a thorough assessment of a library's reads for a variety of experimental parameters (e.g., primer-pair efficiency). The standardized output of LAMPS allows for easy integration with downstream analyses, such as data track visualization on a genome browser. LAMPS is made publicly available on GitHub: https://github.com/BlanchetteLab/LAMPS.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Nucleic Acid Amplification Techniques/methods , Sequence Analysis, DNA/methods , Chromatin Immunoprecipitation , Gene Library , Humans , Multiplex Polymerase Chain Reaction/methods , Quality Control
5.
Nucleic Acids Res ; 45(3): 1091-1104, 2017 02 17.
Article in English | MEDLINE | ID: mdl-28180285

ABSTRACT

Thousands of long non-coding RNAs (lncRNAs) have been identified in mammals, many of which represent important regulators of gene expression. However, the mechanisms used by lncRNAs to control transcription remain largely uncharacterized. Here, we report on HOTAIRM1, a promising lncRNA biomarker in leukemia and solid tumors. We find that HOTAIRM1 contributes to three-dimensional chromatin organization changes required for the temporal collinear activation of HOXA genes. We show that distinct HOTAIRM1 variants preferentially associate with either UTX/MLL or PRC2 complexes to modulate the levels of activating and silencing marks at the bivalent domain. HOTAIRM1 contributes to physical dissociation of chromatin loops at the cluster proximal end, which delays recruitment of the histone demethylase UTX and transcription of central HOXA genes. Interestingly, we find overall proximal HOXA gene activation without chromatin conformation changes by HOTAIRM1 in a different cell type. Our results reveal a previously unappreciated relationship between chromatin structure, architecture and lncRNA function.


Subject(s)
Chromatin/genetics , Chromatin/metabolism , Genes, Homeobox , Homeodomain Proteins/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Line, Tumor , Gene Expression Profiling , Gene Knockdown Techniques , Histone Demethylases/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Humans , MicroRNAs/antagonists & inhibitors , Models, Genetic , Myeloid-Lymphoid Leukemia Protein/metabolism , Nuclear Proteins/metabolism , Polycomb Repressive Complex 2/metabolism , RNA Interference , Transcriptional Activation/drug effects , Tretinoin/pharmacology
6.
Cancer Res ; 72(5): 1270-9, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22253229

ABSTRACT

Several types of collagen contain cryptic antiangiogenic noncollagenous domains that are released upon proteolysis of extracellular matrix (ECM). Among those is Arresten, a collagen-derived antiangiogenic factor (CDAF) that is processed from α1 collagen IV. However, the conditions under which Arresten is released from collagen IV in vivo or whether the protein functions in tumor suppressor pathways remain unknown. Here, we show that p53 induces the expression of α1 collagen IV and release of Arresten-containing fragments from the ECM. Comparison of the transcriptional activation of COL4A1 with other CDAF-containing genes revealed that COL4A1 is a major antiangiogenic gene induced by p53 in human adenocarinoma cells. p53 directly activated transcription of the COL4A1 gene by binding to an enhancer region 26 kbp downstream of its 3' end. p53 also stabilized the expression of full-length α1 collagen IV by upregulation of α(II) prolyl-hydroxylase and increased the release of Arresten in the ECM through a matrix metalloproteinase (MMP)-dependent mechanism. The resulting upregulation of α1 collagen IV and production of Arresten by the tumor cells significantly inhibited angiogenesis and limited tumor growth in vivo. Furthermore, we show that immunostaining of Arresten correlated with p53 status in human prostate cancer specimens. Our findings, therefore, link the production of Arresten to the p53 tumor suppressor pathway and show a novel mechanism through which p53 can inhibit angiogenesis.


Subject(s)
Adenocarcinoma/metabolism , Angiogenesis Inhibitors/genetics , Collagen Type IV/genetics , Prostatic Neoplasms/genetics , Tumor Suppressor Protein p53/genetics , Animals , Cell Line, Tumor , Collagen Type IV/metabolism , Humans , Male , Mice , Mice, Nude , Neoplasm Transplantation , Transcriptional Activation , Up-Regulation
7.
Curr Genomics ; 12(5): 307-21, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21874119

ABSTRACT

The human genome must be tightly packaged in order to fit inside the nucleus of a cell. Genome organization is functional rather than random, which allows for the proper execution of gene expression programs and other biological processes. Recently, three-dimensional chromatin organization has emerged as an important transcriptional control mechanism. For example, enhancers were shown to regulate target genes by physically interacting with them regardless of their linear distance and even if located on different chromosomes. These chromatin contacts can be measured with the "chromosome conformation capture" (3C) technology and other 3C-related techniques. Given the recent innovation of 3C-derived approaches, it is not surprising that we still know very little about the structure of our genome at high-resolution. Even less well understood is whether there exist distinct types of chromatin contacts and importantly, what regulates them. A new form of regulation involving the expression of long non-coding RNAs (lncRNAs) was recently identified. lncRNAs are a very abundant class of non-coding RNAs that are often expressed in a tissue-specific manner. Although their different subcellular localizations point to their involvement in numerous cellular processes, it is clear that lncRNAs play an important role in regulating gene expression. How they control transcription however is mostly unknown. In this review, we provide an overview of known lncRNA transcription regulation activities. We also discuss potential mechanisms by which ncRNAs might exert three-dimensional transcriptional control and what recent studies have revealed about their role in shaping our genome.

SELECTION OF CITATIONS
SEARCH DETAIL
...