Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 268
Filter
1.
World J Gastroenterol ; 30(12): 1751-1763, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38617736

ABSTRACT

BACKGROUND: Thiopurine-induced leucopenia significantly hinders the wide application of thiopurines. Dose optimization guided by nudix hydrolase 15 (NUDT15) has significantly reduced the early leucopenia rate, but there are no definitive biomarkers for late risk leucopenia prediction. AIM: To determine the predictive value of early monitoring of DNA-thioguanine (DNATG) or 6-thioguanine nucleotides (6TGN) for late leucopenia under a NUDT15-guided thiopurine dosing strategy in patients with Crohn's disease (CD). METHODS: Blood samples were collected within two months after thiopurine initiation for detection of metabolite concentrations. Late leucopenia was defined as a leukocyte count < 3.5 × 109/L over two months. RESULTS: Of 148 patients studied, late leucopenia was observed in 15.6% (17/109) of NUDT15/thiopurine methyltransferase (TPMT) normal and 64.1% (25/39) of intermediate metabolizers. In patients suffering late leucopenia, early DNATG levels were significantly higher than in those who did not develop late leucopenia (P = 4.9 × 10-13). The DNATG threshold of 319.43 fmol/µg DNA could predict late leucopenia in the entire sample with an area under the curve (AUC) of 0.855 (sensitivity 83%, specificity 81%), and in NUDT15/TPMT normal metabolizers, the predictive performance of a threshold of 315.72 fmol/µg DNA was much more remarkable with an AUC of 0.902 (sensitivity 88%, specificity 85%). 6TGN had a relatively poor correlation with late leucopenia whether in the entire sample (P = 0.021) or NUDT15/TPMT normal or intermediate metabolizers (P = 0.018, P = 0.55, respectively). CONCLUSION: Proactive therapeutic drug monitoring of DNATG could be an effective strategy to prevent late leucopenia in both NUDT15/TPMT normal and intermediate metabolizers with CD, especially the former.


Subject(s)
Crohn Disease , Leukopenia , Methyltransferases , Purines , Sulfhydryl Compounds , Humans , Crohn Disease/drug therapy , DNA , Leukopenia/chemically induced , Leukopenia/diagnosis , Purines/adverse effects , Sulfhydryl Compounds/adverse effects , Thioguanine/analysis
2.
IEEE Trans Biomed Eng ; PP2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38478443

ABSTRACT

Photo-mediated ultrasound therapy (PUT) is a novel antivascular therapeutic modality based on cavitation-induced bioeffects. During PUT, synergistic combinations of laser pulses and ultrasound bursts are used to remove the targeted microvessels selectively and precisely without harming nearby tissue. In the current study, an integrated system combining PUT and spectral domain optical coherence tomography (SD-OCT) was developed, where the SD-OCT system was used to guide PUT by detecting cavitation in real time in the retina of the eye. METHOD: We first examined the capability of SD-OCT in detecting cavitation on a vascular-mimicking phantom and compared the results with those from a passive cavitation detector. The performance of the integrated system in treatment of choroidal microvessels was then evaluated in rabbit eyes in vivo. RESULTS: During the in vivo PUT experiments, several biomarkers at the subretinal layer in the rabbit eye were identified on OCT images. The findings indicate that, by evaluating biomarkers of treatment effect, real-time SD-OCT monitoring could help to avoid micro-hemorrhage, which is a potential major side effect. CONCLUSION: Real-time OCT monitoring can thus improve the safety and efficiency of PUT in removing the retinal and choroidal microvasculature.

3.
Cell Tissue Bank ; 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38319426

ABSTRACT

Osteochondral allograft (OCA) transplantation involves grafting of natural hyaline cartilage and supporting subchondral bone into the cartilage defect area to restore its biomechanical and tissue structure. However, differences in biomechanical properties and donor-host matching may impair the integration of articular cartilage (AC). This study analyzed the biomechanical properties of the AC in different regions of different sites of the knee joint and provided a novel approach to OCA transplantation. Intact stifle joints from skeletally mature pigs were collected from a local abattoir less than 8 h after slaughter. OCAs were collected from different regions of the joints. The patella and the tibial plateau were divided into medial and lateral regions, while the trochlea and femoral condyle were divided into six regions. The OCAs were analyzed and compared for Young's modulus, the compressive modulus, and cartilage thickness. Young's modulus, cartilage thickness, and compressive modulus of OCA were significantly different in different regions of the joints. A negative correlation was observed between Young's modulus and the proportion of the subchondral bone (r = - 0.4241, P < 0.0001). Cartilage thickness was positively correlated with Young's modulus (r = 0.4473, P < 0.0001) and the compressive modulus (r = 0.3678, P < 0.0001). During OCA transplantation, OCAs should be transplanted in the same regions, or at the closest possible regions to maintain consistency of the biomechanical properties and cartilage thickness of the donor and recipient, to ensure smooth integration with the surrounding tissue. A 7 mm depth achieved a higher Young's modulus, and may represent the ideal length.

4.
J Biophotonics ; 17(3): e202300347, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38171947

ABSTRACT

Non-human primates (NHPs) are crucial models for studies of neuronal activity. Emerging photoacoustic imaging modalities offer excellent tools for studying NHP brains with high sensitivity and high spatial resolution. In this research, a photoacoustic microscopy (PAM) device was used to provide a label-free quantitative characterization of cerebral hemodynamic changes due to peripheral mechanical stimulation. A 5 × 5 mm area within the somatosensory cortex region of an adult squirrel monkey was imaged. A deep, fully connected neural network was characterized and applied to the PAM images of the cortex to enhance the vessel structures after mechanical stimulation on the forelimb digits. The quality of the PAM images was improved significantly with a neural network while preserving the hemodynamic responses. The functional responses to the mechanical stimulation were characterized based on the improved PAM images. This study demonstrates capability of PAM combined with machine learning for functional imaging of the NHP brain.


Subject(s)
Photoacoustic Techniques , Animals , Saimiri , Photoacoustic Techniques/methods , Microscopy/methods , Hemodynamics , Neurons
5.
Clin Cancer Res ; 30(7): 1382-1396, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38261467

ABSTRACT

PURPOSE: Although somatic mutations were explored in depth, limited biomarkers were found to predict the resistance of EGFR tyrosine kinase inhibitors (EGFR-TKI). Previous studies reported N6-methyladenosine (m6A) levels regulated response of EGFR-TKIs; whether the germline variants located in m6A sites affected resistance of EGFR-TKIs is still unknown. EXPERIMENTAL DESIGN: Patients with non-small cell lung cancer (NSCLC) with EGFR-activating mutation were enrolled to investigate predictors for response of EGFR-TKIs using a genome-wide-variant-m6A analysis. Bioinformatics analysis and series of molecular biology assays were used to uncover the underlying mechanism. RESULTS: We identified the germline mutation USP36 rs3744797 (C > A, K814N) was associated with survival of patients with NSCLC treated with gefitinib [median progression-free survival (PFS): CC vs. CA, 16.30 vs. 10.50 months, P < 0.0001, HR = 2.45] and erlotinib (median PFS: CC vs. CA, 14.13 vs. 9.47 months, P = 0.041, HR = 2.63). Functionally, the C > A change significantly upregulated USP36 expression by reducing its m6A level. Meanwhile, rs3744797_A (USP36 MUT) was found to facilitate proliferation, migration, and resistance to EGFR-TKIs via upregulating MLLT3 expression in vitro and in vivo. More importantly, MLLT3 and USP36 levels are tightly correlated in patients with NSCLC, which were associated with prognosis of patients. Mechanistically, USP36 MUT stabilized MLLT3 by deubiquitinating MLLT3 in nucleoli and consequently activating its downstream signaling (HIF1α and Snai). Furthermore, inhibition of MLLT3 alleviated USP36 variant-induced EGFR-TKIs resistance in EGFR-mutant NSCLC. CONCLUSIONS: These findings characterized rs3744797 as an oncogenic variant in mediating EGFR-TKI resistance and tumor aggressiveness through deubiquitinating MLLT3, highlighting the variant as a predictive biomarker for EGFR-TKI response in NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Drug Resistance, Neoplasm , Lung Neoplasms , Ubiquitin Thiolesterase , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , ErbB Receptors , Germ Cells/metabolism , Germ-Line Mutation , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mutation , Nuclear Proteins/genetics , Protein Kinase Inhibitors/adverse effects , Ubiquitin Thiolesterase/genetics
6.
Drug Metab Dispos ; 52(3): 210-217, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38195521

ABSTRACT

Valproic acid (VPA) is a first-line antiepileptic drug with broad efficacy. Due to significant individual differences in its metabolism, therapeutic drug monitoring is commonly used. However, the recommended therapeutic range (50-100 µg/mL) is inadequate for predicting clinical outcomes. Additionally, the relationship between VPA metabolites and clinical outcomes remains unclear. In this retrospective study, 485 Chinese Southern Han epilepsy patients receiving VPA monotherapy were analyzed after reaching steady-state levels. Plasma concentrations of VPA and its five main metabolites were determined by liquid chromatography-mass spectrometry (LC-MS). We assessed the relevance of the recommended therapeutic VPA range for clinical outcomes and explored the association between VPA/metabolites levels and treatment efficacy/adverse effects. Vitro experiments were conducted to assess 4-ene-VPA hepatotoxicity. The therapeutic range of VPA exhibited no significant correlation with clinical outcomes, and plasma concentrations of VPA failed to serve as predictive indicators for treatment response/adverse effects. Treatment responders had higher 2-PGA concentrations (median, 26.39 ng/mL versus 13.68 ng/mL), with a threshold of 36.5 ng/mL for optimal epilepsy treatment. Patients with abnormal liver function had a higher 4-ene-VPA median concentration (6.41 µg/mL versus 4.83 µg/mL), and the ratio of 4-ene-VPA to VPA better predicted VPA-induced hepatotoxicity (area under the curve, 0.718) than 4-ene-VPA concentration. Vitro experiments revealed that 4-ene-VPA was more hepatotoxic than VPA in HepaRG and L02 cell lines. Total plasma VPA concentration does not serve as a predictor of clinical outcomes. 2-PGA concentrations may be associated with efficacy, whereas the ratio of 4-ene-VPA to VPA may be considered a better biomarker (threshold 10.03%) for VPA-induced hepatotoxicity. SIGNIFICANCE STATEMENT: This was the first and largest observational cohort in China to explore the relationship between patients' parent and metabolites concentrations of VPA and clinical outcomes during the maintenance of VPA monotherapy in epileptic patients. This study provided feasible references of VPA for epilepsy clinical treatment with a larger sample of patients compared with previous studies for a more definitive conclusion based on real-world situations. We found two potential biomarkers in predicting efficacy and liver injury, respectively. This breakthrough has the potential to assist in the rational use of VPA.


Subject(s)
Chemical and Drug Induced Liver Injury , Drug-Related Side Effects and Adverse Reactions , Epilepsy , Humans , Anticonvulsants/adverse effects , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/drug therapy , Drug Monitoring , Epilepsy/drug therapy , Retrospective Studies , Valproic Acid/adverse effects
7.
Orthop Surg ; 16(3): 675-686, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38238250

ABSTRACT

OBJECTIVES: The current clinical pulse lavage technique for flushing fresh osteochondral allografts (OCAs) to remove immunogenic elements from the subchondral bone is ineffective. This study aimed to identify the optimal method for removing immunogenic elements from OCAs. METHODS: We examined five methods for the physical removal of immunogenic elements from OCAs from the femoral condyle of porcine knees. We distributed the OCAs randomly into the following seven groups: (1) control, (2) saline, (3) ultrasound, (4) vortex vibration (VV), (5) low-pulse lavage (LPL), (6) high-pulse lavage (HPL), and (7) high-speed centrifugation (HSC). OCAs were evaluated using weight measurement, micro-computed tomography (micro-CT), macroscopic and histological evaluation, DNA quantification, and chondrocyte activity testing. Additionally, the subchondral bone was zoned to assess the bone marrow and nucleated cell contents. One-way ANOVA and paired two-tailed Student's t-test are used for statistical analysis. RESULTS: Histological evaluation and DNA quantification showed no significant reduction in marrow elements compared to the control group after the OCAs were treated with saline, ultrasound, or VV treatments; however, there was a significant reduction in marrow elements after LPL, HPL, and HSC treatments. Furthermore, HSC more effectively reduced the marrow elements of OCAs in the middle and deep zones compared with LPL (p < 0.0001) and HPL (p < 0.0001). Macroscopic evaluation revealed a significant reduction in blood, lipid, and marrow elements in the subchondral bone after HSC. Micro-CT, histological analyses, and chondrocyte viability results showed that HSC did not damage the subchondral bone and cartilage; however, LPL and HPL may damage the subchondral bone. CONCLUSION: HSC may play an important role in decreasing immunogenicity and therefore potentially increasing the success of OCA transplantation.


Subject(s)
Cartilage, Articular , Intra-Articular Fractures , Animals , Swine , Allografts , X-Ray Microtomography , Transplantation, Homologous , Cartilage , DNA , Cartilage, Articular/surgery
8.
J Orthop Res ; 42(3): 647-660, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37804209

ABSTRACT

Osteoporosis is a major public health threat with significant physical, psychosocial, and financial consequences. The calcaneus bone has been used as a measurement site for risk prediction of osteoporosis by noninvasive quantitative ultrasound (QUS). By adding optical contrast to QUS, our previous studies indicate that a combination of photoacoustic (PA) and QUS, that is, PAQUS, provides a novel opportunity to assess the health of human calcaneus. Calibration of the PAQUS system is crucial to realize quantitative and repeatable measurements of the calcaneus. Therefore, a phantom which simulates the optical, ultrasound, and architectural properties of the human calcaneus, for PAQUS system calibration, is required. Additionally, a controllable phantom offers researchers a versatile framework for developing versatile structures, allowing more controlled assessment of how varying bone structures cause defined alterations in PA and QUS signals. In this work, we present the first semi-anthropomorphic calcaneus phantom for PAQUS. The phantom was developed based on nano computed-tomography (nano-CT) and stereolithography 3D printing, aiming to maximize accuracy in the approximation of both trabecular and cortical bone microstructures. Compared with the original digital input calcaneus model from a human cadaveric donor, the printed model achieved accuracies of 71.15% in total structure and 87.21% in bone volume fraction. Inorganic materials including synthetic blood, mineral oil, intralipid, and agar gel were used to model the substitutes of bone marrow and soft tissue, filling and covering the calcaneus phantom. The ultrasound and optical properties of this phantom were measured, and the results were consistent with those measured by a commercialized device and from previous in vivo studies. In addition, a short-term stability test was conducted for this phantom, demonstrating that the optical and ultrasound properties of the phantom were stable without significant variation over 1 month. This semi-anthropomorphic calcaneus phantom shows structural, ultrasound, and optical properties similar to those from a human calcaneus in vivo and, thereby, can serve as an effective source for equipment calibration and the comprehensive study of human patients.


Subject(s)
Calcaneus , Osteoporosis , Humans , Bone Density , Calcaneus/diagnostic imaging , Stereolithography , Ultrasonography , Tomography
9.
Tissue Eng Part C Methods ; 30(3): 93-101, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38117158

ABSTRACT

Angiogenesis induced by growth factor administration, which can augment the blood supply in regenerative applications, has drawn wide attention in medical research. Longitudinal monitoring of vascular structure and development in vivo is important for understanding and evaluating the dynamics of involved biological processes. In this work, a dual-modality imaging system consisting of photoacoustic microscopy (PAM) and optical coherence tomography (OCT) was applied for noninvasive in vivo imaging of angiogenesis in a murine model. Fibrin scaffolds, with and without basic fibroblast growth factor (bFGF), were implanted in a flexible imaging window and longitudinally observed over 9 days. Imaging was conducted at 3, 5, 7, and 9 days after implantation to monitor vascularization in and around the scaffold. Several morphometric parameters were derived from the PAM images, including vessel area density (VAD), total vessel length (TVL), and vessel mean diameter (VMD). On days 7 and 9, mice receiving bFGF-laden fibrin gels exhibited significantly larger VAD and TVL compared to mice with fibrin-only gels. In addition, VMD significantly decreased in +bFGF mice versus fibrin-only mice on days 7 and 9. Blood vessel density, evaluated using immunohistochemical staining of explanted gels and underlying tissue on day 9, corroborated the findings from the PAM images. Overall, the experimental results highlight the utility of a dual-modality imaging system in longitudinally monitoring of vasculature in vivo with high resolution and sensitivity, thereby providing an effective tool to study angiogenesis.


Subject(s)
Angiogenesis , Neovascularization, Physiologic , Mice , Animals , Microscopy , Gels , Fibrin/pharmacology
10.
JID Innov ; 3(6): 100237, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38024557

ABSTRACT

Photo-mediated ultrasound therapy (PUT) is a cavitation-based, highly selective antivascular technique. In this study, the effectiveness and safety of PUT on cutaneous vascular malformation was examined through in vivo experiments in a clinically relevant chicken wattle model, whose microanatomy is similar to that of port-wine stain and other hypervascular dermal diseases in humans. Assessed by optical coherence tomography angiography, the blood vessel density in the chicken wattle decreased by 73.23% after one session of PUT treatment in which 0.707 J/cm2 fluence laser pulses were applied concurrently with ultrasound bursts (n = 7, P < .01). The effectiveness of removing blood vessels in the skin at depth up to 1 mm was further assessed by H&E-stained histology at multiple time points, which included days 1, 3, 7, 14, and 21 after treatment. Additional immunohistochemical analyses with CD31, caspase-3, and Masson's trichrome stains were performed on day 3 after treatment. The results show that the PUT-induced therapeutic effect was confined and specific to blood vessels only, whereas unwanted collateral damage in other skin tissues such as collagen was avoided. The findings from this study demonstrate that PUT can efficiently and safely remove hypervascular dermal capillaries using laser fluence at a level that is orders of magnitude smaller than that used in conventional laser treatment of vascular lesions, thus offering a safer alternative technique for clinical management of cutaneous vascular malformations.

11.
Biosensors (Basel) ; 13(10)2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37887116

ABSTRACT

Sodium has many vital and diverse roles in the human body, including maintaining the cellular pH, generating action potential, and regulating osmotic pressure. In cancer, sodium dysregulation has been correlated with tumor growth, metastasis, and immune cell inhibition. However, most in vivo sodium measurements are performed via Na23 NMR, which is handicapped by slow acquisition times, a low spatial resolution (in mm), and low signal-to-noise ratios. We present here a plasticizer-free, ionophore-based sodium-sensing nanoparticle that utilizes a solvatochromic dye transducer to circumvent the pH cross-sensitivity of most previously reported sodium nano-sensors. We demonstrate that this nano-sensor is non-toxic, boasts a 200 µM detection limit, and is over 1000 times more selective for sodium than potassium. Further, the in vitro photoacoustic calibration curve presented demonstrates the potential of this nano-sensor for performing the in vivo chemical imaging of sodium over the entire physiologically relevant concentration range.


Subject(s)
Potassium , Sodium , Humans , Hydrogen-Ion Concentration , Ions , Diagnostic Imaging
12.
Cartilage ; : 19476035231205695, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37853672

ABSTRACT

PURPOSE: To evaluate the clinical characteristics and global trends in the surgical treatment of articular cartilage defects. METHODS: Studies in English published between January 1, 2001 and December 31, 2020 were retrieved from MEDLINE, WOS, INSPEC, SCIELO, KJD, and RSCI on the "Web of Science." Patient data were extracted, including age, sex, defect location and laterality, duration of follow-up and symptoms, and body mass index (BMI). Data were further stratified according to the surgical method, lesion location, procedural type and geographical area, and time period. A comparative analysis was performed. RESULTS: Overall, 443 studies involving 26,854 patients (mean age, 35.25 years; men, 60.5%) were included. The mean lesion size and patient BMI were 3.51 cm2 and 25.61 kg/m2, respectively. Cartilage defects at the knees, talus, and hips affected 20,850 (77.64%), 3,983 (14.83%), and 1,425 (5.31%) patients, respectively. The numbers of patients who underwent autologous chondrocyte implantation, arthroscopic debridement/chondroplasty, osteochondral allograft (OCA), osteochondral autologous transplantation, and microfracture were 7,114 (26.49%), 5,056 (18.83%), 3,942 (14.68%), 3,766 (14.02%), and 2,835 (10.56%), respectively. European patients were the most numerous and youngest. North American patients had the largest defects. The number of patients increased from 305 in 2001 to 3,017 in 2020. In the last 5 years, the frequency of OCAs showed a greatly increasing trend. CONCLUSION: Clinical characteristics and global trends in the surgical treatment of articular cartilage defects were revealed. The choice of operation should be based on the patient characteristics and defect location, size, and shape, as well as the patient's preference.

13.
Orthop J Sports Med ; 11(9): 23259671231199418, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37745815

ABSTRACT

Background: Osteochondral allograft transplantation (OCA) treats symptomatic focal cartilage defects with satisfactory clinical results. Purpose: To comprehensively analyze the characteristics and clinical outcomes of OCA for treating articular cartilage defects. Study Design: Systematic review; Level of evidence, 4. Methods: We searched Embase, PubMed, Cochrane Database, and Web of Science for studies published between January 1, 2001, and December 31, 2020, on OCA for treating articular cartilage defects. Publication information, patient data, osteochondral allograft storage details, and clinical outcomes were extracted to conduct a comprehensive summative analysis. Results: In total, 105 studies involving 5952 patients were included. The annual reported number of patients treated with OCA increased from 69 in 2001 to 1065 in 2020, peaking at 1504 cases in 2018. Most studies (90.1%) were performed in the United States. The mean age at surgery was 34.2 years, and 60.8% of patients were male and had a mean body mass index of 26.7 kg/m2. The mean lesion area was 5.05 cm2, the mean follow-up duration was 54.39 months, the mean graft size was 6.85 cm2, and the number of grafts per patient was 54.7. The failure rate after OCA was 18.8%, and 83.1% of patients reported satisfactory results. Allograft survival rates at 2, 5, 10, 15, 20, and 25 years were 94%, 87.9%, 80%, 73%, 55%, and 59.4%, respectively. OCA was mainly performed on the knee (88.9%). The most common diagnosis in the knee was osteochondritis dissecans (37.9%), and the most common defect location was the medial femoral condyle (52%). The most common concomitant procedures were high tibial osteotomy (28.4%) and meniscal allograft transplantation (24.7%). After OCA failure, 54.7% of patients underwent revision with primary total knee arthroplasty. Conclusion: The annual reported number of patients who underwent OCA showed a significant upward trend, especially from 2016 to 2020. Patients receiving OCA were predominantly young male adults with a high body mass index. OCA was more established for knee cartilage than an injury at other sites, and its best indication was osteochondritis dissecans. This analysis demonstrated satisfactory long-term postoperative outcomes.

14.
Drug Metab Dispos ; 51(12): 1583-1590, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37775332

ABSTRACT

To investigate the value of drug exposure and host germline genetic factors in predicting apatinib (APA)-related toxicities. METHOD: In this prospective study, plasma APA concentrations were quantified using liquid chromatography with tandem mass spectrometry, and 57 germline mutations were genotyped in 126 advanced solid tumor patients receiving 250 mg daily APA, a vascular endothelial growth factor receptor II inhibitor. The correlation between drug exposure, genetic factors, and the toxicity profile was analyzed. RESULTS: Non-small cell lung cancer (NSCLC) was more prone to APA-related toxicities and plasma concentrations of APA, and its main metabolite M1-1 could be associated with high-grade adverse events (AEs) (P < 0.01; M1-1, P < 0.01) and high-grade antiangiogenetic toxicities (APA, P = 0.034; P < 0.05), including hypertension, proteinuria, and hand-foot syndrome, in the subgroup of NSCLC. Besides, CYP2C9 rs34532201 TT carriers tended to have higher levels of APA (P < 0.001) and M1-1 (P < 0.01), whereas CYP2C9 rs1936968 GG carriers were predisposed to higher levels of M1-1 (P < 0.01). CONCLUSION: Plasma APA and M1-1 exposures were able to predict severe AEs in NSCLC patients. Dose optimization and drug exposure monitoring might need consideration in NSCLC patients with CYP2C9 rs34532201 TT and rs1936968 GG. SIGNIFICANCE STATEMENT: Apatinib is an anti-VEGFR2 inhibitor for the treatment of multiple cancers. Though substantial in response, apatinib-induced toxicity has been a critical issue that is worth clinical surveillance. Few data on the role of drug exposure and genetic factors in apatinib-induced toxicity are available. Our study demonstrated a distinct drug-exposure relationship in NSCLC but not other tumors and provided invaluable evidence of drug exposure levels and single nucleotide polymorphisms as predictive biomarkers in apatinib-induced severe toxicities.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Polymorphism, Single Nucleotide , Antineoplastic Agents/adverse effects , Prospective Studies , Vascular Endothelial Growth Factor A/therapeutic use , Cytochrome P-450 CYP2C9
15.
World J Gastroenterol ; 29(24): 3855-3870, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37426324

ABSTRACT

BACKGROUND: Thalidomide is an effective treatment for refractory Crohn's disease (CD). However, thalidomide-induced peripheral neuropathy (TiPN), which has a large individual variation, is a major cause of treatment failure. TiPN is rarely predictable and recognized, especially in CD. It is necessary to develop a risk model to predict TiPN occurrence. AIM: To develop and compare a predictive model of TiPN using machine learning based on comprehensive clinical and genetic variables. METHODS: A retrospective cohort of 164 CD patients from January 2016 to June 2022 was used to establish the model. The National Cancer Institute Common Toxicity Criteria Sensory Scale (version 4.0) was used to assess TiPN. With 18 clinical features and 150 genetic variables, five predictive models were established and evaluated by the confusion matrix receiver operating characteristic curve (AUROC), area under the precision-recall curve (AUPRC), specificity, sensitivity (recall rate), precision, accuracy, and F1 score. RESULTS: The top-ranking five risk variables associated with TiPN were interleukin-12 rs1353248 [P = 0.0004, odds ratio (OR): 8.983, 95% confidence interval (CI): 2.497-30.90], dose (mg/d, P = 0.002), brain-derived neurotrophic factor (BDNF) rs2030324 (P = 0.001, OR: 3.164, 95%CI: 1.561-6.434), BDNF rs6265 (P = 0.001, OR: 3.150, 95%CI: 1.546-6.073) and BDNF rs11030104 (P = 0.001, OR: 3.091, 95%CI: 1.525-5.960). In the training set, gradient boosting decision tree (GBDT), extremely random trees (ET), random forest, logistic regression and extreme gradient boosting (XGBoost) obtained AUROC values > 0.90 and AUPRC > 0.87. Among these models, XGBoost and GBDT obtained the first two highest AUROC (0.90 and 1), AUPRC (0.98 and 1), accuracy (0.96 and 0.98), precision (0.90 and 0.95), F1 score (0.95 and 0.98), specificity (0.94 and 0.97), and sensitivity (1). In the validation set, XGBoost algorithm exhibited the best predictive performance with the highest specificity (0.857), accuracy (0.818), AUPRC (0.86) and AUROC (0.89). ET and GBDT obtained the highest sensitivity (1) and F1 score (0.8). Overall, compared with other state-of-the-art classifiers such as ET, GBDT and RF, XGBoost algorithm not only showed a more stable performance, but also yielded higher ROC-AUC and PRC-AUC scores, demonstrating its high accuracy in prediction of TiPN occurrence. CONCLUSION: The powerful XGBoost algorithm accurately predicts TiPN using 18 clinical features and 14 genetic variables. With the ability to identify high-risk patients using single nucleotide polymorphisms, it offers a feasible option for improving thalidomide efficacy in CD patients.


Subject(s)
Crohn Disease , Peripheral Nervous System Diseases , Humans , Thalidomide/adverse effects , Crohn Disease/diagnosis , Crohn Disease/drug therapy , Brain-Derived Neurotrophic Factor , East Asian People , Retrospective Studies , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/diagnosis , Peripheral Nervous System Diseases/epidemiology , Machine Learning
16.
Front Nutr ; 10: 1138506, 2023.
Article in English | MEDLINE | ID: mdl-37441519

ABSTRACT

Introduction: Thiopurines, azathiopurine (AZA) and mercaptopurine (6-MP) have been regularly used in the treatment of inflammatory bowel disease (IBD). Despite optimized dosage adjustment based on the NUDT15 genotypes, some patients still discontinue or change treatment regimens due to thiopurine-induced leukopenia. Methods: We proposed a prospective observational study of lipidomics to reveal the lipids perturbations associated with thiopurine-induced leukopenia. One hundred and twenty-seven IBD participants treated with thiopurine were enrolled, twenty-seven of which have developed thiopurine-induced leucopenia. Plasma lipid profiles were measured using Ultra-High-Performance Liquid Chromatography-Tandem Q-Exactive. Lipidomic alterations were validated with an independent validation cohort (leukopenia n = 26, non-leukopenia n = 74). Results: Using univariate and multivariate analysis, there were 16 lipid species from four lipid classes, triglyceride (n = 11), sphingomyelin (n = 1), phosphatidylcholine (n = 1) and lactosylceramide (n = 3) identified. Based on machine learning feature reduction and variable screening strategies, the random forest algorithm established by six lipids showed an excellent performance to distinguish the leukopenia group from the normal group, with a model accuracy of 95.28% (discovery cohort), 79.00% (validation cohort) and an area under the receiver operating characteristic (ROC) curve (ROC-AUC) of 0.9989 (discovery cohort), 0.8098 (validation cohort). Discussion: Our novel findings suggested that lipidomic provided unique insights into formulating individualized medication strategies for thiopurines in IBD patients.

17.
Adv Mater ; 35(31): e2302069, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37285214

ABSTRACT

Currently, available gold nanoparticles (GNPs) typically accumulate in the liver and spleen, leading to concerns for their long-term biosafety. To address this long-standing problem, ultraminiature chain-like gold nanoparticle clusters (GNCs) are developed. Via self-assembly of 7-8 nm GNP monomers, GNCs provide redshifted optical absorption and scattering contrast in the near-infrared window. After disassembly, GNCs turn back to GNPs with a size smaller than the renal glomerular filtration size cutoff, allowing their excretion via urine. A one-month longitudinal study in a rabbit eye model demonstrates that GNCs facilitate multimodal molecular imaging of choroidal neovascularization (CNV) in vivo, non-invasively, with excellent sensitivity and spatial resolution. GNCs targeting αv ß3  integrins enhance photoacoustic and optical coherence tomography (OCT) signals from CNV by 25.3-fold and 150%, respectively. With excellent biosafety and biocompatibility demonstrated, GNCs render a first-of-its-kind nanoplatform for biomedical imaging.


Subject(s)
Choroidal Neovascularization , Metal Nanoparticles , Animals , Rabbits , Gold , Longitudinal Studies , Choroidal Neovascularization/diagnostic imaging , Tomography, Optical Coherence/methods , Molecular Imaging/methods
18.
Injury ; 54(8): 110841, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37316405

ABSTRACT

BACKGROUND: Our previous studies have demonstrated the mechanical effect of sclerosis around screw paths on the healing of femoral neck fractures (FNF) after internal fixation. Furthermore, we discussed the possibility of using bioceramic nails (BNs) to prevent sclerosis. However, all these studies were conducted under static conditions as the patient was standing on one leg, while the effect of the stress generated during movement is unknown. The purpose of this study was to evaluate the stress and displacement under dynamic stress loading conditions. METHODS: Two types of internal fixation, namely cannulated screws and bioceramic nails, were utilized in conjunction with various finite element models of the femur. These models included the femoral neck fracture healing model, the femoral neck fracture model, and the sclerosis around screws model. The resulting stress and displacement were analyzed by applying the contact forces associated with the most demanding activities during gait, including walking, standing, and knee bending. The present study establishes a comprehensive framework for investigating the biomechanical properties of internal fixation devices in the context of femoral fractures. RESULTS: The stress at the top of the femoral head in the sclerotic model was increased by roughly 15 MPa during the knee bend and walking phases and by about 30 MPa during the standing phase compared to the healing model. The area of high stress at the top of the femoral head was increased during the sclerotic model's walking and standing phases. Additionally, the stress distribution throughout the dynamic gait cycle was comparable before and after the removal of internal fixations following the healing of the FNF. The overall stress distribution of the entire fractured femoral model was lower and more evenly distributed in all combinations of internal fixation. Furthermore, the internal fixation stress concentration was lower when more BNs were used. In the fractured model with three cannulated screws (CSs), however, the majority of the stress was concentrated around the ends of the fractures.The maximal stress in the healing model with one CS and two BNs was the highest at all stages of gait over three combinations of internal fixation, and the stress was mainly carried by CS. CONCLUSIONS: The presence of sclerosis around screw paths increases the risk of femoral head necrosis. Removal of CS has little effect on the mechanics of the femur after healing of the FNF. BNs have several advantages over conventional CSs after FNF. Replacing all internal fixations with BNs after the healing of FNF may solve the problem of sclerosis formation around CSs to improve bone reconstruction owing to their bioactivity.


Subject(s)
Femoral Neck Fractures , Titanium , Humans , Finite Element Analysis , Nails , Sclerosis , Femoral Neck Fractures/surgery , Fracture Fixation, Internal/methods , Biomechanical Phenomena
19.
Photoacoustics ; 31: 100519, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37362870

ABSTRACT

In our previous study, we demonstrated the feasibility of using an all-optical interstitial photoacoustic (PA) needle sensing probe for quantitative study of tissue architectures with PA spectral analysis (PASA). In this work, we integrated the optical components into an 18 G steel needle sheath for clinical translation. The dimensions of the needle probe are identical to those of a core biopsy probe and are fully compatible with standard procedures such as prostate biopsy. To our knowledge, this is the first interstitial PA probe that can acquire signals with sufficient temporal length for statistics-based PASA. We treated the inner surface of the steel needle sheath and successfully suppressed the vibrational PA signals generated at the surface. Purposed at boosting the measurement sensitivity and extending sensing volume, we upgraded the Fabry-Pérot hydrophone with a plano-concave structure. The performance of the translational needle PA sensing probe was examined with phantoms containing microspheres. The trend of the linear spectral slopes shows negatively correlated to the microsphere dimensions while the midband-fits are positively correlated to microsphere diameters and concentrations. The PASA quantifications show the ability to differentiate microspheres with varied dimensions.

20.
Z Med Phys ; 33(3): 324-335, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37365088

ABSTRACT

Photoacoustic (PA) imaging has been extensively investigated in application in biomedicine over the last decade. This article reviews the motivation, significance, and system configuration of a few ongoing studies of implementing photoacoustic technology in musculoskeletal imaging, abdominal imaging, and interstitial sensing. The review then summarizes the methodologies and latest progress of relevant projects. Finally, we discuss our expectations for the future of translation research in PA imaging.


Subject(s)
Diagnostic Imaging , Photoacoustic Techniques , Humans , Musculoskeletal System/diagnostic imaging , Abdomen/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...