Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 117
Filter
1.
Front Neurosci ; 18: 1386340, 2024.
Article in English | MEDLINE | ID: mdl-39170683

ABSTRACT

Objectives: This study aims to assess the predictive capability of synthetic MRI in assessing neurodevelopmental outcomes for extremely preterm neonates with low-grade Germinal Matrix-Intraventricular Hemorrhage (GMH-IVH). The study also investigates the potential enhancement of predictive performance by combining relaxation times from different brain regions. Materials and methods: In this prospective study, 80 extremely preterm neonates with GMH-IVH underwent synthetic MRI around 38 weeks, between January 2020 and June 2022. Neurodevelopmental assessments at 18 months of corrected age categorized the infants into two groups: those without disability (n = 40) and those with disability (n = 40), with cognitive and motor outcome scores recorded. T1, T2 relaxation times, and Proton Density (PD) values were measured in different brain regions. Logistic regression analysis was utilized to correlate MRI values with neurodevelopmental outcome scores. Synthetic MRI metrics linked to disability were identified, and combined models with independent predictors were established. The predictability of synthetic MRI metrics in different brain regions and their combinations were evaluated and compared with internal validation using bootstrap resampling. Results: Elevated T1 and T2 relaxation times in the frontal white matter (FWM) and caudate were significantly associated with disability (p < 0.05). The T1-FWM, T1-Caudate, T2-FWM, and T2-Caudate models exhibited overall predictive performance with AUC values of 0.751, 0.695, 0.856, and 0.872, respectively. Combining these models into T1-FWM + T1-Caudate + T2-FWM + T2-Caudate resulted in an improved AUC of 0.955, surpassing individual models (p < 0.05). Bootstrap resampling confirmed the validity of the models. Conclusion: Synthetic MRI proves effective in early predicting adverse outcomes in extremely preterm infants with GMH-IVH. The combination of T1-FWM + T1-Caudate + T2-FWM + T2-Caudate further enhances predictive accuracy, offering valuable insights for early intervention strategies.

2.
BMC Oral Health ; 24(1): 850, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39061018

ABSTRACT

BACKGROUND: Epidemiological studies have demonstrated that periodontitis is an independent risk factor for chronic obstructive pulmonary disease (COPD). However, the mechanism underlying the association between these two diseases remains unclear. The lung microbiota shares similarities with the oral microbiota, and there is growing evidence to suggest that the lung microbiome could play a role in the pathogenesis of COPD. This study aimed to investigate whether periodontal pathogens could contribute to the pathogenesis of COPD in a mouse model. METHODS: We established mouse models with oral infection by typical periodontal pathogens, porphyromonas gingivalis (Pg group) or fusobacterium nucleatum (Fn group), over a three-month period. Mice that did not receive oral infection were set as the control group (C group). We assessed the level of alveolar bone resorption, lung function, and histological changes in the lungs of the mice. Additionally, we measured the levels of inflammatory factors and tissue damage associated factors in the lung tissues. RESULTS: Lung function indices, including airway resistance, peak inspiratory/expiratory flow and expiratory flow-50%, were significantly reduced in the Fn group compared to the C group. Additionally, histological examination revealed an increased number of inflammatory cells and bullae formation in the lung tissue sections of the Fn group. Meanwhile, levels of inflammatory factors such as IL-1ß, IL-6, IFN-γ, and TNF-α, as well as tissue damage associated factors like matrix metalloproteinase-8 and neutrophil elastase, were significantly elevated in the lung tissue of the Fn group in comparison to the C group. The Pg group also showed similar but milder lung changes compared to the Fn group. Pg or Fn could be detected in the lungs of both oral infected groups. CONCLUSION: The results indicated that oral periodontal pathogens infection could induce COPD-like lung changes in mice, and they may play a biological role in the association between periodontitis and COPD.


Subject(s)
Disease Models, Animal , Fusobacterium nucleatum , Porphyromonas gingivalis , Pulmonary Disease, Chronic Obstructive , Animals , Pulmonary Disease, Chronic Obstructive/microbiology , Pulmonary Disease, Chronic Obstructive/pathology , Pulmonary Disease, Chronic Obstructive/physiopathology , Pulmonary Disease, Chronic Obstructive/complications , Mice , Alveolar Bone Loss/microbiology , Alveolar Bone Loss/pathology , Lung/pathology , Lung/microbiology , Periodontitis/microbiology , Periodontitis/pathology , Periodontitis/complications , Male , Bacteroidaceae Infections/complications , Bacteroidaceae Infections/microbiology , Bacteroidaceae Infections/pathology , Fusobacterium Infections/complications , Fusobacterium Infections/microbiology , Fusobacterium Infections/pathology , Mice, Inbred C57BL
3.
Front Neurosci ; 18: 1365141, 2024.
Article in English | MEDLINE | ID: mdl-38919907

ABSTRACT

Introduction: Sensorineural hearing loss (SNHL) can arise from a diverse range of congenital and acquired factors. Detecting it early is pivotal for nurturing speech, language, and cognitive development in children with SNHL. In our study, we utilized synthetic magnetic resonance imaging (SyMRI) to assess alterations in both gray and white matter within the brains of children affected by SNHL. Methods: The study encompassed both children diagnosed with SNHL and a control group of children with normal hearing {1.5-month-olds (n = 52) and 3-month-olds (n = 78)}. Participants were categorized based on their auditory brainstem response (ABR) threshold, delineated into normal, mild, moderate, and severe subgroups.Clinical parameters were included and assessed the correlation with SNHL. Quantitative analysis of brain morphology was conducted using SyMRI scans, yielding data on brain segmentation and relaxation time.Through both univariate and multivariate analyses, independent factors predictive of SNHL were identified. The efficacy of the prediction model was evaluated using receiver operating characteristic (ROC) curves, with visualization facilitated through the utilization of a nomogram. It's important to note that due to the constraints of our research, we worked with a relatively small sample size. Results: Neonatal hyperbilirubinemia (NH) and children with inner ear malformation (IEM) were associated with the onset of SNHL both at 1.5 and 3-month groups. At 3-month group, the moderate and severe subgroups exhibited elevated quantitative T1 values in the inferior colliculus (IC), lateral lemniscus (LL), and middle cerebellar peduncle (MCP) compared to the normal group. Additionally, WMV, WMF, MYF, and MYV were significantly reduced relative to the normal group. Additionally, SNHL-children with IEM had high T1 values in IC, and LL and reduced WMV, WMF, MYV and MYF values as compared with SNHL-children without IEM at 3-month group. LL-T1 and WMF were independent risk factors associated with SNHL. Consequently, a prediction model was devised based on LL-T1 and WMF. ROC for training set, validation set and external set were 0.865, 0.806, and 0.736, respectively. Conclusion: The integration of T1 quantitative values and brain volume segmentation offers a valuable tool for tracking brain development in children affected by SNHL and assessing the progression of the condition's severity.

4.
Clin Nutr ESPEN ; 61: 37-45, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38777457

ABSTRACT

OBJECTIVES: The evidence connecting polyunsaturated fatty acids (PUFAs) to biliary problems is still highly contested and speculative despite the fact that biliary diseases are common and PUFAs have long been studied for their potential health benefits. This work used Mendelian randomization (MR) techniques in conjunction with genome-wide association study (GWAS) data to clarify the causal relationships between PUFAs and biliary tract diseases. METHODS: We compiled data on PUFAs, including Omega-3 fatty acids, Omega-6 fatty acids, and the ratio of Omega-6 to Omega-3 fatty acids (Omega-6:Omega-3), using GWAS. MR was used to examine biliary tract problems (cholecystitis, cholelithiasis, gallbladder cancer, primary biliary cholangitis, primary sclerosing cholangitis, and disorders of gallbladder, biliary tract and pancreas). Single nucleotide polymorphisms significantly associated with PUFAs were selected as instrumental variables to estimate causal effects on biliary tract diseases. The final results were analyzed using five MR analysis techniques. Inverse variance weighting (IVW) was used as the primary outcome. And IVW was utilized in conjunction with the other MR analysis techniques (MR-Egger, weighted median, simple mode, and weighted mode). Additionally, we evaluated heterogeneity and horizontal multiplicity using the MR-Egger intercept test and Cochrane's Q test, respectively. Finally, to increase the accuracy and precision of the study outcomes, we carried out a number of sensitivity analyses. RESULTS: We found that Omega-3 fatty acids reduced the risk of cholecystitis (OR: 0.851, P = 0.009), cholelithiasis (OR: 0.787, P = 8.76e-5), and disorders of gallbladder, biliary tract and pancreas (OR: 0.842, P = 1.828e-4) but increased the primary biliary cholangitis (OR: 2.220, P = 0.004). There was no significant association between Omega-3 fatty acids and risk of gallbladder cancer (OR: 3.127, P = 0.530) and primary sclerosing cholangitis (OR: 0.919, P = 0.294). Omega-6 fatty acids were associated with a reduced risk of cholecystitis (OR: 0.845, P = 0.040). However, they were not linked to an increased or decreased risk of cholelithiasis (OR: 0.878, P = 0.14), gallbladder cancer (OR: 4.670, P = 0.515), primary sclerosing cholangitis (OR: 0.993, P = 0.962), primary cholestatic biliary cholangitis (OR: 1.404, P = 0.509), or disorders of gallbladder, biliary tract and pancreas. Omega-6:Omega-3 fatty acids were linked to a greater risk of cholecystitis, cholelithiasis, and disorders of gallbladder, biliary tract and pancreas (OR:1.168, P = 0.009, OR:1.191, P = 1.60e-6, and OR:1.160, P = 4.11e-6, respectively). But (OR: 0.315, P = 0.010) was linked to a decreased risk of primary biliary cholangitis. Not linked to risk of primary sclerosing cholangitis (OR: 1.079, P = 0.078) or gallbladder cancer (OR: 0.046, P = 0.402). According to the MR-Egger intercept, our MR examination did not appear to be impacted by any pleiotropy (all P > 0.05). Additionally, sensitivity studies validated the accuracy of the calculated causation. CONCLUSION: Inconsistent causative relationships between PUFAs and biliary tract diseases were revealed in our investigation. However, Omega-3 fatty acids were found to causally lower the risk of cholecystitis, cholelithiasis, and disorders of gallbladder, biliary tract and pancreas. Omega-3 fatty acids increased the risk of primary biliary cholangitis in a causative way. Omega-3 fatty acids with the risk of gallbladder cancer and primary sclerosing cholangitis did not have any statistically significant relationships. Omega-6 fatty acids were not significantly causally connected with the risk of cholelithiasis, gallbladder cancer, primary sclerosing cholangitis, or disorders of gallbladder, biliary tract and pancreas. However, they did play a causative role in lowering the risk of cholecystitis. Omega-6:Omega-3 fatty acids decreased the risk of primary biliary cholangitis but increased the risk of cholecystitis, gallstone disease, and disorders of gallbladder, biliary tract and pancreas. They had no effect on the risk of gallbladder cancer or primary sclerosing cholangitis. Therefore, additional research should be done to examine the probable processes mediating the link between polyunsaturated fatty acids and the risk of biliary tract diseases.


Subject(s)
Biliary Tract Diseases , Fatty Acids, Omega-3 , Fatty Acids, Omega-6 , Fatty Acids, Unsaturated , Genome-Wide Association Study , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Humans , Biliary Tract Diseases/genetics
5.
Int J Biol Macromol ; 270(Pt 2): 132441, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38761897

ABSTRACT

Pest management technology has been a promising bioconversion method for waste resource utilization. Unlike many pests that consume waste, the larvae of Lucilia sericata, also known as maggots, have many outstanding advantages as following: with their strong adaption to environment and not easily infected and exhibiting a medicinal nutritional value. Herein, the potential efficacies of maggot polysaccharides (MP), as well as their underlying mechanisms, were explored in Dextran sulfate sodium (DSS)-induced colitis mice and TNF-α-elicited Caco-2 cells. We extracted two bioactive polysaccharides from maggots, MP-80 and MP-L, whose molecular weights were 4.25 × 103 and 2.28 × 103 g/mol, respectively. MP-80 and MP-L contained nine sugar residues: 1,4-α-Arap, 1,3-ß-Galp, 1,4,6-ß-Galp, 1,6-α-Glcp, 1-α-Glcp, 1,4-ß-Glcp, 1-ß-Xylp, 1,2-α-Manp, and 1-ß-Manp. We demonstrated that MP-80 and MP-L significantly ameliorated DSS-induced symptoms and histopathological damage. Immuno-analysis revealed that compared with MP-L, MP-80 could better restore intestinal barrier and reduced inflammation by suppressing NLRP3/NF-κB pathways, which might be attributed to its enriched galactose fraction. Moreover, 16S rRNA sequencing revealed that MP-80 and MP-L both improved the dysbiosis and diversity of gut microbiota and acted on multiple microbial functions. Our study sheds new light on the possibility of using maggot polysaccharides as an alternative therapy for colitis.


Subject(s)
Colitis, Ulcerative , Dextran Sulfate , Gastrointestinal Microbiome , Larva , Polysaccharides , Animals , Gastrointestinal Microbiome/drug effects , Larva/drug effects , Polysaccharides/pharmacology , Polysaccharides/chemistry , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Humans , Mice , Caco-2 Cells , Diptera/chemistry , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Disease Models, Animal , Male
6.
ACS Omega ; 9(14): 15753-15767, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38617672

ABSTRACT

Tumors are one of the main diseases threatening human life and health. The emergence of nanotechnology in recent years has introduced a novel therapeutic avenue for addressing tumors. Through the amalgamation of nanotechnology's inherent attributes with those of natural enzymes, nanozymes have demonstrated the ability to initiate catalytic reactions, modulate the biological microenvironment, and facilitate the adoption of multifaceted therapeutic approaches, thereby exhibiting considerable promise in the realm of cancer treatment. In this Review, the application of nanozymes in chemodynamic therapy, radiotherapy, photodynamic therapy, photothermal therapy, and starvation therapy are summarized. Moreover, a detailed discussion regarding the mechanism of conferring physiotherapeutic functionality upon catalytic nanosystems is provided. It is posited that this innovative catalytic treatment holds significant potential to play a crucial role within the domain of nanomedicine.

7.
Heliyon ; 10(7): e29295, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38617954

ABSTRACT

It is crucial to employ scientifically sound models for assessing the quality of the ecological environment and revealing the strengths and weaknesses of ecosystems. This process is vital for identifying regional ecological and environmental issues and devising relevant protective measures. Among the widely acknowledged models for evaluating ecological quality, the ecological index (EI) and remote sensing ecological index (RSEI) stand out; however, there is a notable gap in the literature discussing their differences, characteristics, and reasons for selecting either model. In this study, we focused on Fangshan District, Beijing, China, to examine the differences between the two models from 2017 to 2021. We summarized the variations in evaluation indices, importance, quantitative methods, and data acquisition times, proposing application scenarios for both models. The results indicate that the ecological environment quality in Fangshan District, Beijing, remained favorable from 2017 to 2021. There was a discernible trend of initially declining quality followed by subsequent improvement. The variation in the calculation results is evident in the overall correlation between the RSEI and EI. Particularly noteworthy is the significantly smaller correlation between EI and the RSEI in 2021 than in the other two years. This discrepancy is attributed to shifts in the contribution of the evaluation indices within the RSEI model. The use of diverse quantitative methods for evaluating indicators has resulted in several variations. Notably, the evaluation outcomes of the EI model exhibit a stronger correlation with land cover types. This correlation contributes to a more pronounced fluctuation in RSEI levels from 2017 to 2021, with the EI model's evaluation results in 2019 notably surpassing those of the RSEI model. Ultimately, the most prominent disparities lie in the calculation results for water areas and construction land. The substantial difference in water areas is attributed to the distinct importance assigned to evaluation indicators between the two models. Moreover, the notable difference in construction land arises from the use of different quantification methods for evaluation indicators. In general, the EI model has suggested to be more comprehensive and effectively captures the annual comprehensive status of the ecological environment and the multiyear change characteristics of the administrative region. On the other hand, RSEI models exhibit greater flexibility and ease of implementation, independent of spatial and temporal scales. These findings contribute to a clearer understanding of the models' advantages and limitations, offering guidance for decision makers and valuable insights for the improvement and development of ecological environmental quality evaluation models.

8.
Biomater Adv ; 160: 213859, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38642515

ABSTRACT

Triple-negative breast cancer (TNBC) is a highly invasive and metastatic subtype of breast cancer that often recurs after surgery. Herein, we developed a cyclodextrin-based tumor-targeted nano delivery system that incorporated the photosensitizer chlorin e6 (Ce6) and the chemotherapeutic agent lonidamine (LND) to form the R6RGD-CMßCD-se-se-Ce6/LND nanoparticles (RCC/LND NPS). This nanosystem could target cancer cells, avoid lysosomal degradation and further localize within the mitochondria. The RCC/LND NPS had pH and redox-responsive to control the release of Ce6 and LND. Consequently, the nanosystem had a synergistic effect by effectively alleviating hypoxia, enhancing the production of cytotoxic reactive oxygen species (ROS) and amplifying the efficacy of photodynamic therapy (PDT). Furthermore, the RCC/LND NPS + light weakened anoikis resistance, disrupted extracellular matrix (ECM), activated both the intrinsic apoptotic pathway (mitochondrial pathway) and extrinsic apoptotic pathway (receptor death pathway) of anoikis. In addition, the nanosystem showed significant anti-TNBC efficacy in vivo. These findings collectively demonstrated that RCC/LND NPS + light enhanced the anticancer effects, induced anoikis and inhibited tumor cell migration and invasion through a synergistic effect of chemotherapy and PDT. Overall, this study highlighted the promising potential of the RCC/LND NPS + light for the treatment of TNBC.


Subject(s)
Anoikis , Apoptosis , Chlorophyllides , Nanoparticles , Photochemotherapy , Photosensitizing Agents , Porphyrins , Triple Negative Breast Neoplasms , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Humans , Photochemotherapy/methods , Female , Porphyrins/pharmacology , Porphyrins/therapeutic use , Animals , Cell Line, Tumor , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Anoikis/drug effects , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Apoptosis/drug effects , Indazoles/pharmacology , Indazoles/therapeutic use , Reactive Oxygen Species/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Mice
9.
CNS Neurosci Ther ; 30(2): e14602, 2024 02.
Article in English | MEDLINE | ID: mdl-38332652

ABSTRACT

OBJECTIVE: We aimed to explore the value of magnetoencephalography in the presurgical evaluation of patients with posterior cortex epilepsy. METHODS: A total of 39 patients with posterior cortex epilepsy (PCE) and intact magnetoencephalography (MEG) images were reviewed from August 2019 to July 2022. MEG dipole clusters were classified into single clusters, multiple clusters, and scatter dipoles based on tightness criteria. The association of the surgical outcome with MEG dipole classifications was evaluated using Fisher's exact tests. RESULTS: Among the 39 cases, there were 24 cases of single clusters (61.5%), nine cases of multiple clusters (23.1%), and six cases of scattered dipoles (15.4%). Patients with single dipole clusters were more likely to become seizure-free. Among single dipole cluster cases (n = 24), complete MEG dipole resection yielded a more favorable surgical outcome than incomplete resection (83.3% vs. 16.7%, p = 0.007). Patients with concordant MRI and MEG findings achieved a significantly more favorable surgical outcome than discordant patients (66.7% vs. 33.3%, p = 0.044), especially in single dipole cluster patients (87.5% vs. 25.0%, p = 0.005). SIGNIFICANCE: MEG can provide additional valuable information regarding surgical candidate selection, epileptogenic zone localization, electrode implantation schedule, and final surgical planning in patients with posterior cortex epilepsy.


Subject(s)
Epilepsy , Magnetoencephalography , Humans , Magnetoencephalography/methods , Electroencephalography/methods , Treatment Outcome , Epilepsy/diagnostic imaging , Epilepsy/surgery , Prognosis , Magnetic Resonance Imaging
10.
Comput Biol Med ; 166: 107567, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37852109

ABSTRACT

Medical image segmentation is crucial for accurate diagnosis and treatment in the medical field. In recent years, convolutional neural networks (CNNs) and Transformers have been frequently adopted as network architectures in medical image segmentation. The convolution operation is limited in modeling long-range dependencies because it can only extract local information through the limited receptive field. In comparison, Transformers demonstrate excellent capability in modeling long-range dependencies but are less effective in capturing local information. Hence, effectively modeling long-range dependencies while preserving local information is essential for accurate medical image segmentation. In this paper, we propose a four-axis fusion framework called FAFuse, which can exploit the advantages of CNN and Transformer. As the core component of our FAFuse, a Four-Axis Fusion module (FAF) is proposed to efficiently fuse global and local information. FAF combines Four-Axis attention (height, width, main diagonal, and counter diagonal axial attention), a multi-scale convolution, and a residual structure with a depth-separable convolution and a Hadamard product. Furthermore, we also introduce deep supervision to enhance gradient flow and improve overall performance. Our approach achieves state-of-the-art segmentation accuracy on three publicly available medical image segmentation datasets. The code is available at https://github.com/cczu-xiao/FAFuse.

11.
Brain Stimul ; 16(5): 1302-1309, 2023.
Article in English | MEDLINE | ID: mdl-37633491

ABSTRACT

BACKGROUND: Deep brain stimulation of the anterior nucleus of the thalamus (ANT-DBS) is an effective treatment for refractory epilepsy; however, seizure outcome varies among individuals. Identifying a reliable noninvasive biomarker to predict good responders would be helpful. OBJECTIVES: To test whether the functional connectivity between the ANT-DBS sites and the seizure foci correlates with effective seizure control in refractory epilepsy. METHODS: We performed a proof-of-concept pilot study of patients with focal refractory epilepsy receiving ANT-DBS. Using normative human connectome data derived from 1000 healthy participants, we investigated whether intrinsic functional connectivity between the seizure foci and the DBS site was associated with seizure outcome. We repeated this analysis controlling for the extent of seizure foci, distance between the seizure foci and DBS site, and using functional connectivity of the ANT instead of the DBS site to test the contribution of variance in DBS sites. RESULTS: Eighteen patients with two or more seizure foci were included. Greater functional connectivity between the seizure foci and the DBS site correlated with more favorable outcome. The degree of functional connectivity accounted for significant variance in clinical outcomes (DBS site: |r| = 0.773, p < 0.001 vs ANT-atlas: |r| = 0.715, p = 0.001), which remained significant when controlling for the extent of the seizure foci (|r| = 0.773, p < 0.001) and the distance between the seizure foci and DBS site (|r| = 0.777, p < 0.001). Significant correlations were independent of variance in the DBS sites (|r| = 0.148, p = 0.57). CONCLUSION: These findings suggest that functional connectomic profile is a potential reliable non-invasive biomarker to predict ANT-DBS outcomes. Accordingly, the identification of ANT responders could decrease the surgical risk for patients who may not benefit and optimize the cost-effective allocation of health care resources.


Subject(s)
Anterior Thalamic Nuclei , Connectome , Deep Brain Stimulation , Drug Resistant Epilepsy , Epilepsies, Partial , Humans , Drug Resistant Epilepsy/therapy , Pilot Projects , Anterior Thalamic Nuclei/physiology , Seizures/therapy , Biomarkers , Epilepsies, Partial/therapy
12.
Heliyon ; 9(7): e17821, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37455957

ABSTRACT

Given the problem of considerable livestock and poultry pollution and the differentiation of the regional agricultural layout in China, the combination of planting and breeding (CPB) forms an agricultural co-agglomeration to recycle manure waste into croplands to reduce livestock and poultry pollution. This study aims to evaluate CPB co-agglomeration and empirically examine its effects on livestock and poultry pollution. Based on provincial data from 1997 to 2020 in China, this study constructed three indicators to evaluate CPB co-agglomeration, summarized its temporal and spatial characteristics, and conducted a spatial analysis using the Spatial Lag Model (SLM) to empirically investigate its effect on livestock and poultry pollution. The results showed that: first, from 1997 to 2020, the overall level of CPB co-agglomeration in China declined and the region with higher CPB co-agglomeration level transferred from the central provinces to the west provinces. Second, livestock and poultry pollution in most provinces had significantly positive spatial correlations with adjacent regions. The co-agglomeration of CPB had a significantly positive effect on reducing livestock and poultry pollution; however, the effect had no significant spatial spillover. Third, the breeding industry agglomeration and the moderate expansion of breeding industry scale significantly reduced pollution. These findings provide a reference for reducing livestock and poultry pollution by promoting CPB co-agglomeration to establish a waste recycling system. Optimizing the layout of the planting and breeding industry helps achieve the goal of long-term sustainable development of the breeding industry.

13.
Front Neurosci ; 17: 1213176, 2023.
Article in English | MEDLINE | ID: mdl-37457013

ABSTRACT

Due to the demand for sample observation, optical microscopy has become an essential tool in the fields of biology and medicine. In addition, it is impossible to maintain the living sample in focus over long-time observation. Rapid focus prediction which involves moving a microscope stage along a vertical axis to find an optimal focus position, is a critical step for high-quality microscopic imaging of specimens. Current focus prediction algorithms, which are time-consuming, cannot support high frame rate imaging of dynamic living samples, and may introduce phototoxicity and photobleaching on the samples. In this paper, we propose Lightweight Densely Connected with Squeeze-and-Excitation Network (LDSE-NET). The results of the focusing algorithm are demonstrated on a public dataset and a self-built dataset. A complete evaluation system was constructed to compare and analyze the effectiveness of LDSE-NET, BotNet, and ResNet50 models in multi-region and multi-multiplier prediction. Experimental results show that LDSE-NET is reduced to 1E-05 of the root mean square error. The accuracy of the predicted focal length of the image is increased by 1 ~ 2 times. Training time is reduced by 33.3%. Moreover, the volume of the model only reaches the KB level, which has the characteristics of being lightweight.

14.
Int J Nanomedicine ; 18: 4023-4042, 2023.
Article in English | MEDLINE | ID: mdl-37520302

ABSTRACT

Introduction: Mitochondria are a significant target of lonidamine (LND). However, its limited solubility and inability to specifically target mitochondria, LND can lead to hepatic toxicity and has shown only modest anticancer activity. The objective of this study is to establish a glutathione programmed mitochondria targeted delivery of LND for the effective treatment of triple negative breast cancer (TNBC). Methods: In this study, LND was encapsulated in poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) wrapped with mitochondria-targeting short-chain triphenylphosphonium-tocopherol polyethylene glycol succinate (TPP-TPGS, TPS) and tumor-targeting long-chain 1, 2-distearoyl-sn-glycero-3-phosphoethanolamine-S-S-polyethylene glycol-R6RGD (DSPE-S-S-PEG2000-R6RGD, DSSR), which were designated as LND-PLGA/TPS/DSSR NPs. The release behavior was evaluated, and cellular uptake, in vitro and in vivo antitumor activity of nanoparticles were investigated. The mechanism, including apoptosis of tumor cells and mitochondrial damage and respiratory rate detection, was also further investigated. Results: LND-PLGA/TPS/DSSR NPs were successfully prepared, and characterization revealed that they are globular particles with smooth surfaces and an average diameter of about 250 nm. Long-chain DSSR in LND-PLGA/TPS/DSSR NPs prevented positively charged LND-PLGA/TPS NPs from being cleared by the reticuloendothelial system. Furthermore, LND release rate from NPs at pH 8.0 was significantly higher than that at pH 7.4 and 5.5, which demonstrated specific LND release in mitochondria and prevented LND leakage in cytoplasm and lysosome. NPs could locate in mitochondria, and the released LND triggered apoptosis of tumor cells by damaging mitochondria and releasing apoptosis-related proteins. In addition, in TNBC mice model, programmed mitochondria targeted NPs improved efficacy and reduced LND toxicity. Conclusion: LND-PLGA/TPS/DSSR NPs may be a useful system and provide an effective approach for the treatment of TNBC.


Subject(s)
Antineoplastic Agents , Nanoparticles , Triple Negative Breast Neoplasms , Humans , Animals , Mice , Triple Negative Breast Neoplasms/drug therapy , Cell Line, Tumor , Nanoparticles/chemistry , Mitochondria/metabolism , Glutathione/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/metabolism
15.
Innovation (Camb) ; 4(4): 100465, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37448741

ABSTRACT

Further applications of electric vehicles (EVs) and energy storage stations are limited because of the thermal sensitivity, volatility, and poor durability of lithium-ion batteries (LIBs), especially given the urgent requirements for all-climate utilization and fast charging. This study comprehensively reviews the thermal characteristics and management of LIBs in an all-temperature area based on the performance, mechanism, and thermal management strategy levels. At the performance level, the external features of the batteries were analyzed and compared in cold and hot environments. At the mechanism level, the heat generation principles and thermal features of LIBs under different temperature conditions were summarized from the perspectives of thermal and electrothermal mechanisms. At the strategy level, to maintain the temperature/thermal consistency and prevent poor subzero temperature performance and local/global overheating, conventional and novel battery thermal management systems (BTMSs) are discussed from the perspective of temperature control, thermal consistency, and power cost. Moreover, future countermeasures to enhance the performance of all-climate areas at the material, cell, and system levels are discussed. This study provides insights and methodologies to guarantee the performance and safety of LIBs used in EVs and energy storage stations.

16.
Neuroimage ; 277: 120243, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37353098

ABSTRACT

Characterizing human thalamocortical network is fundamental for understanding a vast array of human behaviors since the thalamus plays a central role in cortico-subcortical communication. Over the past few decades, advances in functional magnetic resonance imaging have allowed for spatial mapping of intrinsic resting-state functional connectivity (RSFC) between both cortical regions and in cortico-subcortical networks. Despite these advances, identifying the electrophysiological basis of human thalamocortical network architecture remains challenging. By leveraging stereoelectroencephalography electrodes temporarily implanted into distributed cortical regions and the anterior nucleus of the thalamus (ANT) of 10 patients with refractory focal epilepsy, we tested whether ANT stimulation evoked cortical potentials align with RSFC from the stimulation site, derived from a normative functional connectome (n = 1000). Our study identifies spatial convergence of ANT stimulation evoked cortical potentials and normative RSFC. Other than connections to the Papez circuit, the ANT was found to be closely connected to several distinct higher-order association cortices, including the precuneus, angular gyrus, dorsal lateral prefrontal cortex, and anterior insula. Remarkably, we found that the spatial distribution and magnitude of cortical-evoked responses to single-pulse electrical stimulation of the ANT aligned with the spatial pattern and strength of normative RSFC of the stimulation site. The present study provides electrophysiological evidence that stimulation evoked electrical activity flows along intrinsic brain networks connected on a thalamocortical level.


Subject(s)
Anterior Thalamic Nuclei , Epilepsies, Partial , Humans , Cerebral Cortex/physiology , Parietal Lobe , Magnetic Resonance Imaging , Electric Stimulation , Evoked Potentials/physiology
17.
Hum Brain Mapp ; 44(12): 4498-4511, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37318703

ABSTRACT

Our understanding of cingulate cortex function is limited. As a method for locating the epileptogenic zone, direct electrical cortical stimulation (ECS) provides an opportunity to understand the functional localization of the cingulate cortex. This study aimed to learn more about the function of the cingulate cortex by analyzing a large body of data from our center and by reviewing existing literature on cortical mapping. We retrospectively analyzed the ECS data of 124 patients with drug-resistant epilepsy who had undergone electrode implantation in the cingulate cortex. The standard stimulation parameters included a biphasic pulse and bipolar stimulation at 50 Hz. Furthermore, we reviewed existing studies on cingulate responses elicited by the ECS and compared them with our results. A total of 329 responses were evoked in 276 contacts using ECS. Of these, 196 were physiological functional responses, which included sensory, affective, autonomic, language, visual, vestibular, and motor responses, along with a few other sensations. Sensory, motor, vestibular, and visual responses were concentrated in the cingulate sulcus visual area (CSv). Furthermore, 133 epilepsy-related responses were evoked, most of which were concentrated in the ventral cingulate cortex. No responses were evoked by 498 contacts. Furthermore, the comparison of our ECS results with those reported in 11 comprehensive reviews revealed that the cingulate cortex is involved in complicated functions. The cingulate cortex is involved in sensory, affective, autonomic, language, visual, vestibular, and motor functions. The CSv is an integrating node of sensory, motor, vestibular, and visual systems.


Subject(s)
Epilepsy , Gyrus Cinguli , Humans , Gyrus Cinguli/physiology , Retrospective Studies , Brain Mapping/methods , Cerebral Cortex/physiology , Epilepsy/therapy , Electric Stimulation , Electroencephalography
18.
Aging (Albany NY) ; 15(11): 4949-4962, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37279992

ABSTRACT

PZR is a transmembrane glycoprotein encoded by the MPZL1 gene. It serves as a specific binding protein and substrate of tyrosine phosphatase SHP-2 whose mutations cause developmental diseases and cancers. Bioinformatic analyses of cancer gene databases revealed that PZR is overexpressed in lung cancer and correlated with unfavorable prognosis. To investigate the role of PZR in lung cancer, we employed the CRISPR technique to knockout its expression and recombinant lentiviruses to overexpress it in lung adenocarcinoma SPC-A1 cells. While knockout of PZR reduced colony formation, migration, and invasion, overexpression of PZR had the opposite effects. Furthermore, when implanted in immunodeficient mice, PZR-knockout SPC-A1 cells showed suppressed tumor-forming ability. Finally, the underlying molecular mechanism for these functions of PZR is its positive role in activating tyrosine kinases FAK and c-Src and in maintaining the intracellular level of reactive oxygen species (ROS). In conclusion, our data indicated that PZR plays an important role in lung cancer development, and it may serve as a therapeutic target for anti-cancer development and as a biomarker for cancer prognosis.


Subject(s)
Lung Neoplasms , Animals , Mice , Cell Adhesion/genetics , Cell Line, Tumor , Cell Movement/genetics , Lung Neoplasms/genetics , Oxidative Stress , Phosphorylation , Tyrosine/metabolism
19.
Front Neurol ; 14: 1169105, 2023.
Article in English | MEDLINE | ID: mdl-37251216

ABSTRACT

Objective: By studying the surgical outcome of deep brain stimulation (DBS) of different target nuclei for patients with refractory epilepsy, we aimed to explore a clinically feasible target nucleus selection strategy. Methods: We selected patients with refractory epilepsy who were not eligible for resective surgery. For each patient, we performed DBS on a thalamic nucleus [anterior nucleus of the thalamus (ANT), subthalamic nucleus (STN), centromedian nucleus (CMN), or pulvinar nucleus (PN)] selected based on the location of the patient's epileptogenic zone (EZ) and the possible epileptic network involved. We monitored the clinical outcomes for at least 12 months and analyzed the clinical characteristics and seizure frequency changes to assess the postoperative efficacy of DBS on the different target nuclei. Results: Out of the 65 included patients, 46 (70.8%) responded to DBS. Among the 65 patients, 45 underwent ANT-DBS, 29 (64.4%) responded to the treatment, and four (8.9%) of them reported being seizure-free for at least 1 year. Among the patients with temporal lobe epilepsy (TLE, n = 36) and extratemporal lobe epilepsy (ETLE, n = 9), 22 (61.1%) and 7 (77.8%) responded to the treatment, respectively. Among the 45 patients who underwent ANT-DBS, 28 (62%) had focal to bilateral tonic-clonic seizures (FBTCS). Of these 28 patients, 18 (64%) responded to the treatment. Out of the 65 included patients, 16 had EZ related to the sensorimotor cortex and underwent STN-DBS. Among them, 13 (81.3%) responded to the treatment, and two (12.5%) were seizure-free for at least 6 months. Three patients had Lennox-Gastaut syndrome (LGS)-like epilepsy and underwent CMN-DBS; all of them responded to the treatment (seizure frequency reductions: 51.6%, 79.6%, and 79.5%). Finally, one patient with bilateral occipital lobe epilepsy underwent PN-DBS, reducing the seizure frequency by 69.7%. Significance: ANT-DBS is effective for patients with TLE or ETLE. In addition, ANT-DBS is effective for patients with FBTCS. STN-DBS might be an optimal treatment for patients with motor seizures, especially when the EZ overlaps the sensorimotor cortex. CMN and PN may be considered modulating targets for patients with LGS-like epilepsy or occipital lobe epilepsy, respectively.

20.
AIDS Patient Care STDS ; 37(7): 332-336, 2023 07.
Article in English | MEDLINE | ID: mdl-37222734

ABSTRACT

Although pre-exposure prophylaxis (PrEP) is an efficacious biomedical intervention, the effectiveness of same-day PrEP programs has not been widely studied. We utilized data from three of the four largest PrEP providers in Mississippi from September 2018 to September 2021 linked to the Mississippi State Department of Health's Enhanced HIV/AIDS reporting system. HIV diagnosis was defined as testing newly positive for HIV at least 2 weeks after the initial PrEP visit. We calculated the cumulative incidence and incidence rate of HIV per 100 person-years (PY). Person-time was calculated as time from the initial PrEP visit to (1) HIV diagnosis or (2) December 31, 2021 (HIV surveillance data end date). We did not censor individuals if they discontinued PrEP to obtain an estimate of PrEP effectiveness rather than efficacy. Among the 427 clients initiating PrEP during the study period, 2.3% [95% confidence interval (CI): 0.9-3.8] subsequently tested positive for HIV. The HIV incidence rate was 1.18 per 100 PY (95% CI: 0.64-2.19) and median time to HIV diagnosis after the initial PrEP visit was 321 days (95% CI: 62-686). HIV incidence rates were highest among transgender and nonbinary individuals [10.35 per 100 PY (95% CI: 2.59-41.40)] compared with cisgender men and women, and among people racialized as Black [1.45 per 100 PY (95% CI: 0.76-2.80)] compared with White and other racialized groups. These findings indicate a need for more clinical and community interventions that support PrEP persistence and restarts among those at high risk of HIV acquisition.


Subject(s)
Anti-HIV Agents , HIV Infections , Pre-Exposure Prophylaxis , Transgender Persons , Male , Humans , Female , HIV Infections/diagnosis , HIV Infections/epidemiology , HIV Infections/prevention & control , Incidence , Homosexuality, Male , Anti-HIV Agents/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL