Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Biomed Anal ; 198: 113986, 2021 May 10.
Article in English | MEDLINE | ID: mdl-33690095

ABSTRACT

Cholestasis is characterized by obstruction of bile flow and can lead to serious liver injury. With sustained damage, cholestasis can progress to cholestatic liver fibrosis (CLF), and cirrhosis. Non-invasive, predictive, and reliable metabolites based on the early and progressive stages of CLF are urgently needed. Based on the 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-induced CLF mouse model, serum metabolic profiling via a time-series strategy with ultra-performance liquid chromatography-LTQ-Orbitrap-based metabolomics, combined with histological progression, was used to find CLF-specific metabolites, and explore their dynamic changes in progressive stages of CLF. Compared to those in the control group, DDC-induced groups showed a substantial elevation in cholestatic liver injury and fibrosis indices. Next, 21 differential serum metabolites were selected and identified between the normal (control) and DDC groups, and 12 of them were greatly altered over time. Among these, taurocholic acid, tauromuricholic acid, LysoPE (20:2), sulfoglycolithocholic acid, and taurohyodeoxycholic acid were associated with the progression of the hepatocyte injury index, alanine aminotransferase. More importantly, docosahexaenoic acid, arachidonic acid, proline, leucine, and linoleic acid were associated with the progression of liver fibrosis index, liver hydroxyproline. Moreover, the differential metabolites that were related to hepatocyte injury and liver fibrosis were further validated in DDC-induced mice at weeks 4 and 8. Overall, this work provides data on differential metabolites for the progressive pathology of CLF.


Subject(s)
Cholestasis , Animals , Cholestasis/pathology , Disease Models, Animal , Liver/pathology , Liver Cirrhosis/chemically induced , Liver Cirrhosis/pathology , Metabolomics , Mice , Mice, Inbred C57BL , Pyridines
2.
Phytomedicine ; 84: 153513, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33647776

ABSTRACT

BACKGROUND: Huangqi decoction (HQD) has been used to treat chronic liver diseases since the 11th century, but the effective components in HQD against liver fibrosis have not been definitively clarified. PURPOSE: To investigate and identify multiple effective components in HQD against liver fibrosis using a pharmacokinetics-based comprehensive strategy. METHODS: The absorbed representative components in HQD and their metabolites were detected in human plasma and urine using high-resolution mass spectrometry combined with a database-directed method, and then pharmacokinetics in multiple HQD components in human plasma was analyzed by ultra-performance liquid chromatography coupled with triple-quadruple mass spectrometry. Furthermore, the anti-fibrotic effect of potential effective HQD components was studied in LX-2 cells and that of a multi-component combination of HQD (MCHD) was verified in a mouse CCl4-induced hepatic fibrosis model. RESULTS: Twenty-four prototype components in HQD and 17 metabolites were identified in humans, and the pharmacokinetic characteristics of 14 components were elucidated. Among these components, astragaloside IV, cycloastragenol, glycyrrhizic acid, glycyrrhetinic acid, liquiritigenin, and isoliquiritigenin downregulated the mRNA expression of α-SMA; cycloastragenol, calycosin-7-O-ß-D-glucoside, formononetin, glycyrrhetinic acid, liquiritin, and isoliquiritin downregulated the mRNA expression of Col I; and calycosin, liquiritigenin, isoliquiritigenin, cycloastragenol, and glycyrrhetinic accelerated the apoptosis of LX-2 cells. MCHD reduced serum aminotransferase activity and hepatic collagen fibril deposition in mice with CCl4-induced hepatic fibrosis. CONCLUSION: Using the pharmacokinetics-based comprehensive strategy, we revealed that multiple effective HQD components act together against liver fibrosis.


Subject(s)
Drugs, Chinese Herbal/pharmacokinetics , Liver Cirrhosis/drug therapy , Adolescent , Adult , Animals , Chalcone/analogs & derivatives , Chalcone/pharmacokinetics , Chromatography, Liquid , Drugs, Chinese Herbal/chemistry , Flavanones/pharmacokinetics , Glucosides/pharmacokinetics , Glycyrrhizic Acid/pharmacokinetics , Humans , Liver Cirrhosis/chemically induced , Liver Cirrhosis/pathology , Male , Mass Spectrometry , Mice, Inbred C57BL , Middle Aged , Saponins/pharmacokinetics , Triterpenes/pharmacokinetics , Young Adult
3.
Front Pharmacol ; 10: 1353, 2019.
Article in English | MEDLINE | ID: mdl-31824313

ABSTRACT

Chronic liver disease (CLD) has become a major global health problem while herb prescriptions are clinically observed with significant efficacy. Three classical Traditional Chinese Medicine (TCM) formulae, Yinchenhao Decoction (YCHT), Huangqi Decoction (HQT), and Yiguanjian (YGJ) have been widely applied in China to treat CLD, but no systematic study has yet been published to investigate their common and different mechanism of action (MOA). Partial limitation may own to deficiency of effective bioinformatics methods. Here, a computational framework of comparative network pharmacology is firstly proposed and then applied to herbal recipes for CLD disease. The analysis showed that, the three formulae modulate CLD mainly through functional modules of immune response, inflammation, energy metabolism, oxidative stress, and others. On top of that, each formula can target additional unique modules. Typically, YGJ ingredients can uniquely target the ATP synthesis and neurotransmitter release cycle. Interestingly, different formulae may regulate the same functional module in different modes. For instance, YCHT and YGJ can activate oxidative stress-related genes of SOD family while HQT are found to inhibit SOD1 gene. Overall, our framework of comparative network pharmacology proposed in our work may not only explain the MOA of different formulae treating CLD, but also provide hints to further investigate the biological basis of CLD subtypes.

4.
Phytomedicine ; 62: 152948, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31129431

ABSTRACT

BACKGROUND: Huangqi decoction (HQD), a classic traditional herbal medicine, has been used for liver fibrosis, but its effect on intrahepatic chronic cholestatic liver injury remains unknown. PURPOSE: In the present study, we investigated the hepatoprotective effect of HQD and the underlying molecular mechanisms in 3, 5-diethoxycarbonyl-1, 4-dihydroxychollidine (DDC)-induced chronic cholestatic mice. METHODS: The DDC-induced cholestatic mice were administrated HQD for 4 or 8 weeks. Serum biochemistry and morphology were investigated. The serum and liver bile acid (BA) levels were detected by ultra performance liquid chromatography-tandem mass spectrometry. The liver expression of BA metabolizing enzymes and transporters, and inflammatory and fibrotic markers was measured by real-time polymerase chain reaction, western blotting, and immunohistochemistry. RESULTS: HQD treatment for 4 or 8 weeks ameliorated DDC-induced liver injury by improving impaired hepatic function and tissue damage. HQD treatment for 8 weeks further decreased the liver expression of cytokeratin 19, tumor growth factor (TGF)-ß, collagen I, and α-smooth muscle actin, and ameliorated ductular reaction and liver fibrosis. HQD markedly decreased the accumulation of serum and liver BA. The expression of BA-metabolizing enzymes, cytochrome P450 2b10 and UDP glucuronosyltransferase 1 A1, and multidrug resistance-associated protein 2, Mrp3, and Mrp4 involved in BA homeostasis was increased by 4 weeks of HQD treatment. The expression of BA uptake transporter Na+-taurocholate cotransporting polypeptide was decreased and that of Mrp4 was increased after 8 weeks of HQD treatment. Nuclear factor-E2-related factor-2 (Nrf2) was remarkably induced by HQD treatment. Additionally, HQD treatment for 8 weeks decreased the liver expression of inflammatory factors, interleukin (IL)-6, IL-1ß, tumor necrosis factor-α, monocyte chemoattractant protein-1, and intracellular adhesion molecule-1. HQD suppressed the nuclear factor (NF)-κB pathway. CONCLUSION: HQD protected mice against chronic cholestatic liver injury and biliary fibrosis, which may be associated with the induction of the Nrf2 pathway and inhibition of the NF-κB pathway, ameliorating BA-stimulated inflammation.


Subject(s)
Bile Acids and Salts/metabolism , Cholestasis, Intrahepatic/drug therapy , Drugs, Chinese Herbal/pharmacology , Animals , Cholestasis, Intrahepatic/chemically induced , Cholestasis, Intrahepatic/metabolism , Cholestasis, Intrahepatic/pathology , Dicarbethoxydihydrocollidine , Drugs, Chinese Herbal/chemistry , Enzymes/metabolism , Hepatitis/drug therapy , Hepatitis/etiology , Liver/drug effects , Liver/metabolism , Liver/pathology , Liver Cirrhosis/drug therapy , Liver Cirrhosis/pathology , Male , Mice, Inbred C57BL , NF-E2-Related Factor 2/metabolism , NF-kappa B/antagonists & inhibitors , NF-kappa B/metabolism , Protective Agents/pharmacology
5.
Biomed Pharmacother ; 112: 108701, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30818137

ABSTRACT

Natural bear bile has been used for liver disease in East Asia for thousands of years. However, its use has restrictions. In the current study, the therapeutic effects and potential mechanisms of cultured bear bile powder (CBBP) against hepatic fibrosis were evaluated in a dimethylnitrosamine (DMN)-induced rat model. CBBP treatment significantly improved DMN-induced hepatic necrosis and inflammatory infiltration. Additionally, CBBP remarkably alleviated the increased hepatic collagen content and expression of alpha-smooth muscle actin. Serum metabolomics revealed that 14 serum metabolites, including docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) were decreased in DMN-treated rats, which was reversed by CBBP. Pathway analyses revealed that the main metabolic pathways affected by CBBP were related to fatty acid biosynthesis and metabolism, and biosynthesis of unsaturated fatty acids. EPA and DHA are ligands of peroxisome proliferator activated receptors (PPARs). CBBP treatment significantly stimulated liver mRNA and protein expression of PPARα and PPARγ. CBBP also markedly increased liver expression of PPARα target genes, which are involved in fatty acid ß-oxidation, and down-regulated IL-6, a downstream inflammatory gene of PPARγ. In conclusion, CBBP has the potential to attenuate liver fibrosis and its mechanism involves the promotion of the liver expression of PPARα and PPARγ. Our results may help in the development of a novel substitute for bear bile and therapeutic strategies for fibrotic liver diseases.


Subject(s)
Bile/metabolism , Cytoprotection/drug effects , Dimethylnitrosamine/toxicity , Liver Cirrhosis, Experimental/chemically induced , Liver Cirrhosis, Experimental/metabolism , Animals , Bile/chemistry , Cytoprotection/physiology , Dose-Response Relationship, Drug , Liver Cirrhosis/chemically induced , Liver Cirrhosis/metabolism , Liver Cirrhosis/prevention & control , Liver Cirrhosis, Experimental/prevention & control , Random Allocation , Rats , Rats, Wistar , Ursidae
6.
Open Med (Wars) ; 12: 347-353, 2017.
Article in English | MEDLINE | ID: mdl-29043299

ABSTRACT

The aim of this study was to evaluate the diagnostic value of serumCK20 mRNA as a biomarker for colorectal cancer diagnosis by meta-analysis. Clinical studies related to serum CK20 mRNA expression for colorectal cancer diagnosis were searched in the databases of Pubmed, Cochrane Library, Embase, ISI Web of Knowledge, CNKI and Wanfang. The number of true positive (tp), false positive (fp), false negative (fn) and true negative (tn) of the original included publications were extracted by two reviewers independently. The diagnostic sensitivity, specificity, positive likely hood ratio (+LR), negative likelyhood ratio (-LR), diagnostic odds ratio (DOR) and area under the symmetric ROC curve (AUC) were pooled by random or fixed effect method according to the statistical heterogeneity among the studies. After screening the databases, nineteen publications met the inclusion criteria and were finally included in this meta-analysis. The diagnostic sensitivity and specificity were pooled by random effect model(I2>50%). The pooled diagnostic sensitivity and specificity of CK20 mRNA in serum as biomarker for colorectal cancer were 0.49 (95% CI:0.46 to 0.51) and 0.94 (95%CI:0.92-0.96) respectively. The pooled +LR and -LR were 10.90 (95%CI:5.78 to 20.55) and 0.51 (95%CI:0.45 to 0.57) respectively by random-effect method. The pooled DOR was 22.31 with the 95% CI of 11.65 to 42.71. The pooled area under the ROC curve (AUC) was 0.72for CK20 mRNA in serum as a biomarker for colorectal cancer diagnosis. Conclusion Serum CK20 mRNA expression was significantly elevated in colorectal cancer patients which could be a promising serum biomarker for colorectal cancer diagnosis with high specificity.

SELECTION OF CITATIONS
SEARCH DETAIL
...