Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
1.
J Dent Sci ; 19(1): 124-129, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38303821

ABSTRACT

Background/purpose: Clinically, dentists are suggested to immerse autopolymerizing interim fixed restorations in hot water during fabrication. However, this suggestion, without including the best temperature, mostly comes from clinical experience instead of scientific evidence. This in vitro study evaluated the effect of water temperature on the cytotoxicity of interim partial fixed dental prostheses (FDPs) and examined its correlation with residual MMA. Materials and methods: Tempron was chosen as the autopolymerizing polymethyl methacrylate material. Tempron was mixed and then soaked in water at different temperatures, except control group (Controlair) was not being soaking in water. The specimens were incubated with conditioned medium. The concentration of residual MMA was determined by liquid chromatography-tandem mass spectrometry (LC-MS-MS). The cell viability of human gingival fibroblasts (HGFs) was evaluated by MTT assay. Results: The 60 °C and 80 °C groups exhibited significantly higher cell viabilities than those of the other groups (P < 0.05) at 48 and 72 h. The concentration of residual MMA was highly correlated with this outcome: the higher the concentration of residual MMA detected in the eluates, the poorer the cell viability was; the longer the incubation time was, the stronger the correlation was between the concentration of residual MMA and the cell viability. Conclusion: Autopolymerizing PMMA interim FDPs that are polymerized in water up to at least 60 °C could reduce cell toxicity. Higher water temperature could certainly decrease the amount of residual MMA, which is closely correlated with the outcome of cell viability.

2.
Curr Issues Mol Biol ; 45(11): 8622-8632, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37998719

ABSTRACT

Oral submucous fibrosis (OSMF) is a chronic inflammatory disease and a potentially malignant oral disorder, characterized by fibrosis of the oral mucosa. TGF-ß signaling pathways have been implicated in the development of OSMF, with areca nut extract (ANE) contributing to the disease progression. Simvastatin, a statin drug, has demonstrated anti-fibrotic properties in various fibrotic conditions. However, its therapeutic potential in treating OSMF remains unclear. In this study, 8-week-old male BALB/c mice were randomly divided into three groups based on different time points. Each mouse was then treated with four different drug formulations. Post-treatment, specimens were collected for histopathological examination and staining to assess skin thickness, fibrosis, and collagen deposition. ANE treatment alone significantly increased skin thickness and collagen deposition compared to the control group after the 4-week time point. The combined administration of ANE and simvastatin, resulted in a notable reduction in skin thickness and collagen deposition. Western blot analysis revealed that simvastatin effectively suppressed the expression of fibrosis-related proteins, including CTGF, and α-SMA, in ANE-induced subdermal fibrosis. These results suggest that simvastatin has potential therapeutic effects on ANE-induced subdermal fibrosis, providing a foundation for future studies and possible clinical applications.

3.
Int J Mol Sci ; 24(15)2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37569881

ABSTRACT

The delayed healing of chronic wounds, such as diabetic foot ulcers (DFUs), is a clinical problem. Few dressings can promote wound healing by satisfying the demands of chronic wound exudate management and tissue granulation. Therefore, the aim of this study was to prepare a high-absorption polyurethane (PU) foam dressing modified by polyethylene glycol (PEG) and triethoxysilane (APTES) to promote wound healing. PEG-modified (PUE) and PEG/APTES-modified (PUESi) dressings were prepared by self-foaming reactions. Gauze and PolyMem were used as controls. Next, Fourier transform-infrared spectroscopy, thermomechanical analyses, scanning electron microscopy and tensile strength, water absorption, anti-protein absorption, surface dryness and biocompatibility tests were performed for in vitro characterization. Wound healing effects were further investigated in nondiabetic (non-DM) and diabetes mellitus (DM) rat models. The PUE and PUESi groups exhibited better physicochemical properties than the gauze and PolyMem groups. Moreover, PUESi dressing showed better anti-adhesion properties and absorption capacity with deformation. Furthermore, the PUESi dressing shortened the inflammatory phase and enhanced collagen deposition in both the non-DM and DM animal models. To conclude, the PUESi dressing not only was fabricated with a simple and effective strategy but also enhanced wound healing via micronegative-pressure generation by its high absorption compacity with deformation.


Subject(s)
Diabetes Mellitus , Diabetic Foot , Rats , Animals , Polyurethanes/chemistry , Wound Healing , Bandages , Polyethylene Glycols
4.
Int J Mol Sci ; 24(11)2023 May 30.
Article in English | MEDLINE | ID: mdl-37298473

ABSTRACT

Osteoarthritis (OA) is a prevalent form of arthritis that affects over 32.5 million adults worldwide, causing significant cartilage damage and disability. Unfortunately, there are currently no effective treatments for OA, highlighting the need for novel therapeutic approaches. Thrombomodulin (TM), a glycoprotein expressed by chondrocytes and other cell types, has an unknown role in OA. Here, we investigated the function of TM in chondrocytes and OA using various methods, including recombinant TM (rTM), transgenic mice lacking the TM lectin-like domain (TMLeD/LeD), and a microRNA (miRNA) antagomir that increased TM expression. Results showed that chondrocyte-expressed TM and soluble TM [sTM, like recombinant TM domain 1 to 3 (rTMD123)] enhanced cell growth and migration, blocked interleukin-1ß (IL-1ß)-mediated signaling and protected against knee function and bone integrity loss in an anterior cruciate ligament transection (ACLT)-induced mouse model of OA. Conversely, TMLeD/LeD mice exhibited accelerated knee function loss, while treatment with rTMD123 protected against cartilage loss even one-week post-surgery. The administration of an miRNA antagomir (miR-up-TM) also increased TM expression and protected against cartilage damage in the OA model. These findings suggested that chondrocyte TM plays a crucial role in counteracting OA, and miR-up-TM may represent a promising therapeutic approach to protect against cartilage-related disorders.


Subject(s)
Cartilage, Articular , MicroRNAs , Osteoarthritis , Mice , Animals , Chondrocytes/metabolism , Thrombomodulin/metabolism , Antagomirs/metabolism , Cartilage, Articular/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/genetics , Osteoarthritis/metabolism , MicroRNAs/metabolism , Interleukin-1beta/metabolism
5.
Biomedicines ; 10(9)2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36140274

ABSTRACT

Discoidin domain receptor 1 (DDR1) is a collagen receptor that belongs to the receptor tyrosine kinase family. We have previously shown that DDR1 plays a crucial role during bone development, resulting in dwarfism and a short stature in osteoblast-specific knockout mice (OKO mice). However, the detailed pathophysiological effects of DDR1 on bone development throughout adulthood have remained unclear. This study aims to identify how DDR1 regulates osteoblast and osteocyte functions in vivo and in vitro during bone development in adulthood. The metabolic changes in bone tissues were analyzed using Micro-CT and immunohistochemistry staining (IHC) in vivo; the role of DDR1 in regulating osteoblasts was examined in MC3T3-E1 cells in vitro. The Micro-CT analysis results demonstrated that OKO mice showed a 10% reduction in bone-related parameters from 10 to 14 weeks old and a significant reduction in cortical thickness and diameter compared with flox/flox control mice (FF) mice. These results indicated that DDR1 knockout in OKO mice exhibiting significant bone loss provokes an osteopenic phenotype. The IHC staining revealed a significant decrease in osteogenesis-related genes, including RUNX2, osteocalcin, and osterix. We noted that DDR1 knockout significantly induced osteoblast/osteocyte apoptosis and markedly decreased autophagy activity in vivo. Additionally, the results of the gain- and loss-of-function of the DDR1 assay in MC3T3-E1 cells indicated that DDR1 can regulate the osteoblast differentiation through activating autophagy by regulating the phosphorylation of the mechanistic target of rapamycin (p-mTOR), light chain 3 (LC3), and beclin-1. In conclusion, our study highlights that the ablation of DDR1 results in cancellous bone loss by regulating osteoblast/osteocyte autophagy. These results suggest that DDR1 can act as a potential therapeutic target for managing cancellous bone loss.

6.
Biomedicines ; 10(8)2022 Aug 08.
Article in English | MEDLINE | ID: mdl-36009462

ABSTRACT

Large bone defects may develop fracture nonunion, leading to disability and psychosocial burdens. Bone grafting with anabolic agents is a good autografting alternative. Simvastatin, as a cholesterol-lowering agent worldwide, is proven to enhance osteogenesis. Considering its dose-dependent adverse effects, we developed a simvastatin derivative, named KMUHC-01, which has bone anabolic capacity and lower cytotoxicity than simvastatin. We hypothesize that KMUHC-01 could help bone formation in bone-defect animal models. We used rat models of critical calvarial and long-bone defects to evaluate the effects of KMUHC-01 and simvastatin on biological changes at the bone defect through histology, immunohistology, and mechanical testing using three-point bending and evaluated the new bone formation microstructure through microcomputed tomography analysis. The newly formed bone microstructure at the calvarial defect site showed a significantly improved trabecular bone volume in the KMUHC-01 1-µM group compared with that in the control and simvastatin groups. The biomechanical study revealed a significantly increased maximal strength in the KMUHC-01 1-µM group compared with that in the control group. KUMHC-01, as a simvastatin derivative, showed a great anabolic effect in promoting bone defect healing. However, further studies will be conducted to prove the bioavailability and bone-forming efficacy of KMUHC-01 via systemic administration.

7.
Front Pharmacol ; 13: 821492, 2022.
Article in English | MEDLINE | ID: mdl-35571109

ABSTRACT

Periodontitis is an inflammatory disease of gum that may predispose to serious systemic complications such as diabetes and cardiovascular diseases. Activation of macrophages and osteoclasts around periodontal tissue can accelerate gum inflammation. In addition, alteration of cyclic nucleotide levels is associated with the severity of periodontitis. Our previous study has shown that KMUP-1, a xanthine derivative exhibiting phosphodiesterase inhibition and soluble guanylyl cyclase activation, can inhibit lipopolysaccharide (LPS)-induced inflammation and receptor activator of nuclear factor kappa-Β ligand (RANKL)-induced osteoclastogenesis. This study was aimed to investigate whether KMUP-1 could attenuate periodontitis both in vitro and in vivo. In vitro, the protective effect of KMUP-1 on inflammation and osteoclastogenesis was investigated in RANKL-primed RAW264.7 cells treated by Porphyromonas gingivalis LPS (PgLPS). The results showed that KMUP-1 attenuated PgLPS-induced osteoclast differentiation as demonstrated by decreased TRAP-positive multinuclear cells and TRAP activity. This reduction of osteoclast differentiation by KMUP-1 was reversed by KT5823, a protein kinase G inhibitor. Similarly, pro-inflammatory cytokine levels induced by PgLPS were inhibited by KMUP-1 in a dose-dependent manner whereas reversed by KT5823. Mechanistically, suppression of MAPKs, PI3K/Akt, and NF-κB signaling pathways and decrease of c-Fos and NFATc1 expression in osteoclast precursors by KMUP-1 may mediate its protective effect. In vivo, two models of periodontitis in rats were induced by gingival injections of PgLPS and ligature placement around molar teeth, respectively. Our results showed that KMUP-1 inhibited alveolar bone loss in both rat models, and this effect mediated at least partly by reduced osteoclastogenesis. In conclusion, our study demonstrated the therapeutic potential of KMUP-1 on periodontitis through suppression of inflammation and osteoclast differentiation.

8.
Article in English | MEDLINE | ID: mdl-38023774

ABSTRACT

Cordycepin, a bioactive compound extracted from Cordyceps sinensis, can induce apoptosis in human OEC-M1 oral cancer cells. However, the exact mechanism is still unclear. The present study aimed to investigate the underlying mechanism of cordycepin-induced apoptosis in OEC-M1 cells. Following treatment with cordycepin, apoptosis was examined and quantified using a DNA laddering assay and a cytokeratin 18 fragment enzyme-linked immunosorbent assay, respectively. Expressions of mitogen-activated protein kinases (MAPKs) and apoptosis-related proteins were detected by the western blot analysis. Our results show that a pan-caspase inhibitor, Z-VAD-FMK, could significantly inhibit cordycepin-induced apoptosis in OEC-M1 cells. In addition, treatment with cordycepin not only activated caspase-8, caspase-9, and caspase-3 but also induced Bid and poly ADP-ribose polymerase cleavages. Furthermore, cordycepin also induced the activation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase, and p38 MAPKs. Among MAPKs, activation of JNK solely contributed to cordycepin-induced apoptosis with the activation of caspase-8, caspase-9, and caspase-3 and cleavage of PARP. Taken together, the present study demonstrated that cordycepin activated JNK and caspase pathways to induce apoptosis in OEC-M1 cells.

9.
Int J Mol Sci ; 22(20)2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34681687

ABSTRACT

The purpose of this study is to examine the prospective therapeutic effects of photobiomodulation on the healing of bone defects in diabetic mellitus (DM) using rat models to provide basic knowledge of photobiomodulation therapy (PBMT) during bone defect repair. For in vitro study, an Alizzarin red stain assay was used to evaluate the effect of PBMT on osteogenic differentiation. For in vivo study, micro-computed tomography (microCT) scan, H&E and IHC stain analysis were used to investigate the effect of PBMT on the healing of the experimental calvarial defect (3 mm in diameter) of a diabetic rat model. For in vitro study, the high glucose groups showed lower osteogenic differentiation in both irradiated and non-irradiated with PBMT when compared to the control groups. With the PBMT, all groups (control, osmotic control and high glucose) showed higher osteogenic differentiation when compared to the non-irradiated groups. For in vivo study, the hyperglycemic group showed significantly lower bone regeneration when compared to the control group. With the PBMT, the volume of bone regeneration was increasing and back to the similar level of the control group. The treatment of PBMT in 660 nm could improve the bone defect healing on a diabetic rat calvarial defect model.


Subject(s)
Bone Regeneration , Diabetes Mellitus, Experimental/physiopathology , Low-Level Light Therapy , Osteogenesis , Animals , Male , Rats , Rats, Wistar , X-Ray Microtomography
10.
Carbohydr Polym ; 257: 117639, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33541664

ABSTRACT

A biocomposite coating comprising chitosan and ZnO deposited on a porous Ti oxide is developed to avoid orthopedic and dental implant-related infections. The coating comprised of an inner layer of nanoporous TiO2 and the outer layer of the chitosan matrix with ZnO nanoparticles. Microbiological tests show that chitosan coating is effective against Escherichia coli (E. coli), however, its ability to inhibit bacterial adhesion is very limited. A 1.2-fold increase in the antibacterial activity of chitosan/ZnO coating against E. coli was detected as compared to the chitosan coating alone, and the chitosan/ZnO efficiently inhibited biofilm formation. In addition, the chitosan/ZnO coating exhibited improved bioactivity compared to the chitosan coating. The improvement in antibacterial properties and bioactivity of the chitosan/ZnO coating is attributed to the release of Zn2+ ions. The critical force of scratching the chitosan/ZnO coating was approximately twice that of the chitosan coating. The potentiodynamic polarization results confirmed that the corrosion resistance of the implant with ZnO/chitosan/Ti structure was improved. In addition, cytocompatibility evaluation indicated that the chitosan/ZnO coating has good cytocompatibility in MG-63 cells as compared to pure Ti.


Subject(s)
Anti-Infective Agents/chemistry , Chitosan/chemistry , Escherichia coli/drug effects , Prosthesis Design , Titanium/chemistry , Zinc Oxide/chemistry , Anti-Bacterial Agents/pharmacology , Biofilms , Cell Adhesion , Cell Line, Tumor , Cell Proliferation , Cell Survival , Coated Materials, Biocompatible/chemistry , Humans , Ions , Nanoparticles/chemistry , Porosity , Potentiometry , Prostheses and Implants , Surface Properties
11.
Int J Mol Sci ; 21(19)2020 Sep 29.
Article in English | MEDLINE | ID: mdl-33003599

ABSTRACT

Discoidin domain receptor 1 (Drd1) is a collagen-binding membrane protein, but its role in osteoblasts during osteogenesis remains undefined. We generated inducible osteoblast-specific Ddr1 knockout (OKOΔDdr1) mice; their stature at birth, body weight and body length were significantly decreased compared with those of control Ddr1f/f-4OHT mice. We hypothesize that Ddr1 regulates osteogenesis of osteoblasts. Micro-CT showed that compared to 4-week-old Ddr1f/f-4OHT mice, OKOΔDdr1 mice presented significant decreases in cancellous bone volume and trabecular number and significant increases in trabecular separation. The cortical bone volume was decreased in OKOΔDdr1 mice, resulting in decreased mechanical properties of femurs compared with those of Ddr1f/f-4OHT mice. In femurs of 4-week-old OKOΔDdr1 mice, H&E staining showed fewer osteocytes and decreased cortical bone thickness than Ddr1f/f-4OHT. Osteoblast differentiation markers, including BMP2, Runx2, alkaline phosphatase (ALP), Col-I and OC, were decreased compared with those of control mice. Ddr1 knockdown in osteoblasts resulted in decreased mineralization, ALP activity, phosphorylated p38 and protein levels of BMP2, Runx2, ALP, Col-I and OC during osteogenesis. Overexpression and knockdown of Ddr1 in osteoblasts demonstrated that DDR1 mediates the expression and activity of Runx2 and the downstream osteogenesis markers during osteogenesis through regulation of p38 phosphorylation.


Subject(s)
Core Binding Factor Alpha 1 Subunit/genetics , Osteogenesis/genetics , Receptors, Dopamine D1/genetics , p38 Mitogen-Activated Protein Kinases/genetics , Alkaline Phosphatase/genetics , Animals , Bone Morphogenetic Protein 2/genetics , Collagen/genetics , Femur/growth & development , Femur/metabolism , Gene Expression Regulation, Developmental/genetics , Mice , Mice, Knockout , Osteoblasts/metabolism , Phosphorylation/genetics
12.
Int J Mol Sci ; 21(19)2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32977456

ABSTRACT

We recently reported that the chondrocyte-specific knockout of discoidin domain receptors 1 (Ddr1) delayed endochondral ossification (EO) in the growth plate by reducing the chondrocyte hypertrophic terminal differentiation, and apoptosis. The biologic and phenotypic changes in chondrocytes in the articular cartilage with osteoarthritis (OA) are similar to the phenomena observed in the process of EO. Additionally, autophagy can promote chondrocyte survival and prevent articular cartilage from degradation in OA. On this basis, we explored the effect of Ddr1 inhibition on OA prevention and further investigated the roles of autophagy in treating OA with a Ddr1 inhibitor (7 rh). The anterior cruciate ligament transection (ACLT)-OA model was used to investigate the role of 7 rh in vivo. Forty 8-week-old mice were randomly assigned to four groups, including the sham group, ACLT group, and two treated groups (ACLT with 7 rh 6.9 nM or 13.8 nM). According to the study design, normal saline or 7 rh were intra-articular (IA) injected into studied knees 3 times per week for 2 weeks and then once per week for 4 weeks. The results showed that 7 rh treatment significantly improved the functional performances (the weight-bearing ability and the running endurance), decreased cartilage degradation, and also reduced the terminal differentiation markers (collagen type X, Indian hedgehog, and matrix metalloproteinase 13). Moreover, 7 rh decreased chondrocyte apoptosis by regulating chondrocyte autophagy through reducing the expression of the mammalian target of rapamycin and enhancing the light chain 3 and beclin-1 expression. These results demonstrated that the IA injection of 7 rh could reduce the chondrocyte apoptosis and promote chondrocyte autophagy, leading to the attenuation of cartilage degradation. Our observations suggested that the IA injection of 7 rh could represent a potential disease-modifying therapy to prevention OA progression.


Subject(s)
Autophagy , Cartilage, Articular , Chondrocytes , Discoidin Domain Receptor 1 , Osteoarthritis , Animals , Antigens, Differentiation/metabolism , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Cell Differentiation , Cell Line , Chondrocytes/metabolism , Chondrocytes/pathology , Discoidin Domain Receptor 1/antagonists & inhibitors , Discoidin Domain Receptor 1/metabolism , Disease Models, Animal , Humans , Male , Mice , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Osteoarthritis/pathology
13.
Oral Dis ; 26(7): 1474-1482, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32391600

ABSTRACT

OBJECTIVES: Oral submucous fibrosis (OSMF) is a chronic inflammatory disease and a potentially malignant oral disorder. However, the best therapeutic treatment for OSMF remains uncertain. Our previous study showed that photobiomodulation (PBM) therapy and forskolin could reduce arecoline-induced fibrosis reactions via the cAMP pathway. The present study aimed to establish an animal model of areca nut extract (ANE)-induced OSMF and to evaluate the therapeutic potential of PBM and forskolin for ANE-induced OSMF. SUBJECTS AND METHODS: The mice were divided into five groups. The buccal tissues were harvested for histomorphological analysis and immunoblotting. RESULTS: Our results showed that PBM significantly reduced the development of ANE-induced OSMF, quantified by changes in submucosal layer thickness and collagen deposition. Additionally, PBM could extensively reduce the protein expression of the fibrotic marker genes alpha-smooth muscle actin (α-SMA) and connective tissue growth factor (CTGF) in buccal submucous lesions. However, forskolin treatment significantly decreased the protein expression of fibrotic marker genes but slightly decreased the observed histomorphological changes. CONCLUSIONS: We established an ANE-induced OSMF mouse model, which also provided a model for the development of a therapeutic treatment for OSMF. The anti-fibrotic effects of PBM and forskolin may be useful for clinical interventions.


Subject(s)
Low-Level Light Therapy , Oral Submucous Fibrosis , Animals , Areca/adverse effects , Arecoline , Collagen , Mice , Oral Submucous Fibrosis/therapy
14.
Turk J Med Sci ; 50(5): 1444-1453, 2020 08 26.
Article in English | MEDLINE | ID: mdl-32252500

ABSTRACT

Background/aim: Drynaria fortunei (Gusuibu; GSB) is a popular traditional Chinese medicine used for bone repair. An increasing number of studies have reported that GSB induces osteogenic differentiation in bone marrow mesenchymal stem cells (BMSCs). These results provide insight into the application of GSB for bone tissue engineering techniques used to repair large bone defects. However, few studies have described the molecular mechanisms of GSB. Materials and methods: In the present study, the effects of GSB and naringin, a marker compound, on the binding of BMP-2 to BMPR and BMP-2-derived signal transduction were investigated using surface plasmon resonance (SPR) and coculturing with BMPR- expressed cell line, C2C12, respectively. Furthermore, naringin was also used to prepare naringin contained scaffolds for bone tissue engineering. The physical and chemical properties of these scaffolds were analysed using scanning electron microscopy (SEM) and highperformance liquid chromatography (HPLC). These scaffolds were cocultured with rabbit BMSCs in vitro and implanted into rabbit calvarial defects for bone repair assessment. Results: The results showed that GSB and naringin affect the binding of BMP and BMPR in SPR experiments. GSB is a subtle BMP modulator that simultaneously inhibits the binding of BMP-2 to BMPR-1A and enhances its binding to BMPR-1B. In contrast, naringin inhibited BMP-2 binding to BMPR-1A. In vitro studies involving the phosphorylation of signals downstream of BMPR and Smad showed that GSB and naringin affected stem cell differentiation by inhibiting BMPR-1A signalling. When using GSB for bone tissue engineering, naringin exhibited a higher capacity for slow and gradual release from the scaffold, which promotes bone formation via osteoinduction. Moreover, control and naringin scaffolds were implanted into rabbit calvarial defects for 4 weeks, and naringin enhanced bone regeneration in vivo significantly. Conclusions: GSB and its marker compound (naringin) could inhibit the binding of BMP-2 and BMPR-1A to control cell differentiation by blocked BMPR-1A signalling and enhanced BMPR-1B signalling. GSB and naringin could be good natural BMP regulators for bone tissue engineering.


Subject(s)
Bone Morphogenetic Protein 2/metabolism , Drugs, Chinese Herbal/pharmacology , Flavanones/pharmacology , Polypodiaceae/chemistry , Tissue Engineering/methods , Animals , Bone Morphogenetic Protein Receptors, Type I/metabolism , Bone and Bones/drug effects , Bone and Bones/metabolism , Cells, Cultured , Male , Osteogenesis/drug effects , Rabbits , Signal Transduction/drug effects
15.
Mater Sci Eng C Mater Biol Appl ; 108: 110192, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31923966

ABSTRACT

This study provided an eco-friendly manufacturing method for Ti implants by combining machining and surface treatment processes. Ti was machined by electrical discharge machining (EDM) in a water-based dielectric in order to reduce environmental impact and improve operational health. The feasibility of this eco-friendly EDM was evaluated by tested the bioactivity and cytocompatibility of the EDM-treated Ti and the commercially micro-arc oxidation (MAO)-treated Ti was used as a control group. Pulsed MAO and EDM treatments were applied on Ti in an aqueous solution containing hydroxyapatite (HA) with the same concentration (30 g/L) under the same voltage and treatment period. The two surface modification processes were compared from the aspects of surface composition, coating structure, and coating adhesion. Furthermore, in vitro bioactivity and cellular biocompatibility of the MAO- and EDM-treated Ti films were tested. Both treatments produced Ti oxide containing Ca and P on Ti, and the EDM-formed film possessed more Ca, with its Ca/P value closer to HA, as compared to the MAO-formed film. The MAO-formed films had micropores and nanopores in the middle region and film/substrate interface, respectively. Pores only existed on the surface of the EDM-formed films. The MAO-formed films were fractured, but the EDM-formed films maintained their original structure under tensile stress, tested according to the ASTM C633 standard. The bioactivity of the EDM-treated surface was higher than that of the MAO-treated and untreated Ti surface. After 24 h cell incubation, the EDM-treated surface exhibited a significantly higher number of cells than untreated Ti and the MAO-treated surface.


Subject(s)
Coated Materials, Biocompatible , Electrochemical Techniques , Materials Testing , Osteoblasts/metabolism , Titanium , Cell Line , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Feasibility Studies , Humans , Osteoblasts/cytology , Oxidation-Reduction , Surface Properties , Titanium/chemistry , Titanium/pharmacology
16.
PLoS One ; 14(8): e0220719, 2019.
Article in English | MEDLINE | ID: mdl-31465460

ABSTRACT

INTRODUCTION: Genetic polymorphisms and social factors (alcohol consumption, betel quid (BQ) usage, and cigarette consumption), both separately or jointly, play a crucial role in the occurrence of oral malignant disorders such as oral and pharyngeal cancers and oral potentially malignant disorders (OPMD). MATERIAL AND METHODS: Simultaneous analyses of multiple single nucleotide polymorphisms (SNPs) and environmental effects on oral malignant disorders are essential to examine, albeit challenging. Thus, we conducted a case-control study (N = 576) to analyze the risk of occurrence of oral malignant disorders by using binary particle swarm optimization (BPSO) with an odds ratio (OR)-based method. RESULTS: We demonstrated that a combination of SNPs (CYP26B1 rs887844 and CYP26C1 rs12256889) and socio-demographic factors (age, ethnicity, and BQ chewing), referred to as the combined effects of SNP-environment, correlated with maximal risk diversity of occurrence observed between the oral malignant disorder group and the control group. The risks were more prominent in the oral and pharyngeal cancers group (OR = 10.30; 95% confidence interval (CI) = 4.58-23.15) than in the OPMD group (OR = 5.42; 95% CI = 1.94-15.12). CONCLUSIONS: Simulation-based "SNP-environment barcodes" may be used to predict the risk of occurrence of oral malignant disorders. Applying simulation-based "SNP-environment barcodes" may provide insight into the importance of screening tests in preventing oral and pharyngeal cancers and OPMD.


Subject(s)
Cytochrome P450 Family 26/genetics , Gene-Environment Interaction , Mouth Neoplasms/genetics , Pharyngeal Neoplasms/genetics , Polymorphism, Single Nucleotide , Adult , Case-Control Studies , Computer Simulation , Female , Humans , Male , Middle Aged , Mouth Neoplasms/epidemiology , Odds Ratio , Pharyngeal Neoplasms/epidemiology , Risk Factors , Taiwan/epidemiology
17.
Lasers Med Sci ; 34(5): 913-920, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30456536

ABSTRACT

Hyperglycemia-induced inflammation can greatly increase the risk of periodontal disease in people with diabetes. Low-level laser irradiation (LLLI) has been used for wound healing and anti-inflammation in many cases, and LLLI is known to inhibit the lipopolysaccharide (LPS)-stimulated inflammatory response. However, the therapeutic effect of LLLI in diabetes patients with periodontitis remains unknown. In this study, we cultured human gingival fibroblasts (HGFs) in high-glucose medium (35 mM) to mimic a hyperglycemic environment, and then measured the anti-inflammatory effect of LLLI by assessing the expression of pro-inflammatory genes including tumor necrosis factor-α (TNF-α), interleukin (IL)-1ß, IL-6, and IL-8 by quantitative real-time polymerase chain reaction. The results demonstrated no significant inflammatory response in HGFs cultured in mannitol medium and in those treated only with LLLI. However, HGFs cultured only in high-glucose medium showed significantly higher expression of pro-inflammatory cytokine than in those treated together with LLLI. We then observed that LLLI reduced the expression of pro-inflammatory cytokines in HGFs cultured in high-glucose medium by modulating cAMP signaling. We also investigated whether antioxidant (vitamin C) treatment reduced the inflammatory effect of oxidative stress in HGFs cultured in high-glucose medium but found no additive effect upon co-treatment with LLLI, suggesting that LLLI may activate cAMP signaling, but not reactive oxygen species (ROS) signaling, to reduce the high glucose-induced inflammation. In conclusion, LLLI may have an anti-inflammatory effect on HGFs in a high glucose environment and may benefit the treatment of periodontal disease in diabetes patients.


Subject(s)
Fibroblasts/pathology , Fibroblasts/radiation effects , Gingiva/pathology , Hyperglycemia/complications , Inflammation/etiology , Inflammation/radiotherapy , Low-Level Light Therapy , Ascorbic Acid/pharmacology , Cell Death/drug effects , Cell Death/radiation effects , Cell Survival/drug effects , Cell Survival/radiation effects , Cells, Cultured , Cytokines/genetics , Cytokines/metabolism , Fibroblasts/drug effects , Humans , Inflammation/genetics , Inflammation/pathology , Inflammation Mediators/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
18.
Int J Mol Sci ; 19(12)2018 Dec 18.
Article in English | MEDLINE | ID: mdl-30567319

ABSTRACT

The fragile nature of porous bioceramic substitutes cannot match the toughness of bone, which limits the use of these materials in clinical load-bearing applications. Statins can enhance bone healing, but it could show rhabdomyolysis/inflammatory response after overdosing. In this study, the drug-containing bone grafts were developed from poly(lactic acid-co-glycolic acid)-polyethylene glycol (PLGA-PEG) nanoparticles encapsulating simvastatin (SIM) (SIM-PP NPs) loaded within an appropriately mechanical bioceramic scaffold (BC). The combination bone graft provides dual functions of osteoconduction and osteoinduction. The mechanical properties of the bioceramic are enhanced mainly based on the admixture of a combustible reverse-negative thermoresponsive hydrogel (poly(N-isopropylacrylamide base). We showed that SIM-PP NPs can increase the activity of alkaline phosphatase and osteogenic differentiation of bone marrow stem cells. To verify the bone-healing efficacy of this drug-containing bone grafts, a nonunion radial endochondral ossification bone defect rabbit model (N = 3/group) and a nonunion calvarial intramembranous defect Sprague Dawley (SD) rat model (N = 5/group) were used. The results indicated that SIM-PP NPs combined with BC can improve the healing of nonunion bone defects of the radial bone and calvarial bone. Therefore, the BC containing SIM-PP NPs may be appropriate for clinical use as a synthetic alternative to autologous bone grafting that can overcome the problem of determining the clinical dosage of simvastatin drugs to promote bone healing.


Subject(s)
Bone Transplantation/methods , Cell Differentiation/drug effects , Osteogenesis/drug effects , Transplantation, Autologous/methods , Acrylic Resins/administration & dosage , Acrylic Resins/chemistry , Animals , Bone Regeneration/drug effects , Ceramics/chemistry , Ceramics/pharmacology , Humans , Hydrogel, Polyethylene Glycol Dimethacrylate , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Polyethylene Glycols/administration & dosage , Polyethylene Glycols/chemistry , Polyglactin 910/administration & dosage , Polyglactin 910/chemistry , Rabbits , Rats , Simvastatin/administration & dosage , Simvastatin/chemistry , Skull/chemistry , Skull/drug effects , Tissue Scaffolds/chemistry
19.
PLoS One ; 13(10): e0205258, 2018.
Article in English | MEDLINE | ID: mdl-30307981

ABSTRACT

Vertical vibration (VV) is a whole-body vibration with mechanical loading that commonly used in rehabilitation and sports training to increase athlete muscle strength. Our previous study showed that low-magnitude, low-frequency VV at 8 Hz and 10 Hz increased myoblast myogenesis. Herein, we investigated whether a VV frequency at low-frequency 5-10 Hz has anabolic effects on tenocytes and improves tendon stiffness. In primary tenocytes, 10 Hz VV treatment increased the tenogenic marker gene expression of tenomodulin and extracellular matrix type I collagen but decreased decorin expression. qPCR and Enzyme-Linked Immunosorbent Assay (ELISA) results showed that TGF-ß1 expression was increased in tenocytes after 3 days of 10 Hz VV treatment in vitro and in Achilles tendons after 3 weeks in vivo. Tenomodulin expression and Achilles tendon stiffness were significantly increased in Achilles tendons after 3 weeks in vivo. We also showed that the TGF-ß1 receptor inhibitor SB431542 (10 µM) decreased the expression of tenomodulin and type I collagen but increased the decorin expression in tenocytes. These results indicated that the 10 Hz VV stimulated anabolic effects in tenocytes by increasing TGF-ß1 expression that subsequently increases the expression of tenomodulin and type I collagen, and increased the Achilles tendon stiffness. This study provides insight into the low-frequency 10 Hz VV treatment improves tendon properties and can minimizes the risk of ligament/tendon reinjure during rehabilitation.


Subject(s)
Achilles Tendon/metabolism , Membrane Proteins/metabolism , Tendon Injuries/rehabilitation , Transforming Growth Factor beta1/metabolism , Vibration/therapeutic use , Achilles Tendon/cytology , Achilles Tendon/injuries , Animals , Cells, Cultured , Collagen Type I/metabolism , Extracellular Matrix/metabolism , Frailty/rehabilitation , Male , Mechanotransduction, Cellular , Models, Animal , Rats , Rats, Sprague-Dawley , Swine , Tenocytes/metabolism , Treatment Outcome , Wound Healing/physiology
20.
PLoS One ; 13(4): e0195337, 2018.
Article in English | MEDLINE | ID: mdl-29621288

ABSTRACT

Both stem cell therapy and physical treatments have been shown to be beneficial in accelerating bone healing. However, the efficacy of combined treatment with stem cells and physical stimuli for large bone defects remains uncertain. The aim of this study was to evaluate the bone regeneration effects of low-power laser irradiation (LPLI) and human adipose-derived stem cell (ADSC) treatments during fracture repair using a comparative rat calvarial defect model. We evaluated the viability of human ADSCs, which were cultured on a porous PLGA scaffold using an MTS assay. The critical-sized calvarial bone defect rats were divided into 4 groups: control group, LPLI group, ADSC group, and ADSC+LPLI group. Bone formation was evaluated using micro-CT. New bone formation areas and osteogenic factor expression levels were then examined by histomorphological analysis and immunohistochemical staining. Our data showed that PLGA had no cytotoxic effect on human ADSCs. Micro-CT analyses revealed that both the LPLI and ADSC groups showed improved calvarial bone defect healing compared to the control group. In addition, the ADSC+LPLI group showed significantly increased bone volume at 16 weeks after surgery. The area of new bone formation ranked as follows: control group < LPLI group < ADSC group < ADSC+LPLI group. There were significant differences between the groups. In addition, both ADSC and ADSC+LPLI groups showed strong signals of vWF expression. ADSC and LPLI treatments improved fracture repair in critical-sized calvarial defects in rats. Importantly, the combined treatment of ADSCs and LPLI further enhances the bone healing process.


Subject(s)
Adult Stem Cells/drug effects , Bone Regeneration/physiology , Low-Level Light Therapy/methods , Adipocytes , Adipose Tissue/physiology , Adult Stem Cells/physiology , Adult Stem Cells/transplantation , Animals , Bone Regeneration/drug effects , Cell Differentiation/drug effects , Cells, Cultured , Humans , Lactic Acid/metabolism , Male , Osteogenesis , Polyglycolic Acid/metabolism , Polylactic Acid-Polyglycolic Acid Copolymer , Rats , Rats, Sprague-Dawley , Skull/surgery , Stem Cell Transplantation , Tissue Scaffolds
SELECTION OF CITATIONS
SEARCH DETAIL
...