Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
J Biochem Mol Toxicol ; 38(6): e23746, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38769694

ABSTRACT

To identify the role of enterotoxin-related genes in colorectal cancer (CRC) development and progression. Upregulated differentially expressed genes shared by three out of five Gene Expression Omnibus (GEO) data sets were included to screen the key enterotoxin-induced oncogenes (EIOGs) according to criteria oncogene definition, enrichment, and protein-protein interaction (PPI) network analysis, followed by prognosis survival, immune infiltration, and protential drugs analyses was performed via integration of RNA-sequencing data and The Cancer Genome Atlas-derived clinical profiles. We screened nine common key EIOGs from at least three GEO data sets. A Cox proportional hazards regression models verified that more alive cases, decreased overall survival, and highest 4-year survival prediction in CRC patients with high-risk score. Protein tyrosine phosphatase receptor type F polypeptide-interacting protein alpha-4 (PPFIA4), STY11, SCN3B, and SPTBN5 were shared in the same PPI network. Immune infiltration results showed that SCN3B and synaptotagmin 11 expression were obviously associated with B cell, macrophage, myeloid dendritic cell, neutrophils, and T cell CD4+ and CD8+ in both colon adenocarcinoma and rectal adenocarcinoma. CHIR-99021, MLN4924, and YK4-279 were identified as the potential drugs for treatment. Finally, upregulated EIOGs genes PPFIA4 and SCN3B were found in colon adenocarcinoma and PPFIA4 and SCN3B were proved to promote cell proliferation and migration in vitro. We demonstrated here that EIOGs promoting a malignancy phenotype was related with poor survival and prognosis in CRC, which might be served as novel therapeutic targets in CRC management.


Subject(s)
Colorectal Neoplasms , Enterotoxins , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Disease Progression , Gene Expression Regulation, Neoplastic , Protein Interaction Maps
2.
Clinics (Sao Paulo) ; 79: 100336, 2024.
Article in English | MEDLINE | ID: mdl-38325020

ABSTRACT

BACKGROUND: Xuebijing (XBJ) is widely applied in the treatment of Acute Lung Injury (ALI). This study focused on the potential mechanism of XBJ in Lipopolysaccharide (LPS)-induced ALI. METHODS: The rat ALI model was established by injection of LPS (10 mg/kg) and pretreated with XBJ (4 mL/kg) three days before LPS injection. BEAS-2B cell line was stimulated with LPS (1 µg/mL) and ATP (5 mM) to induce pyroptosis, and XBJ (2 g/L) was pretreated 24h before induction. The improvement effects of XBJ on pulmonary edema, morphological changes, and apoptosis in ALI lung tissue were evaluated by lung wet/dry weight ratio, HE-staining, and TUNEL staining. Inflammatory cytokines in lung tissue and cell supernatant were determined by ELISA. pyroptosis was detected by flow cytometry. Meanwhile, the expressions of miR-181d-5p, SPP1, p-p65, NLRP3, ASC, caspase-1, p20, and GSDMD-N in tissues and cells were assessed by RT-qPCR and immunoblotting. The relationship between miR-181d-5p and SPP1 in experimental inflammation was reported by dual luciferase assay. RESULTS: XBJ could improve inflammation and pyroptosis of ALI by inhibiting contents of inflammatory cytokines, and levels of inflammation- and pyroptosis-related proteins. Mechanistically, XBJ could up-regulate miR-181d-5p and inhibit SPP1 in ALI. miR-181d-5p can target the regulation of SPP1. Depressing miR-181d-5p compensated for the ameliorative effect of XBJ on ALI, and overexpressing SPP1 suppressed the attenuating effect of XBJ on LPS-induced inflammation and pyroptosis. CONCLUSION: XBJ can regulate the miR-181d-5p/SPP1 axis to improve inflammatory response and pyroptosis in ALI.


Subject(s)
Acute Lung Injury , Drugs, Chinese Herbal , MicroRNAs , Rats , Animals , Pyroptosis , Lipopolysaccharides , MicroRNAs/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Inflammation/drug therapy , Cytokines
3.
Sci Rep ; 14(1): 624, 2024 01 05.
Article in English | MEDLINE | ID: mdl-38182642

ABSTRACT

Disulfidptosis, a novel form of regulated cell death, occurs due to the aberrant accumulation of intracellular cystine and other disulfides. Moreover, targeting disulfidptosis could identify promising approaches for cancer treatment. Long non-coding RNAs (lncRNAs) are known to be critically implicated in clear cell renal cell carcinoma (ccRCC) development. Currently, the involvement of disulfidptosis-related lncRNAs in ccRCC is yet to be elucidated. This study primarily dealt with identifying and validating a disulfidptosis-related lncRNAs-based signature for predicting the prognosis and immune landscape of individuals with ccRCC. Clinical and RNA sequencing data of ccRCC samples were accessed from The Cancer Genome Atlas (TCGA) database. Pearson correlation analysis was conducted for the identification of the disulfidptosis-related lncRNAs. Additionally, univariate Cox regression analysis, Least Absolute Shrinkage and Selection Operator Cox regression, and stepwise multivariate Cox analysis were executed to develop a novel risk prognostic model. The prognosis-predictive capacity of the model was then assessed using an integrated method. Variation in biological function was noted using GO, KEGG, and GSEA. Additionally, immune cell infiltration, the tumor mutational burden (TMB), and tumor immune dysfunction and exclusion (TIDE) scores were calculated to investigate differences in the immune landscape. Finally, the expression of hub disulfidptosis-related lncRNAs was validated using qPCR. We established a novel signature comprised of eight lncRNAs that were associated with disulfidptosis (SPINT1-AS1, AL121944.1, AC131009.3, AC104088.3, AL035071.1, LINC00886, AL035587.2, and AC007743.1). Kaplan-Meier and receiver operating characteristic curves demonstrated the acceptable predictive potency of the model. The nomogram and C-index confirmed the strong correlation between the risk signature and clinical decision-making. Furthermore, immune cell infiltration analysis and ssGSEA revealed significantly different immune statuses among risk groups. TMB analysis revealed the link between the high-risk group and high TMB. It is worth noting that the cumulative effect of the patients belonging to the high-risk group and having elevated TMB led to decreased patient survival times. The high-risk group depicted greater TIDE scores in contrast with the low-risk group, indicating greater potential for immune escape. Finally, qPCR validated the hub disulfidptosis-related lncRNAs in cell lines. The established novel signature holds potential regarding the prognosis prediction of individuals with ccRCC as well as predicting their responses to immunotherapy.


Subject(s)
Carcinoma, Renal Cell , Carcinoma , Kidney Neoplasms , RNA, Long Noncoding , Humans , Carcinoma, Renal Cell/genetics , Prognosis , RNA, Long Noncoding/genetics , Kidney Neoplasms/genetics
4.
Biochem Genet ; 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38244157

ABSTRACT

Enterotoxigenic Bacteroides fragilis (ETBF) is believed to promote the malignant process of colorectal cancer (CRC), but the underlying molecular mechanism still needs to be revealed. CRC cells (SW480 and HCT-116) were treated with ETBF strain. Cell proliferation, invasion and, migration were evaluated by cell counting kit 8 assay, EdU assay, colony formation assay, transwell assay, and wound healing assay. Protein expression was analyzed by western blot. MicroRNA (miR)-139-3p and histone deacetylase 3 (HDAC3) expression levels in tissues and cells were determined by qRT-PCR. Xenograft tumor model was conducted to evaluate the effect of miR-139-3p on CRC tumor growth. ETBF treatment could promote CRC cell proliferation, invasion and migration. MiR-139-3p expression was decreased by ETBF, and its overexpression reversed the effect of ETBF on CRC cell progression. HDAC3 negatively regulated miR-139-3p expression, and its overexpression facilitated CRC cell behaviors via reducing miR-139-3p expression. Moreover, HDAC3 expression was increased by ETBF, and its knockdown also abolished ETBF-mediated CRC cell progression. Additionally, miR-139-3p overexpression could reduce CRC tumor growth in vivo. ETBF aggravated CRC proliferation and metastasis via the regulation of HDAC3/miR-139-3p axis. The discovery of ETBF/HDAC3/miR-139-3p axis may provide a new direction for CRC treatment.

5.
Clinics ; 79: 100336, 2024. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1534247

ABSTRACT

Abstract Background Xuebijing (XBJ) is widely applied in the treatment of Acute Lung Injury (ALI). This study focused on the potential mechanism of XBJ in Lipopolysaccharide (LPS)-induced ALI. Methods The rat ALI model was established by injection of LPS (10 mg/kg) and pretreated with XBJ (4 mL/kg) three days before LPS injection. BEAS-2B cell line was stimulated with LPS (1 μg/mL) and ATP (5 mM) to induce pyroptosis, and XBJ (2 g/L) was pretreated 24h before induction. The improvement effects of XBJ on pulmonary edema, morphological changes, and apoptosis in ALI lung tissue were evaluated by lung wet/dry weight ratio, HE-staining, and TUNEL staining. Inflammatory cytokines in lung tissue and cell supernatant were determined by ELISA. pyroptosis was detected by flow cytometry. Meanwhile, the expressions of miR-181d-5p, SPP1, p-p65, NLRP3, ASC, caspase-1, p20, and GSDMD-N in tissues and cells were assessed by RT-qPCR and immunoblotting. The relationship between miR-181d-5p and SPP1 in experimental inflammation was reported by dual luciferase assay. Results XBJ could improve inflammation and pyroptosis of ALI by inhibiting contents of inflammatory cytokines, and levels of inflammation- and pyroptosis-related proteins. Mechanistically, XBJ could up-regulate miR-181d-5p and inhibit SPP1 in ALI. miR-181d-5p can target the regulation of SPP1. Depressing miR-181d-5p compensated for the ameliorative effect of XBJ on ALI, and overexpressing SPP1 suppressed the attenuating effect of XBJ on LPS-induced inflammation and pyroptosis. Conclusion XBJ can regulate the miR-181d-5p/SPP1 axis to improve inflammatory response and pyroptosis in ALI.

6.
Mycology ; 14(3): 264-274, 2023.
Article in English | MEDLINE | ID: mdl-37583453

ABSTRACT

The genus Armillaria has high edible and medical values, with zones of antagonism often occurring when different species are paired in culture on agar media, while the antagonism-induced metabolic alteration remains unclear. Here, the metabolome of mycelial exudates of two Chinese Armillaria biological species, C and G, co-cultured or cultured separately was analysed to discover the candidate biomarkers and the key metabolic pathways involved in Armillaria antagonists. A total of 2,377 metabolites were identified, mainly organic acids and derivatives, lipids and lipid-like molecules, and organoheterocyclic compounds. There were 248 and 142 differentially expressed metabolites between group C-G and C, C-G, and G, respectively, and fourteen common differentially expressed metabolites including malate, uracil, Leu-Gln-Arg, etc. Metabolic pathways like TCA cycle and pyrimidine metabolism were significantly affected by C-G co-culture. Additionally, 156 new metabolites (largely organic acids and derivatives) including 32 potential antifungal compounds, primarily enriched into biosynthesis of secondary metabolites pathways were identified in C-G co-culture mode. We concluded that malate and uracil could be used as the candidate biomarkers, and TCA cycle and pyrimidine metabolism were the key metabolic pathways involved in Armillaria antagonists. The metabolic changes revealed in this study provide insights into the mechanisms underlying fungal antagonists.

7.
Front Plant Sci ; 14: 1134446, 2023.
Article in English | MEDLINE | ID: mdl-37123847

ABSTRACT

Black truffles and white truffles are widely studied around the world, but their effects on plant growth and physiological responses, and on the mycorrhizosphere bacterial community of the host plant remain unclear. Here, mycorrhizal colonization of Castanopsis rockii by Tuber indicum (Chinese black truffle) and T. lijiangense (Chinese white truffle), respectively, was induced in a greenhouse study, and their effects on host growth, physiological responses and mycorrhizosphere bacterial communities were compared. The results show that colonization of both Tuber species significantly increased leaf photosynthetic rate, leaf P concentration and mycorrhizosphere acid phosphatase activity, as well as richness of mycorrhizosphere bacterial communities of C. rockii seedlings. However, T. indicum colonization on the one hand significantly decreased tartrate content, bacterial acid phosphatase, phoC gene abundance in the mycorrhizosphere, and peroxidase (POD) activity of ectomycorrhizal root tips, but on the other hand increased mycorrhizosphere pH and superoxide dismutase (SOD) of ectomycorrhizal root tips, compared to T. lijiangense colonization. Moreover, principal coordinate and ß-diversity analyses show significant differences in mycorrhizosphere bacterial community composition between T. indicum and T. lijiangese colonized C. rockii seedlings. Finally, the relative abundance of the bacterium Agromyces cerinus significantly correlated to mycorrhizosphere acid phosphatase activity and leaf P concentration, suggesting that this bacterium might play an important role in P mobilization and acquisition. Overall, these results suggest that T. indicum and T. lijiangense differently regulate their host plant's physiological responses and mycorrhizosphere bacterial community.

8.
Sci Adv ; 9(13): eadg4923, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36989363

ABSTRACT

With the fast-growing accumulation of electronic waste and rising demand for rare metals, it is compelling to develop technologies that can promotionally recover targeted metals, like gold, from waste, a process referred to as urban mining. Thus, there is increasing interest in the design of materials to achieve rapid, selective gold capture while maintaining high adsorption capacity, especially in complex aqueous-based matrices. Here, a highly porous metal-organic framework (MOF)-polymer composite, BUT-33-poly(para-phenylenediamine) (PpPD), is assessed for gold extraction from several matrices including river water, seawater, and leaching solutions from CPUs. BUT-33-PpPD exhibits a record-breaking extraction rate, with high Au3+ removal efficiency (>99%) within seconds (less than 45 s), a competitive capacity (1600 mg/g), high selectivity, long-term stability, and recycling ability. Furthermore, the high porosity and redox adsorption mechanism were shown to be underlying reasons for the material's excellent performance. Given the accumulation of recovered metallic gold nanoparticles inside, the material was also efficiently applied as a catalyst.

9.
Adv Sci (Weinh) ; 10(7): e2204599, 2023 03.
Article in English | MEDLINE | ID: mdl-36638271

ABSTRACT

P53 inactivation occurs in about 50% of human cancers, where p53-driven p21 activity is devoid and p27 becomes essential for the establishment of the G1/S checkpoint upon DNA damage. Here, this work shows that the E2F1-responsive lncRNA LIMp27 selectively represses p27 expression and contributes to proliferation, tumorigenicity, and treatment resistance in p53-defective colon adenocarcinoma (COAD) cells. LIMp27 competes with p27 mRNA for binding to cytoplasmically localized hnRNA0, which otherwise stabilizes p27 mRNA leading to cell cycle arrest at the G0/G1 phase. In response to DNA damage, LIMp27 is upregulated in both wild-type and p53-mutant COAD cells, whereas cytoplasmic hnRNPA0 is only increased in p53-mutant COAD cells due to translocation from the nucleus. Moreover, high LIMp27 expression is associated with poor survival of p53-mutant but not wild-type p53 COAD patients. These results uncover an lncRNA mechanism that promotes p53-defective cancer pathogenesis and suggest that LIMp27 may constitute a target for the treatment of such cancers.


Subject(s)
Adenocarcinoma , Colonic Neoplasms , Cyclin-Dependent Kinase Inhibitor p27 , RNA, Long Noncoding , Humans , DNA Damage/genetics , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Cyclin-Dependent Kinase Inhibitor p27/metabolism
10.
J Alzheimers Dis ; 91(4): 1541-1555, 2023.
Article in English | MEDLINE | ID: mdl-36641679

ABSTRACT

BACKGROUND: Chronic cerebral hypoperfusion (CCH) is associated with neuronal loss and blood-brain barrier (BBB) impairment in vascular dementia (VaD). However, the relationship and the molecular mechanisms between BBB dysfunction and neuronal loss remain elusive. OBJECTIVE: We explored the reasons for neuron loss following CCH. METHODS: Using permanent bilateral common carotid artery occlusion (2VO) rat model, we observed the pathological changes of cortical neurons and BBB in the sham group as well as rats 3d, 7d, 14d and 28d post 2VO. In order to further explore the factors influencing neuron loss following CCH with regard to cortical blood vessels, we extracted cortical brain microvessels at five time points for transcriptome sequencing. Finally, integrin receptor a4ß1 (VLA-4) inhibitor was injected into the tail vein, and cortical neuron loss was detected again. RESULTS: We found that cortical neuron loss following CCH is a continuous process, but damage to the BBB is acute and transient. Results of cortical microvessel transcriptome analysis showed that biological processes related to vascular inflammation mainly occurred in the chronic phase. Meanwhile, cell adhesion molecules, cytokine-cytokine receptor interaction were significantly changed at this phase. Among them, the adhesion molecule VCAM1 plays an important role. Using VLA-4 inhibitor to block VCAM1-VLA-4 interaction, cortical neuron damage was ameliorated at 14d post 2VO. CONCLUSION: Injury of the BBB may not be the main reason for persistent loss of cortical neurons following CCH. The continuous inflammatory response within blood vessels maybe an important factor in the continuous loss of cortical neurons following CCH.


Subject(s)
Brain Ischemia , Dementia, Vascular , Vascular Cell Adhesion Molecule-1 , Animals , Rats , Brain/pathology , Brain Ischemia/metabolism , Brain Ischemia/pathology , Dementia, Vascular/metabolism , Dementia, Vascular/pathology , Disease Models, Animal , Inflammation/complications , Inflammation/metabolism , Integrin alpha4beta1/metabolism , Neurons/metabolism , Neurons/pathology , Vascular Cell Adhesion Molecule-1/metabolism
11.
Front Microbiol ; 13: 973483, 2022.
Article in English | MEDLINE | ID: mdl-36466665

ABSTRACT

An introduction of exotic or non-native trees may fail due to a lack of suitable fungal partners. We planted exotic Pinus radiata in Xifeng, Guizhou Southwest China. Strategies to introduce P. radiata seedlings either colonized with an ectomycorrhizal fungus (EcMF), Lactarius deliciosus, or expect them to form familiar/new associations with local EcMF in a new habitat were studied to know how P. radiata could be successfully established over a period of 2.5 years. Plant height and needle nutrient acquisition, the persistence of the co-introduced L. deliciosus, and fungal community composition in rhizosphere soil and root tips were analyzed. In addition, a greenhouse bioassay experiment of local soil to assess the differences in the EcMF community between exotic and native pine seedlings was also conducted. The current results demonstrated that P. radiata could establish in the Xifeng plantation with or without co-introduced L. deliciosus. The co-introduced L. deliciosus might be naturalized with P. radiata in the new area since it has been fruited for 2 years with high relative abundance in mycorrhizosphere soil. L. deliciosus pre-colonization significantly altered the mycorrhizosphere fungal composition and it had a positive correlation with nitrogen acquisition of P. radiata. Host identity had no effect on fungal composition since exotic P. radiata and native P. massoniana recruited similar local fungal communities in early establishment or in plantation. The cosmopolitan species Suillus placidus, with high relative abundance, formed a familiar association with P. radiata. The greenhouse bioassay experiment further showed that Suillus sp. contributed relatively higher total extracellular enzymes by forming ectomycorrhizas with P. radiata and the same type of ectomycorrhiza of P. radiata and P. massoniana showed different enzymatic functions. Our study indicated that exotic P. radiata could be a suitable tree capable to get established successfully in the Xifeng plantation either by interaction with the co-introduced L. deliciosus or with a local EcMF, but we should be cautious about large-scale planting of P. radiata. L. deliciosus persisted in plantation and more attention should be paid to local EcMF community changes induced by the introduced L. deliciosus.

12.
J Environ Manage ; 324: 116377, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36352711

ABSTRACT

Microbial communities and environmental conditions are both of great importance for efficient utilization of agroforestry resources. Nevertheless, knowledge about the role of soluble nutrients and enzymatic properties, and their inner links with microbial communities remain limited. This is especially the case for the co-composting of agricultural and forestry biowaste. Here, we investigate the succession of key microbes during co-composting (sawdust + cow manure, SA; straw + cow manure, ST), employing amplicon sequencing, enzyme assays, and physicochemical analyses. N-fixing bacteria (Pseudomonas) and C-degrading fungi (Acaulium) have been identified as dominant taxa during such co-composting. Although eight antibiotic resistance genes were found to persist during composting, pathogenic microbes declined with composting time. NO3--N content was screened as a determinant structuring the bacterial and fungal communities, with importance also shown for C-degrading enzymes such as cellulose, laccase, and peroxidase activity. These results identify the key microbial taxa and their main interactive environmental factors, which are potentially valuable for the development of a mixed microbial inoculant to accelerate the maturation of agroforestry biowastes composting.


Subject(s)
Composting , Mycobiome , Animals , Female , Cattle , Manure/microbiology , Soil/chemistry , Bacteria/genetics
13.
J Exp Clin Cancer Res ; 41(1): 260, 2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36028903

ABSTRACT

BACKGROUND: Distant metastasis is the major cause of clear cell renal cell carcinoma (ccRCC)-associated mortality. However, molecular mechanisms involved in ccRCC metastasis remain to be fully understood. With the increasing appreciation of the role of long non-coding RNAs (lncRNAs) in cancer development, progression, and treatment resistance, the list of aberrantly expressed lncRNAs contributing to ccRCC pathogenesis is expanding rapidly. METHODS: Bioinformatics analysis was carried out to interrogate publicly available ccRCC datasets. In situ hybridization and qRT-PCR assays were used to test lncRNA expression in human ccRCC tissues and cell lines, respectively. Chromatin immunoprecipitation and luciferase reporter assays were used to examine transcriptional regulation of gene expression. Wound healing as well as transwell migration and invasion assays were employed to monitor ccRCC cell migration and invasion in vitro. ccRCC metastasis was also examined using mouse models in vivo. RNA pulldown and RNA immunoprecipitation were performed to test RNA-protein associations, whereas RNA-RNA interactions were tested using domain-specific chromatin isolation by RNA purification. RESULTS: MILIP expression was upregulated in metastatic compared with primary ccRCC tissues. The increased MILIP expression in metastatic ccRCC cells was driven by the transcription factor AP-2 gamma (TFAP2C). Knockdown of MILIP diminished the potential of ccRCC cell migration and invasion in vitro and reduced the formation of ccRCC metastatic lesions in vivo. The effect of MILIP on ccRCC cells was associated with alterations in the expression of epithelial-to-mesenchymal transition (EMT) hallmark genes. Mechanistically, MILIP formed an RNA-RNA duplex with the snail family transcriptional repressor 1 (Snai1) mRNA and bound to Y-box binding protein 1 (YBX1). This promoted the association between the YBX1 protein and the Snai1 mRNA, leading to increased translation of the latter. Snai1 in turn played an important role in MILIP-driven ccRCC metastasis. CONCLUSIONS: The TFAP2C-responsive lncRNA MILIP drives ccRCC metastasis. Targeting MILIP may thus represent a potential avenue for ccRCC treatment.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , RNA, Long Noncoding , Snail Family Transcription Factors , Y-Box-Binding Protein 1 , Animals , Carcinoma, Renal Cell/genetics , Cell Line, Tumor , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Humans , Kidney Neoplasms/genetics , Mice , RNA, Long Noncoding/genetics , RNA, Messenger , Snail Family Transcription Factors/genetics , Y-Box-Binding Protein 1/genetics
14.
Ecotoxicol Environ Saf ; 242: 113881, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35863214

ABSTRACT

Cobalt is a transition element that abundantly exists in the environment. Besides direct hypoxia stress, cobalt ions indirectly induce hypoxia-reoxygenation injury (HRI), the main cause of acute kidney injury (AKI), a life-threatening clinical syndrome characterized by the necrosis of the proximal tubular epithelial cells (PTECs) and inflammation. Pyroptosis, a type of inflammatory programmed cell death, might play an essential role in HRI-AKI. However, whether pyroptosis is involved in cobalt chloride (CoCl2)-induced HRI-AKI remains unknown. Autophagy is a cellular biological process maintaining cell homeostasis that is involved in cell damage in AKI, yet the underlying regulatory mechanism of autophagy on pyroptosis has not been fully understood. In this study, the in vitro and in vivo models of CoCl2-induced HRI-AKI were established with HK-2 cell line and C57BL/6J mouse. Pyroptosis-related markers were detected with western blotting and immunofluorescence assays, and results showed that gasdermin E (GSDME)-mediated pyroptosis was involved in the cell damage in HRI-AKI. Specific chemical inhibitors of caspase 3, caspase 8, and caspase 9 significantly inhibited GSDME-mediated pyroptosis, verifying that GSDME-mediated pyroptosis was induced via the activation of caspase 3/8/9. The western blotting and immunofluorescence assays were adopted to detect the accumulation of the autophagosomes, and results suggested that HRI increased the autophagic level. The effects of autophagy on apoptosis and pyroptosis were evaluated using lentivirus transfection assays to knock down autophagy-specific genes atg5 and fip200, and results demonstrated that autophagy induced GSDME-mediated pyroptosis via apoptotic pathways in HRI-AKI. Our results revealed the involvement of GSDME-mediated pyroptosis in CoCl2-induced HRI-AKI and promoted the understanding of the regulatory mechanism of GSDME cleavage. Our study might provide a potential therapeutic target for HRI-AKI, and will be helpful for the risk evaluation of cobalt exposure.


Subject(s)
Acute Kidney Injury , Pyroptosis , Acute Kidney Injury/chemically induced , Animals , Apoptosis , Autophagy , Caspase 3/metabolism , Cobalt/toxicity , Humans , Hypoxia , Mice , Mice, Inbred C57BL , Pore Forming Cytotoxic Proteins
15.
Front Plant Sci ; 13: 912293, 2022.
Article in English | MEDLINE | ID: mdl-35646038

ABSTRACT

Giant panda could have bamboo as their exclusive diet for about 2 million years because of the contribution of numerous enzymes produced by their gut bacteria, for instance laccases. Laccases are blue multi-copper oxidases that catalyze the oxidation of a broad spectrum of phenolic and aromatic compounds with water as the only byproduct. As a "green enzyme," laccases have potential in industrial applications, for example, when dealing with degradation of recalcitrant biopolymers, such as lignin. In the current study, a bacterial laccase, Lac51, originating from Pseudomonas putida and identified in the gut microbiome of the giant panda's gut was transiently expressed in the non-food plant Nicotiana benthamiana and characterized. Our results show that recombinant Lac51 exhibits bacterial laccase properties, with optimal pH and temperature at 7-8 and 40°C, respectively, when using syringaldazine as substrate. Moreover, we demonstrate the functional capability of the plant expressed Lac51 to oxidize lignin using selected lignin monomers that serve as substrates of Lac51. In summary, our study demonstrates the potential of green and non-food plants as a viable enzyme production platform for bacterial laccases. This result enriches our understanding of plant-made enzymes, as, to our knowledge, Lac51 is the first functional recombinant laccase produced in plants.

16.
Mycorrhiza ; 32(3-4): 341-351, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35608677

ABSTRACT

Truffle cultivation has drawn more and more attention for its high economic and ecological values in the world. To select symbionts suitable for cultivation purposes, we conducted greenhouse-based mycorrhization trials of two Tuber species (T. formosanum and T. pseudohimalayense) with five broad-leaved tree species (Corylus yunnanensis, Quercus aliena var. acutiserrata, Q. acutissima, Q. robur, Q. variabilis) and one conifer species (Pinus armandii). Axenically germinated seedlings of all tree species were either inoculated, or not, with spore suspensions of these two truffles in the greenhouse. Eight months after inoculation, T. formosanum or T. pseudohimalayense ectomycorrhizae were successfully formed on these six tree species, as evidenced by both morphological and molecular analyses. All selected trees showed good receptivity to mycorrhization by both fungi, with average colonization rates visually estimated at 40-50%. Plant growth, photosynthesis, and nutrient uptake were assessed 2 years after inoculation and were mainly affected by host species. Mycorrhization by both fungi significantly improved P uptake of the hosts, and the interaction between truffle species and host plant species had significant effects on leaf water and leaf K concentrations. In addition, a significantly negative correlation between leaf Ca and leaf C concentration was found across all the seedlings. In addition, mycorrhization had slightly increased plant stem and canopy, but had no significant effects on plant photosynthesis. Overall, these results suggest that the effects of these two Tuber ECMF on plant growth and nutrient acquisition depend on the identity of the host species. Moreover, all selected plant species could be symbiotic partners with either T. pseudohimalayense or T. formosanum for field cultivation purposes.


Subject(s)
Ascomycota , Mycorrhizae , Quercus , Quercus/microbiology , Seedlings/microbiology , Trees/microbiology
17.
Plant Divers ; 44(2): 127-134, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35505991

ABSTRACT

Common mycorrhizal networks (CMNs) that connect individual plants of the same or different species together play important roles in nutrient and signal transportation, and plant community organization. However, about 10% of land plants are non-mycorrhizal species with roots that do not form any well-recognized types of mycorrhizas; and each mycorrhizal fungus can only colonize a limited number of plant species, resulting in numerous non-host plants that could not establish typical mycorrhizal symbiosis with a specific mycorrhizal fungus. If and how non-mycorrhizal or non-host plants are able to involve in CMNs remains unclear. Here we summarize studies focusing on mycorrhizal-mediated host and non-host plant interaction. Evidence has showed that some host-supported both arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) hyphae can access to non-host plant roots without forming typical mycorrhizal structures, while such non-typical mycorrhizal colonization often inhibits the growth but enhances the induced system resistance of non-host plants. Meanwhile, the host growth is also differentially affected, depending on plant and fungi species. Molecular analyses suggested that the AMF colonization to non-hosts is different from pathogenic and endophytic fungi colonization, and the hyphae in non-host roots may be alive and have some unknown functions. Thus we propose that non-host plants are also important CMNs players. Using non-mycorrhizal model species Arabidopsis, tripartite culture system and new technologies such as nanoscale secondary ion mass spectrometry and multi-omics, to study nutrient and signal transportation between host and non-host plants via CMNs may provide new insights into the mechanisms underlying benefits of intercropping and agro-forestry systems, as well as plant community establishment and stability.

18.
Front Neurosci ; 16: 850857, 2022.
Article in English | MEDLINE | ID: mdl-35573303

ABSTRACT

The blood-brain barrier (BBB) comprises a single layer of endothelial cells and maintains a safe and homeostatic environment for proper neuronal function and synaptic transmission. BBB is not a discrete physical barrier, but a complex, dynamic, and adaptable interface. BBB continues to mature under the influence of the neural environment within a short period of time after birth. However, the basic mechanism of BBB formation and maintenance remains a mystery. Early studies have identified two structural characteristics of microvascular endothelium: special tight junctions (TJs) and a very low transcellular vesicle transport rate. Previous studies believed that BBB damage was mainly due to the destruction of tight junctions, and the role of vesicle transcytosis was neglected, so there was a lack of research on its impact on blood-brain barrier. It is urgent to get a better clarification of the unique structural and functional characteristics of the BBB endothelium to explain the role of BBB injury in neurological diseases. RNA sequencing was used to study the molecular characterization of cerebral cortex vascular endothelium by isolating them from neonatal, adolescent and adult rats. For investigation the maintenance mechanism of the BBB, we focused on the cellular and molecular regulation of barrier formation and the two characteristics of microvascular endothelial cells. Interestingly, we found that during the development of the blood-brain barrier, although the tight junctions gradually mature, endothelial cell transcytosis is gradually enhanced, resulting in an increase in the permeability of the blood-brain barrier. This study suggested that under physiological conditions, low vesicle transport is playing an important role in maintaining the integrity of the blood-brain barrier. This study not only summarized the unique characteristics of microvascular endothelial cells, but also illustrated a clarified mechanism of the development and maintenance of BBB which can provide new therapeutic opportunities for central nervous system drug delivery. Raw data of RNA sequencing were deposited in NCBI Sequence Read Archive database (PRJNA790676).

19.
J Alzheimers Dis ; 86(1): 67-81, 2022.
Article in English | MEDLINE | ID: mdl-35001891

ABSTRACT

BACKGROUND: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) caused by NOTCH3 mutations is the most common monogenic hereditary pattern of cerebral small vessel disease. The aggregation of the mutant NOTCH3 may play a cytotoxic role in CADASIL. However, the main mechanism of this process remains unclear. OBJECTIVE: We aimed to investigate the possible pathogenesis of the mutant NOTCH3 in CADASIL. METHODS: The clinical information of two pedigrees were collected and analyzed. Furthermore, we constructed cell lines corresponding to this mutation in vitro. The degradation of the extracellular domain of NOTCH3 (NOTCH3ECD) was analyzed by Cycloheximide Pulse-Chase Experiment. Flow cytometry and cell counting kit-8 assay were performed to observe the effects of the NOTCH3 mutation on mitochondrial function and apoptosis. RESULTS: We confirmed a de novo heterozygous missense NOTCH3 mutation (c.1690G > A, p. A564T) in two pedigrees. In vitro, the NOTCH3ECD aggregation of A564T mutant may be related to their more difficult to degrade. The mitochondrial membrane potential was attenuated, and cell viability was significant decreased in NOTCH3ECD A564T group. Interestingly, BAX and cytochrome c were significantly increased, which are closely related to the mitochondrial-mediated pathway to apoptosis. CONCLUSION: In our study, the aggregation of NOTCH3ECD A564T mutation may be associated with more difficult degradation of the mutant, and the aggregation may produce toxic effects to induce apoptosis through the mitochondrial-mediated pathway. Therefore, we speculated that mitochondrial dysfunction may hopefully become a new breakthrough point to explain the pathogenesis of cysteine-sparing NOTCH3 mutations.


Subject(s)
CADASIL , CADASIL/genetics , CADASIL/metabolism , Humans , Mitochondria/metabolism , Mutation/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Receptor, Notch3/genetics , Receptor, Notch3/metabolism , Receptors, Notch/genetics , Receptors, Notch/metabolism , bcl-2-Associated X Protein/genetics
20.
Clin Epigenetics ; 14(1): 2, 2022 01 04.
Article in English | MEDLINE | ID: mdl-34983647

ABSTRACT

BACKGROUND: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a typical neurodegenerative disease associated with mitochondrial dysfunction. Methylation of the D-loop region and mitochondrial DNA copy number (mtDNAcn) play a critical role in the maintenance of mitochondrial function. However, the association between D-loop region methylation, mtDNAcn and CADASIL remains unclear. METHODS: Overall, 162 individuals were recruited, including 66 CADASIL patients and 96 age- and sex-matched controls. After extracting genomic DNA from the peripheral white blood cells, levels of D-loop methylation and mtDNAcn were assessed using MethylTarget sequencing and real-time PCR, respectively. RESULTS: We observed increased mtDNAcn and decreased D-loop methylation levels in CADASIL patients compared to the control group, regardless of gender stratification. Besides, we found a negative correlation between D-loop methylation levels and mtDNAcn. Mediation effect analysis shows that the proportion of the association between mtDNAcn and CADASIL that is mediated by D-loop methylation is 11.6% (95% CI 5.6, 22.6). After gender stratification, the proportions of such associations that are mediated by D-loop methylation in males and females were 7.2% (95% CI 2.4, 19.8) and 22.0% (95% CI 7.4, 50.1), respectively. CONCLUSION: Decreased methylation of the D-loop region mediates increased mtDNAcn in CADASIL, which may be caused by a compensatory mechanism of mitochondrial dysfunction in patients with CADASIL.


Subject(s)
CADASIL/genetics , CADASIL/physiopathology , DNA Copy Number Variations/genetics , DNA Methylation/genetics , DNA, Mitochondrial/blood , DNA, Mitochondrial/genetics , Adult , Aged , Female , Healthy Volunteers , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...