Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 284
Filter
1.
J Clin Med ; 13(18)2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39336917

ABSTRACT

Background: Hereditary Hemorrhagic Telangiectasia (HHT) is a genetic disorder leading to frequent bleeding in several organs. As HHT diagnosis is demanding and depends on clinical criteria, liquid biopsy would be beneficial. Exosomes from biofluids are nano-sized vesicles for intercellular communication. Their cargo and characteristics represent biomarkers for many diseases. Here, exosomes of HHT patients were examined regarding their biosignature. Methods: Exosomes were isolated from the plasma of 20 HHT patients and 17 healthy donors (HDs). The total exosomal protein was quantified, and specific proteins were analyzed using Western blot and antibody arrays. Human umbilical vein endothelial cells (HUVECs) co-incubated with exosomes were functionally examined via immunofluorescence, proliferation, and scratch assay. Results: The levels of the angiogenesis-regulating protein Thrombospondin-1 were significantly higher in HHT compared to HD exosomes. Among HHT, but not HD exosomes, a negative correlation between total exosomal protein and soluble Endoglin (sENG) levels was found. Other exosomal proteins (ALK1, ALK5) and the particle concentration significantly correlated with disease severity parameters (total consultations/interventions, epistaxis severity score) in HHT patients. Functionally, HUVECs were able to internalize both HD and HHT exosomes, inducing a similar change in the F-Actin structure and a reduction in migration and proliferation. Conclusions: This study provided first insights into the protein cargo and function of HHT-derived exosomes. The data indicate changes in sENG secretion via exosomes and reveal exosomal Thrombospondin-1 as a potential biomarker for HHT. Several exosomal characteristics were pointed out as potential liquid biomarkers for disease severity, revealing a possible new way of diagnosis and prognosis of HHT.

2.
PLoS One ; 19(9): e0310903, 2024.
Article in English | MEDLINE | ID: mdl-39325710

ABSTRACT

INTRODUCTION: Type 2 diabetes mellitus (T2DM) is a frequent chronic condition among the elderly, which increasing their susceptibility to infection. Urinary tract infection (UTI) is one of the most prevalent infections among older people with T2DM. However, the association between geriatric T2DM and the risk of UTI has not been thoroughly researched and is still contentious. Consequently, this protocol describes a systematic review to pinpoint the primary risk factors for UTI among elderly T2DM. Our goal is to improve recommendations for the creation of targeted treatment interventions by examining risk factors for UTI in elderly individuals with T2DM. METHODS AND ANALYSIS: We will search 4 English literature databases (PubMed, Embase, Web of Science, and Cochrane Library) and 3 major Chinese databases (CNKI, WanFang, and VIP) from the establishment of the database to June 20, 2024. Systematic evaluation and meta-analysis will be conducted on cohort and case-control studies exploring the occurrence and risk determinants of UTI in individuals diagnosed with T2DM. The main focus will be on identifying the risk factors for UTI in elderly diabetic patients. Two researchers will independently review articles, collect data, and evaluate the quality and potential bias of study inclusion. We will use RevMan V.5.4 software to analyze the data. The quality of the included studies will be assessed using the Newcastle-Ottawa scale. In addition, the GRADE (Grade of Recommendations, Assessment, Development, Evaluation) method will be used to examine the quality of evidence for each exposure and outcome of interest. DISCUSSION: This study aims to illuminate the various risk factors associated with UTI in older patients diagnosed with T2DM. By this thorough investigation, we hope to provide a more comprehensive reference for medical professionals and researchers, thereby supporting the implementation of effective preventive strategies against UTI and improving overall nursing outcomes for this specific patient population. TRAIL REGISTRATION: PROSPERO (CRD42024559129).


Subject(s)
Diabetes Mellitus, Type 2 , Meta-Analysis as Topic , Systematic Reviews as Topic , Urinary Tract Infections , Humans , Diabetes Mellitus, Type 2/complications , Urinary Tract Infections/epidemiology , Urinary Tract Infections/complications , Risk Factors , Aged , Male , Female
3.
BMC Womens Health ; 24(1): 484, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39227947

ABSTRACT

BACKGROUND: Yolk sac tumor (YST) is a highly malignant germ cell tumor, a majority of which originate from the gonads and are extremely rare from endometrium. CASE PRESENTATION: Here we present a case of a 42-year-old woman suffered from primary pure yolk sac tumor of the endometrium complicated with situs inversus totalis. The patient presented at our hospital with irregular vaginal bleeding. Imageological examination showed a space-occupying lesion in the cervix and the serum Alpha-fetoprotein (AFP) level was significantly high (more than 1210ng/ml). Then she underwent total hysterectomy, bilateral salpingo-oophorectomy and pelvic lymph node dissection. The subsequent postoperative pathological diagnosis was yolk sac tumor arising from the endometrium. Next, the patient was treated with 6 cycles of chemotherapy with Pingyangmycin, etoposide and cisplatin regimen and was alive without evidence of recurrence or distant metastases for 13 months. CONCLUSIONS: This rare disease needs to be differentiated from endometrial epithelial neoplasia and the significant increase in AFP is helpful for diagnosis. Combined with previous literature reports, comprehensive staging laparotomy or maximum cytoreductive surgery complemented by standard chemotherapy can usually achieve a good efficacy.


Subject(s)
Endodermal Sinus Tumor , Endometrial Neoplasms , Situs Inversus , Humans , Female , Endodermal Sinus Tumor/complications , Endodermal Sinus Tumor/diagnosis , Endodermal Sinus Tumor/pathology , Adult , Situs Inversus/complications , Situs Inversus/diagnosis , Endometrial Neoplasms/complications , Endometrial Neoplasms/diagnosis , Endometrial Neoplasms/pathology , alpha-Fetoproteins/analysis , Hysterectomy/methods
4.
Int J Biol Macromol ; 279(Pt 4): 135577, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39270907

ABSTRACT

Biomacromolecule hydrogels possess excellent mechanical properties and biocompatibility, but their inability to combat bacteria restricts their application in the biomedical field. With the increasing requirements and demands for hydrogel dressings, wound dressings with antibacterial properties of biomacromolecule hydrogels reinforced by adding antibacterial agents have attracted much attention, and related reviews are emerging. In this paper, the advances of biomacromolecule antibacterial hydrogels (including chitosan, sodium alginate, Hyaluronic acid, cellulose and gelatin) were first overviewed, and the antibacterial agents incorporated into hydrogels were classified (including metals and their derivatives, carbon-based materials, and native compounds). A series of performance evaluations of antibacterial hydrogels in the process of promoting wound healing were then reviewed, including basic properties (mechanical, rheological, injectable and self-healing, etc.), in vitro experiments (hemostasis, antibacterial, anti-inflammatory, anti-oxidation, biocompatibility) and in vivo experiments (in vivo model, histomorphology analysis, cytokines). Finally, the future development of biomacromolecule-based antibacterial hydrogels for wound healing is prospected. This work can provide a useful reference for researchers to prepare practical new wound hydrogel dressings.

6.
Adv Mater ; : e2408778, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39212648

ABSTRACT

In the pursuit of successful photocatalytic transformations, challenges persist due to limitations in charge carrier utilization and transfer efficiency, which stemming from rapid recombination. Overcoming these limitations necessitates the exploration of novel mechanisms that enhance the effective separation of photogenerated electron-hole pairs. Herein, deviating from the conventional approach of enhancing carrier migration to separate photogenerated charges and extend their lifetime, the proposal is to directly prevent the recombination of photogenerated electrons and holes by forming hole polarons. Specifically, disordered pores are introduced on the surface of KTaO3 ultrathin sheets, and the clear-cut evidences in electron paramagnetic resonance, photoluminescence, and ultrafast spectroscopy unambiguously confirm the enhanced carrier-phonon coupling, which results in the formation of hole polarons to impede the recombination of photogenerated electron-hole pairs. Taking the challenging nitrogen oxidation reaction as an example, it is found that the hole polarons in atomic-disordered pore KTaO3 ultrathin nanosheets trigger outstanding photo-oxidation performance of  nitrogen (N2)to nitrate, with a nitrate-producing rate of 2.1 mg g-1 h-1. This scenario is undoubtedly applicable to a wide variety of photocatalytic reactions due to the common challenge of charge carrier recombination in all photocatalytic processes, manifesting broad implications for promoting photocatalysis performance.

7.
J Agric Food Chem ; 72(26): 14967-14974, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38957086

ABSTRACT

Nanobodies (Nbs) serve as powerful tools in immunoassays. However, their small size and monovalent properties pose challenges for practical application. Multimerization emerges as a significant strategy to address these limitations, enhancing the utilization of nanobodies in immunoassays. Herein, we report the construction of a Salmonella-specific fenobody (Fb) through the fusion of a nanobody to ferritin, resulting in a self-assembled 24-valent nanocage-like structure. The fenobody exhibits a 35-fold increase in avidity compared to the conventional nanobody while retaining good thermostability and specificity. Leveraging this advancement, three ELISA modes were designed using Fb as the capture antibody, along with unmodified Nb422 (FbNb-ELISA), biotinylated Nb422 (FbBio-ELISA), and phage-displayed Nb422 (FbP-ELISA) as the detection antibody, respectively. Notably, the FbNb-ELISA demonstrates a detection limit (LOD) of 3.56 × 104 CFU/mL, which is 16-fold lower than that of FbBio-ELISA and similar to FbP-ELISA. Moreover, a fenobody and nanobody sandwich chemiluminescent enzyme immunoassay (FbNb-CLISA) was developed by replacing the TMB chromogenic substrate with luminal, resulting in a 12-fold reduction in the LOD. Overall, the ferritin-displayed technology represents a promising methodology for enhancing the detection performance of nanobody-based sandwich ELISAs, thereby expanding the applicability of Nbs in food detection and other fields requiring multivalent modification.


Subject(s)
Enzyme-Linked Immunosorbent Assay , Ferritins , Salmonella , Single-Domain Antibodies , Ferritins/immunology , Ferritins/chemistry , Ferritins/genetics , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/genetics , Single-Domain Antibodies/immunology , Salmonella/immunology , Salmonella/genetics , Enzyme-Linked Immunosorbent Assay/methods , Limit of Detection , Antibody Affinity , Antibodies, Bacterial/immunology , Immunoassay/methods
8.
Water Res ; 262: 122116, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39032337

ABSTRACT

Weak magnetic field (WMF) has been recognized to promote biological denitrification processes; however, the underlying mechanisms remain largely unexplored, hindering the optimization of its effectiveness. Here, we systematically investigated the effects of WMF on denitrification performance, enzyme activity, microbial community, and metaproteome in packed bed bioreactors treating high nitrate wastewater under different WMF intensities and C:N ratios. Results showed that WMFs significantly promoted denitrification by consistently stimulating the activities of denitrifying reductases and NAD+/NADH biosynthesis across decreasing C:N ratios. Reductases and electron transfer enzymes involved in denitrification were overproduced due to the significantly enriched overexpression of ferromagnetic ion-containing (FIC) metalloproteins. We also observed WMFs' intensity-dependent selective pressure on microbial community structures despite the effects being limited compared to those caused by changing C:N ratios. By coupling genome-centric metaproteomics and structure prediction, we found the dominant denitrifier, Halomonas, was outcompeted by Pseudomonas and Azoarcus under WMFs, likely due to its structural deficiencies in iron uptake, suggesting that advantageous ferromagnetic ion acquisition capacity was necessary to satisfy the substrate demand for FIC metalloprotein overproduction. This study advances our understanding of the biomagnetic effects in the context of complex communities and highlights WMF's potential for manipulating FIC protein-associated metabolism and fine-tuning community structure.


Subject(s)
Bioreactors , Denitrification , Magnetic Fields , Metalloproteins , Metalloproteins/metabolism , Wastewater/chemistry
9.
J Hazard Mater ; 476: 135079, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38959835

ABSTRACT

Dinoflagellates Prorocentrum donghaiense and Karlodinium veneficum are the dominant species of harmful algal blooms in the East China Sea. The role of their allelopathy on the succession of marine phytoplankton populations is a subject of ongoing debate, particularly concerning the formation of blooms. To explore the allelopathy of K. veneficum on P. donghaiense, an investigation was conducted into photosynthetic performance (including PSII functional activities, photosynthetic electron transport chain, energy flux, photosynthetic different genes and photosynthetic performance) and photosynthetic damage-induced oxidative stress (MDA, SOD, and CAT activity). The growth of P. donghaiense was strongly restrained during the initial four days (1-6 folds, CK/CP), but the cells gradually resumed activity at low filtrate concentrations from the eighth day. On the fourth day of the strongest inhibition, allelochemicals reduced representative photosynthetic performance parameters PI and ΦPSII, disrupted related processes of photosynthesis, and elevated the levels of MDA content in P. donghaiense. Simultaneously, P. donghaiense repairs these impairments by up-regulating the expression of 13 photosynthetic genes, modifying photosynthetic processes, and activating antioxidant enzyme activities from the eighth day onward. Overall, this study provides an in-depth overview of allelopathic photosynthetic damage, the relationship between genes and photosynthesis, and the causes of oxidative damage induced by photosynthesis. ENVIRONMENTAL IMPLICATIONS: As a typical HAB species, Karlodinium veneficum is associated with numerous fish poisoning events, which have negative impacts on aquatic ecosystems and human health. Allelochemicals produced by K. veneficum can provide a competitive advantage by interfering with the survival, reproduction and growth of competing species. This study primarily investigated the effects of K. veneficum allelochemicals on the photosynthesis and photosynthetic genes of Prorocentrum donghaiense. Grasping the mechanism of allelochemicals inhibiting microalgae is helpful to better understand the succession process of algal blooms and provide a new scientific basis for effective prevention and control of harmful algal blooms.


Subject(s)
Allelopathy , Dinoflagellida , Harmful Algal Bloom , Photosynthesis , Dinoflagellida/drug effects , Dinoflagellida/metabolism , Photosynthesis/drug effects , Oxidative Stress/drug effects , Pheromones , China
10.
Front Genet ; 15: 1417329, 2024.
Article in English | MEDLINE | ID: mdl-38919950

ABSTRACT

Introduction: Moyamoya disease (MMD) is a chronic cerebrovascular disease that can lead to ischemia and hemorrhagic stroke. The relationship between oxidative phosphorylation (OXPHOS) and MMD pathogenesis remains unknown. Methods: The gene expression data of 60 participants were acquired from three Gene Expression Omnibus (GEO) datasets, including 36 and 24 in the MMD and control groups. Differentially expressed genes (DEGs) between MMD patients MMD and control groups were identified. Machine learning was used to select the key OXPHOS-related genes associated with MMD from the intersection of DEGs and OXPHOS-related gene sets. Gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG), gene set enrichment analysis (GSEA), Immune infiltration and microenvironments analysis were used to analyze the function of key genes. Machine learning selected four key OXPHOS-related genes associated with MMD: CSK, NARS2, PTPN6 and SMAD2 (PTPN6 was upregulated and the other three were downregulated). Results: Functional enrichment analysis showed that these genes were mainly enriched in the Notch signaling pathway, GAP junction, and RNA degradation, which are related to several biological processes, including angiogenesis, proliferation of vascular smooth muscle and endothelial cells, and cytoskeleton regulation. Immune analysis revealed immune infiltration and microenvironment in these MMD samples and their relationships with four key OXPHOS-related genes. APC co-inhibition (p = 0.032), HLA (p = 0.001), MHC I (p = 0.013), T cellco- inhibition (p = 0.032) and Type I IFN responses (p < 0.001) were significantly higher in the MMD groups than those in the control groups. The CSK positively correlated with APC co-inhibition and T cell-co-inhibition. The NARS2 negatively correlated with Type I IFN response. The SMAD2 negatively correlated with APC co-inhibition and Type I IFN response. The PTPN6 positively correlated with HLA, MHC I and Type I IFN responses. Discussion: This study provides a comprehensive understanding of the role of OXPHOS in MMD and will contribute to the development of new treatment methods and exploration of MMD pathogenesis.

11.
Langmuir ; 40(27): 13860-13869, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38921353

ABSTRACT

The huge polyoxometalate, Na48[HxMo256VIMo112VO1032(H2O)240(SO4)48] ({Mo368}), which can be prepared by a facile solution process and can be applied in lithium-ion storage applications as the anode. The large and open hollow nanostructure is promising to store a larger number of lithium ions and expedite the diffusion of lithium ions. A single {Mo368} nanocluster can transfer 624 electrons, referred to as a "huge electron sponge". Pure {Mo368} without any support materials exhibits very high capacities of 964 mA h g-1 with hardly any decay for 100 cycles at 0.1 A g-1 and still maintains 761 mA h g-1 after 180 cycles at 0.5 A g-1, indicating great cycling stability. The {Mo368} anode provides excellent rate performance and reversibility during the lithiation/delithiation processes, which are contributed by both the diffusion-controlled process and the capacitive process. The capacitive contribution can reach 71.7% at a scan rate of 2 mV s-1. The high DLi+ value measured by GITT confirms the fast reaction kinetics of the {Mo368} electrode. The {Mo368}//NCM111-A full cell is practically applied to light LED lamps. These investigations indicate that {Mo368} nanoclusters are advanced energy storage materials with high capacities, fast charge transfer, and low-cost mass production for lithium-ion storage. Moreover, {Mo368} should be considered a clean energy material because there is no production of environmental pollution during the charge/discharge processes.

12.
Talanta ; 277: 126409, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38897014

ABSTRACT

Atrazine (ATZ) is a widely used herbicide that can cause serious harm to organisms and ecosystems. An immobilization-free photoelectrochemical (PEC) aptasensor has been herein developed for ATZ based on aptamer molecular gate functionalized mesoporous SiO2@MB controlled release system. Compared with traditional immobilization-based sensors, immobilization-free sensors (IFSs) avoid the modification of the recognition element on the electrode surface. Mesoporous SiO2 with large surface area and good biocompatibility can be used as nanocontainers to stably encapsulate the signal shuttle molecule methylene blue (MB). The bifunctional aptamer (APT) is used not only as the recognition element for ATZ but also as the signal switch to block or release MB. In the presence of ATZ, the specific recognition between ATZ and APT will cause the detachment of APT from the surface of SiO2, thus the molecular gate will open and release MB. Due to pH modulation, the positively charged MB can reach the surface of the negatively charged Ti(III) self-doped TiO2 NTs (Ti(III)-TiO2 NTs) electrode to act as an electron donor, which increases the photocurrent. The immobilization-free aptasensor has shown ultrasensitive detection of ATZ with a wide linear range from 1.0 pM to 100.0 nM and a low detection limit of 0.1 pM. In addition, the sensor has excellent selectivity, stability and anti-interference ability, and has been used in real water sample analysis successfully. This strategy has provided a new idea for the design of advanced immobilization-free PEC sensors for environmental pollutant detection.

13.
Prostaglandins Other Lipid Mediat ; 174: 106865, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38945355

ABSTRACT

Pneumonia, an acute inflammatory lesion of the lung, is the leading cause of death in children aged < 5 years. We aimed to study the function and mechanism of Golgi phosphoprotein 3 (GOLPH3) in infantile pneumonia. Lipopolysaccharide (LPS)-induced acute lung injury (ALI) mice and injury of MLE-12 cells were used as the pneumonia model in vitro. After GOLPH3 was knocked down, the histopathological changes of lung tissues were assessed by hematoxylin-eosin (H&E) staining. The Wet/Dry ratio of lung tissues was calculated. The enzyme-linked immunosorbent assay (ELISA) method was used to detecte the contents of inflammatory factors in bronchoalveolar lavage fluid (BALF). The damaged DNA in apoptotic cells in lung tissues was tested by Terminal deoxynucleotidyl transferase-mediated dUTP Nick end labeling (TUNEL) staining. Immunofluorescence staining analyzed LC3II and Golgi matrix protein 130 (GM130) expression in lung tissues and MLE-12 cells. The apoptosis of MLE-12 cells was measured by flow cytometry analysis. Additionally, the expression of proteins related to apoptosis, autophagy and Golgi stress was examined with immunoblotting. Results indicated that GOLPH3 knockdown alleviated lung tissue pathological changes in LPS-triggered ALI mice. LPS-induced inflammation and apoptosis in lung tissues and MLE-12 cells were remarkably alleviated by GOLPH3 deficiency. Besides, GOLPH3 depletion suppressed autophagy and Golgi stress in lung tissues and MLE-12 cells challenged with LPS. Moreover, Rapamycin (Rap), an autophagy inhibitor, counteracted inflammation and apoptosis inhibited by GOLPH3 silencing in LPS-induced MLE-12 cells. Furthermore, brefeldin A (BFA) pretreatment apparently abrogated the inhibitory effect of GOLPH3 knockdown on autophagy in MLE-12 cells exposed to LPS. To be concluded, GOLPH3 knockdown exerted lung protective effect against LPS-triggered inflammation and apoptosis by inhibiting Golgi stress mediated autophagy.


Subject(s)
Acute Lung Injury , Apoptosis , Autophagy , Golgi Apparatus , Inflammation , Membrane Proteins , Animals , Male , Mice , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Acute Lung Injury/genetics , Acute Lung Injury/pathology , Apoptosis/drug effects , Autophagy/drug effects , Cell Line , Gene Knockdown Techniques , Golgi Apparatus/metabolism , Inflammation/metabolism , Inflammation/pathology , Inflammation/genetics , Lipopolysaccharides , Membrane Proteins/genetics , Membrane Proteins/metabolism , Membrane Proteins/deficiency
14.
Sci Rep ; 14(1): 10278, 2024 05 04.
Article in English | MEDLINE | ID: mdl-38704490

ABSTRACT

Moyamoya disease (MMD) is a cerebrovascular narrowing and occlusive condition characterized by progressive stenosis of the terminal portion of the internal carotid artery and the formation of an abnormal network of dilated, fragile perforators at the base of the brain. However, the role of PANoptosis, an apoptotic mechanism associated with vascular disease, has not been elucidated in MMD. In our study, a total of 40 patients' genetic data were included, and a total of 815 MMD-related differential genes were screened, including 215 upregulated genes and 600 downregulated genes. Among them, DNAJA3, ESR1, H19, KRT18 and STK3 were five key genes. These five key genes were associated with a variety of immune cells and immune factors. Moreover, GSEA (gene set enrichment analysis) and GSVA (gene set variation analysis) showed that the different expression levels of the five key genes affected multiple signaling pathways associated with MMD. In addition, they were associated with the expression of MMD-related genes. Then, based on the five key genes, a transcription factor regulatory network was constructed. In addition, targeted therapeutic drugs against MMD-related genes were obtained by the Cmap drug prediction method: MST-312, bisacodyl, indirubin, and tropanyl-3,5-dimethylbenzoate. These results suggest that the PANoptosis-related genes may contribute to the pathogenesis of MMD through multiple mechanisms.


Subject(s)
Gene Regulatory Networks , Moyamoya Disease , Humans , Moyamoya Disease/genetics , Moyamoya Disease/immunology , Apoptosis/genetics , Gene Expression Profiling , Male , Signal Transduction/genetics , Female , Gene Expression Regulation
15.
Int Immunopharmacol ; 134: 112245, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38749334

ABSTRACT

Gastric cancer (GC) has posed a great threat to the lives of people around the world. To date, safer and more cost-effective therapy for GC is lacking. Traditional Chinese medicine (TCM) may provide some new options for this. Guiqi Baizhu Formula (GQBZF), a classic TCM formula, has been extensively used to treat GC, while its bioactive components and therapeutic mechanisms remain unclear. In this study, we evaluated the underlying mechanisms of GQBZF in treating GC by integrative approach of chemical bioinformatics. GQBZF lyophilized powder (0.0625 mg/mL, 0.125 mg/mL) significantly attenuated the expression of p-IGF1R, PI3K, p-PDK1, p-VEGFR2 to inhibit the proliferation, migration and induce apoptosis of gastric cancer cells, which was consistent with the network pharmacology. Additionally, atractylenolide Ⅰ, quercetin, glycyrol, physcione and aloe-emodin, emodin, kaempferol, licoflavone A were found to be the key compounds of GQBZF regulating IGF1R and VEGFR2, respectively. And among which, glycyrol and emodin were determined as key active compounds against GC by farther vitro experiments and LC/MS. Meanwhile, we also found that glycyrol inhibited MKN-45 cells proliferation and enhanced apoptosis, which might be related to the inhibition of IGF1R/PI3K/PDK1, and emodin could significantly attenuate the MKN-45 cells migration, which might be related to the inhibition of VEGFR2-related signaling pathway. These results were verified again by molecular dynamics simulation and binding interaction pattern. In summary, this study suggested that GQBZF and its key active components (glycyrol and emodin) can suppress IGF1R/PI3K/PDK1 and VEGFR2-related signaling pathway, thereby inhibiting tumor cell proliferation and migration and inducing apoptosis. These findings provided an important strategy for developing new agents and facilitated clinical use of GQBZF against GC.


Subject(s)
Apoptosis , Cell Movement , Cell Proliferation , Computational Biology , Drugs, Chinese Herbal , Receptor, IGF Type 1 , Stomach Neoplasms , Vascular Endothelial Growth Factor Receptor-2 , Stomach Neoplasms/drug therapy , Stomach Neoplasms/metabolism , Humans , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Apoptosis/drug effects , Cell Movement/drug effects , Receptor, IGF Type 1/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Computational Biology/methods , Signal Transduction/drug effects , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Receptors, Somatomedin/metabolism , Network Pharmacology , Antineoplastic Agents, Phytogenic/pharmacology
16.
Nano Lett ; 24(20): 6084-6091, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38717110

ABSTRACT

Chiral perovskites play a pivotal role in spintronics and optoelectronic systems attributed to their chiral-induced spin selectivity (CISS) effect. Specifically, they allow for spin-polarized charge transport in spin light-emitting diodes (LEDs), yielding circularly polarized electroluminescence at room temperature without external magnetic fields. However, chiral lead bromide-based perovskites have yet to achieve high-performance green emissive spin-LEDs, owing to limited CISS effects and charge transport. Herein, we employ dimensional regulation and Sn2+-doping to optimize chiral bromide-based perovskite architecture for green emissive spin-LEDs. The optimized (PEA)x(S/R-PRDA)2-xSn0.1Pb0.9Br4 chiral perovskite film exhibits an enhanced CISS effect, higher hole mobility, and better energy level alignment with the emissive layer. These improvements allow us to fabricate green emissive spin-LEDs with an external quantum efficiency (EQE) of 5.7% and an asymmetry factor |gCP-EL| of 1.1 × 10-3. This work highlights the importance of tailored perovskite architectures and doping strategies in advancing spintronics for optoelectronic applications.

17.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38715467

ABSTRACT

LncRNAs (Long non-coding RNA) is an RNA molecule with a length of more than 200 bp. LncRNAs can directly act on mRNA, thus affecting the expression of downstream target genes and proteins, and widely participate in many important physiological and pathological regulation processes of the body. In this study, RNA-Seq was performed to detect lncRNAs from mammary gland tissues of three Chinese Holstein cows, including three cows at 7 d before calving and the same three cows at 30 d postpartum (early lactation stage). A total of 1,905 novel lncRNAs were detected, 57.3% of the predicted lncRNAs are ≥ 500 bp and 612 lncRNAs are intronic lncRNAs. The exon number of lncRNAs ranged from 2 to 10. A total of 96 lncRNAs were significantly differentially expressed between two stages, of which 47 were upregulated and 49 were downregulated. Pathway analysis found that target genes were mainly concentrated on the ECM-receptor interaction, Jak-STAT signaling pathway, PI3K-Akt signaling pathway, and TGF-beta signaling pathway. This study revealed the expression profile and characteristics of lncRNAs in the mammary gland tissues of Holstein cows at non-lactation and early lactation periods, and provided a basis for studying the functions of lncRNAs in Holstein cows during different lactation periods.


The mammary gland of dairy cows is the main place of milk synthesis and secretion, and plays a vital role in the process of milk production. LncRNAs (Long non-coding RNAs) are a class of non-coding RNAs with a length greater than 200 bp and do not encode protein, which can regulate gene expression at the transcriptional, post-transcriptional and chromatin levels, with biological functions such as regulating cell proliferation, differentiation, and apoptosis. Relevant studies in humans and model animals have shown that lncRNAs participate in mammalian mammary gland development and lactation, but there are few studies on lncRNAs regulation of mammary gland development and lactation in dairy cows. Therefore, this study aims to reveal the potential role of lncRNAs in the mammary gland of dairy cows through screening, identification, and functional research of differentially expressed lncRNAs at different periods of mammary gland development (pregnancy and early lactation period). It provides a reference for the follow-up study on the regulatory mechanism of dairy cows' mammary gland health.


Subject(s)
Mammary Glands, Animal , RNA, Long Noncoding , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cattle/genetics , Female , Mammary Glands, Animal/metabolism , Lactation/genetics , Signal Transduction , Gene Expression Regulation
18.
J Sci Food Agric ; 104(11): 6809-6820, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38572795

ABSTRACT

BACKGROUND: The present study aimed to investigate the effects of tremella polysaccharides on the gel properties and antioxidant activity of yak skin gelatin with a view to improving the quality of collagen jellies. The preparation of composite gels were performed by yak skin gelatin (66.7 mg mL-1) and tremella polysaccharides with different concentrations (0, 2, 4, 6, 8 mg mL-1), and finally the collagen jelly was prepared by composite gel (yak skin gelatin: 66.7 mg mL-1; tremella polysaccharides:6 mg mL-1) with the best performance. RESULTS: Tremella polysaccharides not only improved the hardness, springiness, gel strength, water holding capacity and melting temperature of yak skin gelatin, but also enhanced the composite gel's scavenging activity against ABTS radicals, DPPH radicals, O2 and OH radicals. The filling of tremella polysaccharides into the gelatin network increased the number of crosslinking sites inside the gel, which resulted in the gel network structure becoming dense and orderly. The gel particles became finer and more uniform, and the thermal stability was improved. Furthermore, the sensory score of commercially available gelatin jelly decreased more rapidly during storage compared to the composite gel jelly. CONCLUSION: The gel properties and antioxidant activity of yak skin gelatin were improved by adding tremella polysaccharides, and then the quality and storage properties of the jelly were improved, which also provided technical reference for the development of functional gel food. © 2024 Society of Chemical Industry.


Subject(s)
Antioxidants , Collagen , Gelatin , Gels , Polysaccharides , Skin , Gelatin/chemistry , Animals , Antioxidants/chemistry , Antioxidants/pharmacology , Cattle , Gels/chemistry , Skin/chemistry , Skin/drug effects , Collagen/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Basidiomycota/chemistry , Humans
19.
Anal Chem ; 96(17): 6588-6598, 2024 04 30.
Article in English | MEDLINE | ID: mdl-38619494

ABSTRACT

How timely identification and determination of pathogen species in pathogen-contaminated foods are responsible for rapid and accurate treatments for food safety accidents. Herein, we synthesize four aggregation-induced emissive nanosilicons with different surface potentials and hydrophobicities by encapsulating four tetraphenylethylene derivatives differing in functional groups. The prepared nanosilicons are utilized as receptors to develop a nanosensor array according to their distinctive interactions with pathogens for the rapid and simultaneous discrimination of pathogens. By coupling with machine-learning algorithms, the proposed nanosensor array achieves high performance in identifying eight pathogens within 1 h with high overall accuracy (93.75-100%). Meanwhile, Cronobacter sakazakii and Listeria monocytogenes are taken as model bacteria for the quantitative evaluation of the developed nanosensor array, which can successfully distinguish the concentration of C. sakazakii and L. monocytogenes at more than 103 and 102 CFU mL-1, respectively, and their mixed samples at 105 CFU mL-1 through the artificial neural network. Moreover, eight pathogens at 1 × 104 CFU mL-1 in milk can be successfully identified by the developed nanosensor array, indicating its feasibility in monitoring food hazards.


Subject(s)
Food Microbiology , Listeria monocytogenes , Machine Learning , Listeria monocytogenes/isolation & purification , Cronobacter sakazakii/isolation & purification , Silicon Dioxide/chemistry , Point-of-Care Systems , Animals , Milk/microbiology , Milk/chemistry , Biosensing Techniques , Neural Networks, Computer
20.
Sci Rep ; 14(1): 9691, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678071

ABSTRACT

The time-varying temperature distributions on bridge structures may remarkably change structural performance, which may result in differential strain/stress responses on structural members compared with the design conditions. Therefore, it is crucial to have a comprehensive understanding of temperature distributions and its effects on bridges. In this study, taking advantage of structural health monitoring technology, 1-year field monitoring data collected from a long-span suspension bridge were used to investigate the temperature distributions and their effects on the steel box girder. Specifically, the distributions and probability statistics of temperatures on the top and bottom plates were firstly analyzed. Based on which, the transverse and vertical temperature differences on the box girder were further examined, moreover, the representative values of temperature differences for various return periods were calculated by exceedance probability method. At end, a temperature prediction method was proposed to simulated the temperature field distributions during bridge life cycle, to provide substantial temperature data for estimating future operation condition. The results of this study were beneficial to structural evaluation of in-service bridges to ensure their serviceability and integrity in the life cycle.

SELECTION OF CITATIONS
SEARCH DETAIL