Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 243
Filter
1.
Cell Signal ; : 111406, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39270916

ABSTRACT

Cysteine ß-synthase (CBS) occupies a key position as the initiating enzyme and rate-limiting enzyme in the sulfur transfer pathway and plays a vital role in the health and disease of mammals. CBS is responsible for regulating the metabolism of cysteine, the precursor of glutathione (GSH), an important antioxidant in the body. Additionally, CBS is one of the three enzymes that produce hydrogen sulfide (H2S) in mammals through a variety of mechanisms. The dysregulation of CBS expression in cancer cells affects H2S production through direct or indirect pathways, thereby influencing cancer growth and metastasis by inducing angiogenesis, facilitating proliferation, migration, and invasion, modulating cellular energy metabolism, promoting cell cycle progression, and inhibiting apoptosis. It is noteworthy that CBS expression exhibits complex changes in different cancer models. In this paper, we focus on the CBS synthesis and metabolism, tissue distribution, potential mechanisms influencing tumor growth, and relevant signaling pathways. We also discuss the impact of pharmacological CBS inhibitors and silencing CBS in preclinical cancer models, supporting their potential as targeted cancer therapies.

2.
Front Endocrinol (Lausanne) ; 15: 1374715, 2024.
Article in English | MEDLINE | ID: mdl-39220365

ABSTRACT

Adipose tissue (AT) serves as an energy-capacitive organ and performs functions involving paracrine- and endocrine-mediated regulation via extracellular vesicles (EVs) secretion. Exosomes, a subtype of EVs, contain various bioactive molecules with regulatory effects, such as nucleic acids, proteins, and lipids. AT-derived exosomes (AT-exos) include exosomes derived from various cells in AT, including adipocytes, adipose-derived stem cells (ADSCs), macrophages, and endothelial cells. This review aimed to comprehensively evaluate the impacts of different AT-exos on the regulation of physiological and pathological processes. The contents and functions of adipocyte-derived exosomes and ADSC-derived exosomes are compared simultaneously, highlighting their similarities and differences. The contents of AT-exos have been shown to exert complex regulatory effects on local inflammation, tumor dynamics, and insulin resistance. Significantly, differences in the cargoes of AT-exos have been observed among diabetes patients, obese individuals, and healthy individuals. These differences could be used to predict the development of diabetes mellitus and as therapeutic targets for improving insulin sensitivity and glucose tolerance. However, further research is needed to elucidate the underlying mechanisms and potential applications of AT-exos.


Subject(s)
Adipose Tissue , Diabetes Mellitus , Exosomes , Inflammation , Neoplasms , Humans , Exosomes/metabolism , Adipose Tissue/metabolism , Inflammation/metabolism , Inflammation/pathology , Diabetes Mellitus/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Animals , Adipocytes/metabolism , Insulin Resistance , Obesity/metabolism
3.
Front Plant Sci ; 15: 1446561, 2024.
Article in English | MEDLINE | ID: mdl-39228829

ABSTRACT

Introduction: Programmed cell death (PCD) is a fundamental biological process crucial for plant development. Despite recent advancements in our understanding of PCD's molecular mechanisms, the intricate orchestration of this process within plant cells remains enigmatic. To address this knowledge gap, the present study focuses on Decaisnea insignis, a plant species renowned for its unique fruit anatomy, including laticiferous canals that secrete latex. While extensive anatomical studies have elucidated the structural features of these canals,molecular insights into their developmental regulation, particularly the involvement of PCD, are lacking. Methods: In this study, we sequenced the single-cell transcriptomes at two developmental stage of Decaisnea insignis fruit using the technology known as 10x Genomics (S1, S2). Using sequencing technology combining full- length RNA sequencing and single-nucleus RNA sequencing (snRNA-seq) in combination with ultrastructural analyses, our study revealed a cellular map of Decaisnea insignis fruit at the single-cell level and identified different cell types. Results: In particular, we identified a possible PCD-mediated cluster of Decaisnea insignis fruit lactiferous canals in epidermal cells and clarified the expression patterns of DiRD21A (a hydrolase) and DiLSD1 (a transcription factor), which may be closely related to the development of laticiferous canals in Decaisnea insignis fruits. Discussion: By integrating high-resolution gene expression profiling with visual insights into cellular transformations, we sought to more precisely characterize the regulatory role of PCD during the developmental formation of lactiferous canals in Decaisnea insignis fruit.

4.
BMC Genomics ; 25(1): 815, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39210263

ABSTRACT

BACKGROUND: The DELLA proteins, a class of GA signaling repressors, belong to the GRAS family of plant-specific nuclear proteins. Members of DELLA gene family encode transcriptional regulators with diverse functions in plant development and abiotic stress responses. To date, DELLAs have been identified in various plant species, such as Arabidopsis thaliana, Malus domestica, Populus trichocarpa, and other land plants. Most information of DELLA family genes was obtained from A. thaliana, whereas little is known about the DELLA gene family in blueberry. RESULTS: In this study, we identified three DELLA genes in blueberry (Vaccinium darrowii, VdDELLA) and provided a complete overview of VdDELLA gene family, describing chromosome localization, protein properties, conserved domain, motif organization, and phylogenetic analysis. Three VdDELLA members, containing two highly conserved DELLA domain and GRAS domain, were distributed across three chromosomes. Additionally, cis-acting elements analysis indicated that VdDELLA genes might play a critical role in blueberry developmental processes, hormone, and stress responses. Expression analysis using quantitative real-time PCR (qRT-PCR) revealed that all of three VdDELLA genes were differentially expressed across various tissues. VdDELLA2 was the most highly expressed VdDELLA in all denoted tissues, with a highest expression in mature fruits. In addition, all of the three VdDELLA genes actively responded to diverse abiotic stresses. Based on qRT-PCR analysis, VdDELLA2 might act as a key regulator in V. darrowii in response to salt stress, whereas VdDELLA1 and VdDELLA2 might play an essential role in cold stress response. Under drought stress, all of three VdDELLA genes were involved in mediating drought response. Furthermore, their transiently co-localization with nuclear markers in A. thaliana protoplasts demonstrated their transcriptional regulator roles. CONCLUSIONS: In this study, three VdDELLA genes were identified in V. darrowii genome. Three VdDELLA genes were closely related to the C. moschata DELLA genes, S. lycopersicum DELLA genes, and M. domestica DELLA genes, respectively, indicating their similar biological functions. Expression analysis indicated that VdDELLA genes were highly efficient in blueberry fruit development. Expression patterns under different stress conditions revealed the differentially expressed VdDELLA genes responding to salt, drought, and cold stress. Overall, these results enrich our understanding of evolutionary relationship and potential functions of VdDELLA genes, which provide valuable information for further studies on genetic improvement of the plant yield and plant resistance.


Subject(s)
Blueberry Plants , Gene Expression Regulation, Plant , Multigene Family , Phylogeny , Plant Proteins , Stress, Physiological , Blueberry Plants/genetics , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Genome, Plant , Gene Expression Profiling , Chromosomes, Plant/genetics
5.
Exp Cell Res ; 442(2): 114233, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39216662

ABSTRACT

Gasotransmitters are endogenous gaseous signaling molecules that can freely pass through cell membranes and transmit signals between cells, playing multiple roles in cell signal transduction. Due to extensive and ongoing research in this field, we have successfully identified many gasotransmitters so far, among which nitric oxide, carbon monoxide, and hydrogen sulfide are best studied. Gasotransmitters are implicated in various diseases related to necroptosis, such as cardiovascular diseases, inflammation, ischemia-reperfusion, infectious diseases, and neurological diseases. However, the mechanisms of their effects on necroptosis are not fully understood. This review focuses on endogenous gasotransmitter synthesis and metabolism and discusses their roles in necroptosis, aiming to offer new insights for the therapeutic approaches to necroptosis-associated diseases.

6.
Talanta ; 279: 126576, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39018952

ABSTRACT

Herein, we developed a platinum-copper nano-enzyme-linked immunosorbent assay (NLISA) based split diagnostic platform for the ultrasensitive detection of cardiac troponin I (cTnI). The PtCu nanozyme synthesized by one-pot synthesis exhibited ultra-high peroxidase-like activity (35.17 U mg-1), which was about 4.5 times higher than that of the unmodified Pt nanozyme (8.83 U mg-1). Due to the efficient peroxidase-like activity of the copper-platinum complexed nanozyme, transduction and sequential amplification of cTnI biological signals were achieved in combination with a liposome-embedded amplification strategy. The encapsulation efficiency was calculated by introducing a liposomal bilayer model, which showed that the introduction of a single liposomal molecule could amplify the signal up to 870-fold, thus promising a high sensitivity test. Notably, the dynamic response of cTnI was in the range of 0.1-5000 pg mL-1 with an ultra-low detection limit (0.048 pg mL-1). The developed NLISA analysis system provides a new way to discover efficient and sensitive alternatives to ELISA kits, which can meet the practical needs of community healthcare testing conditions and rapid testing in hospitals.


Subject(s)
Copper , Liposomes , Myocardial Infarction , Platinum , Troponin I , Platinum/chemistry , Myocardial Infarction/diagnosis , Myocardial Infarction/blood , Copper/chemistry , Liposomes/chemistry , Troponin I/blood , Troponin I/analysis , Humans , Enzyme-Linked Immunosorbent Assay , Limit of Detection , Metal Nanoparticles/chemistry , Immunoassay/methods
7.
Sensors (Basel) ; 24(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39001138

ABSTRACT

Accurate and prompt determination of fire types is essential for effective firefighting and reducing damage. However, traditional methods such as smoke detection, visual analysis, and wireless signals are not able to identify fire types. This paper introduces FireSonic, an acoustic sensing system that leverages commercial speakers and microphones to actively probe the fire using acoustic signals, effectively identifying fire types. By incorporating beamforming technology, FireSonic first enhances signal clarity and reliability, thus mitigating signal attenuation and distortion. To establish a reliable correlation between fire type and sound propagation, FireSonic quantifies the heat release rate (HRR) of flames by analyzing the relationship between fire-heated areas and sound wave propagation delays. Furthermore, the system extracts spatiotemporal features related to fire from channel measurements. The experimental results demonstrate that FireSonic attains an average fire type classification accuracy of 95.5% and a detection latency of less than 400 ms, satisfying the requirements for real-time monitoring. This system significantly enhances the formulation of targeted firefighting strategies, boosting fire response effectiveness and public safety.

8.
NPJ Parkinsons Dis ; 10(1): 115, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38866758

ABSTRACT

Approximately 90% of Parkinson's patients (PD) suffer from dysarthria. However, there is currently a lack of research on acoustic measurements and speech impairment patterns among Mandarin-speaking individuals with PD. This study aims to assess the diagnosis and disease monitoring possibility in Mandarin-speaking PD patients through the recommended speech paradigm for non-tonal languages, and to explore the anatomical and functional substrates. We examined total of 160 native Mandarin-speaking Chinese participants consisting of 80 PD patients, 40 healthy controls (HC), and 40 MRI controls. We screened the optimal acoustic metric combination for PD diagnosis. Finally, we used the objective metrics to predict the patient's motor status using the Naïve Bayes model and analyzed the correlations between cortical thickness, subcortical volumes, functional connectivity, and network properties. Comprehensive acoustic screening based on prosodic, articulation, and phonation abnormalities allows differentiation between HC and PD with an area under the curve of 0.931. Patients with slowed reading exhibited atrophy of the fusiform gyrus (FDR p = 0.010, R = 0.391), reduced functional connectivity between the fusiform gyrus and motor cortex, and increased nodal local efficiency (NLE) and nodal efficiency (NE) in bilateral pallidum. Patients with prolonged pauses demonstrated atrophy in the left hippocampus, along with decreased NLE and NE. The acoustic assessment in Mandarin proves effective in diagnosis and disease monitoring for Mandarin-speaking PD patients, generalizing standardized acoustic guidelines beyond non-tonal languages. The speech impairment in Mandarin-speaking PD patients not only involves motor aspects of speech but also encompasses the cognitive processes underlying language generation.

9.
Adv Life Course Res ; 61: 100628, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38917686

ABSTRACT

The proportions of adults reaching midlife without having children have been rising rapidly across the globe, particularly in Asia. However, little is known about the pathways to permanent childlessness within the region's childless population. This study utilized latent class analysis (LCA) to typologize pathways to childlessness based on dynamic characteristics of multiple life domains (i.e., partnership, education, and occupation) among 489 childless Singaporeans aged 50 and above from a 2022 nationwide survey. Additionally, we utilized multinomial logistic regressions to examine the sociodemographic correlates of pathway profiles and Shannon's entropy index to assess the heterogeneity in pathways to childlessness among successive cohorts. Results revealed five distinct profiles of pathways to childlessness: the Never-Married Semi-Professionals, the Low-Flex Blue-Collars, the Highly Educated Professionals, the Ever-Married Semi-Professionals, and the Flexible Blue-Collars. These pathway profiles were significantly associated with sociodemographic characteristics such as gender and family background. Women's pathways to childlessness were more standardized and heavily influenced by partnership characteristics, compared to those of men. The childless from privileged family background were less likely to follow pathways characterized by disadvantageous education and occupational status. There were also rising trends of voluntary childlessness among married childless individuals and increasing heterogeneity in pathways to childlessness across successive birth cohorts. In sum, our findings are consistent with some of the predictions of the Second Demographic Transition theory, suggesting that Singapore may be experiencing a demographic transition characterized by rising childlessness, decoupling of marriage and childbearing, and de-standardization of the life course.


Subject(s)
Latent Class Analysis , Humans , Singapore , Female , Male , Middle Aged , Aged , Socioeconomic Factors , Educational Status , Sociodemographic Factors , Reproductive Behavior/statistics & numerical data , Reproductive Behavior/psychology , Surveys and Questionnaires
10.
Sci Total Environ ; 931: 172993, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38719056

ABSTRACT

Inflammation is a key mechanism underlying the adverse health effects of exposure to fine particulate matter (PM2.5). Bioactive lipids in the arachidonic acid (ARA) pathway are important in the regulation of inflammation and are reportedly altered by PM2.5 exposure. Ceramide-1-phosphate (C1P), a class of sphingolipids, is required to initiate ARA metabolism. We examined the role of C1P in the alteration of ARA metabolism after PM2.5 exposure and explored whether changes in the ARA pathway promoted systemic inflammation based on a panel study involving 112 older adults in Beijing, China. Ambient PM2.5 levels were continuously monitored at a fixed station from 2013 to 2015. Serum cytokine levels were measured to assess systemic inflammation. Multiple bioactive lipids in the ARA pathway and three subtypes of C1P were quantified in blood samples. Mediation analyses were performed to test the hypotheses. We observed that PM2.5 exposure was positively associated with inflammatory cytokines and the three subtypes of C1P. Mediation analyses showed that C1P significantly mediated the associations of ARA and 5, 6-dihydroxyeicosatrienoic acid (5, 6-DHET), an ARA metabolite, with PM2.5 exposure. ARA, 5, 6-DHET, and leukotriene B4 mediated systemic inflammatory response to PM2.5 exposure. For example, C1P C16:0 (a subtype of C1P) mediated a 12.9 % (95 % confidence interval: 3.7 %, 32.5 %) increase in ARA associated with 3-day moving average PM2.5 exposure, and ARA mediated a 27.1 % (7.8 %, 61.2 %) change in interleukin-8 associated with 7-day moving average PM2.5 exposure. Our study indicates that bioactive lipids in the ARA and sphingolipid metabolic pathways may mediate systemic inflammation after PM2.5 exposure.


Subject(s)
Air Pollutants , Inflammation , Particulate Matter , Particulate Matter/toxicity , Humans , Inflammation/chemically induced , Air Pollutants/toxicity , Male , Environmental Exposure/statistics & numerical data , Environmental Exposure/adverse effects , Beijing , Female , Aged , Cytokines/blood , Cytokines/metabolism , Arachidonic Acid/metabolism , Ceramides , Middle Aged , Lipids/blood
11.
BMC Cancer ; 24(1): 601, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760826

ABSTRACT

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a significant global health issue, suspected to elevate the risk for various cancers. This study sought to discern whether COPD serves as a risk marker or a causative factor for prevalent cancers. METHODS: We employed univariable MR (UVMR) analyses to investigate the causal relationship between COPD and the top ten common cancers. Sensitivity analyses were performed to validate the main findings. Multivariable MR (MVMR) and two-step MR analyses were also conducted. False-discovery-rate (FDR) was used to correct multiple testing bias. RESULTS: The UVMR analysis demonstrated notable associations between COPD and lung cancer (odds ratio [OR] = 1.42, 95%CI 1.15-1.77, FDR = 6.37 × 10-3). This relationship extends to lung cancer subtypes such as squamous cell carcinoma (LUSC), adenocarcinoma (LUAD), and small cell lung cancer (SCLC). A tentative link was also identified between COPD and bladder cancer (OR = 1.53, 95%CI 1.03-2.28, FDR = 0.125). No significant associations were found between COPD and other types of cancer. The MVMR analysis that adjusted for smoking, alcohol drinking, and body mass index did not identify any significant causal relationships between COPD and either lung or bladder cancer. However, the two-step MR analysis indicates that COPD mediated 19.2% (95% CI 12.7-26.1%), 36.1% (24.9-33.2%), 35.9% (25.7-34.9%), and 35.5% (26.2-34.8%) of the association between smoking and overall lung cancer, as well as LUAD, LUSC, and SCLC, respectively. CONCLUSIONS: COPD appears to act more as a risk marker than a direct cause of prevalent cancers. Importantly, it partially mediates the connection between smoking and lung cancer, underscoring its role in lung cancer prevention strategies.


Subject(s)
Lung Neoplasms , Mendelian Randomization Analysis , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/genetics , Lung Neoplasms/epidemiology , Lung Neoplasms/genetics , Lung Neoplasms/etiology , Risk Factors , Neoplasms/epidemiology , Neoplasms/genetics , Smoking/adverse effects , Smoking/epidemiology , Male , Odds Ratio
12.
Front Med ; 18(3): 484-498, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38743133

ABSTRACT

lncRNA ZNF593 antisense (ZNF593-AS) transcripts have been implicated in heart failure through the regulation of myocardial contractility. The decreased transcriptional activity of ZNF593-AS has also been detected in cardiac hypertrophy. However, the function of ZNF593-AS in cardiac hypertrophy remains unclear. Herein, we report that the expression of ZNF593-AS reduced in a mouse model of left ventricular hypertrophy and cardiomyocytes in response to treatment with the hypertrophic agonist phenylephrine (PE). In vivo, ZNF593-AS aggravated pressure overload-induced cardiac hypertrophy in knockout mice. By contrast, cardiomyocyte-specific transgenic mice (ZNF593-AS MHC-Tg) exhibited attenuated TAC-induced cardiac hypertrophy. In vitro, vector-based overexpression using murine or human ZNF593-AS alleviated PE-induced myocyte hypertrophy, whereas GapmeR-induced inhibition aggravated hypertrophic phenotypes. By using RNA-seq and gene set enrichment analyses, we identified a link between ZNF593-AS and oxidative phosphorylation and found that mitofusin 2 (Mfn2) is a direct target of ZNF593-AS. ZNF593-AS exerts an antihypertrophic effect by upregulating Mfn2 expression and improving mitochondrial function. Therefore, it represents a promising therapeutic target for combating pathological cardiac remodeling.


Subject(s)
Cardiomegaly , GTP Phosphohydrolases , Myocytes, Cardiac , RNA, Long Noncoding , Up-Regulation , Animals , Humans , Male , Mice , Cardiomegaly/genetics , Cardiomegaly/metabolism , Disease Models, Animal , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Myocytes, Cardiac/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Ventricular Remodeling/genetics
13.
Med Eng Phys ; 128: 104171, 2024 06.
Article in English | MEDLINE | ID: mdl-38789216

ABSTRACT

Bradykinesia, a core symptom of motor disorders in Parkinson's disease (PD), is a major criterion for screening early PD patients in clinical practice. Currently, many studies have proposed automatic assessment schemes for bradykinesia in PD. However, existing schemes suffer from problems such as dependence on professional equipment, single evaluation tasks, difficulty in obtaining samples and low accuracy. This paper proposes a manual feature extraction- and neural network-based method to evaluate bradykinesia, effectively solving the problem of a small sample size. This method can automatically assess finger tapping (FT), hand movement (HM), toe tapping (TT) and bilateral foot sensitivity tasks (LA) through a unified model. Data were obtained from 120 individuals, including 93 patients with Parkinson's disease and 27 age- and sex-matched normal controls (NCs). Manual feature extraction and Attention Time Series Two-stream Networks (ATST-Net) were used for classification. Accuracy rates of 0.844, 0.819, 0.728, and 0.768 were achieved for FT, HM, TT, and LA, respectively. To our knowledge, this study is the first to simultaneously evaluate the upper and lower limbs using a unified model that has significant advantages in both model training and transfer learning.


Subject(s)
Lower Extremity , Neural Networks, Computer , Parkinson Disease , Upper Extremity , Humans , Parkinson Disease/physiopathology , Parkinson Disease/diagnosis , Lower Extremity/physiopathology , Male , Female , Upper Extremity/physiopathology , Middle Aged , Aged
14.
BMC Genomics ; 25(1): 434, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38693497

ABSTRACT

BACKGROUND: WOX genes are a class of plant-specific transcription factors. The WUSCHEL-related homeobox (WOX) family is a member of the homeobox transcription factor superfamily. Previous studies have shown that WOX members play important roles in plant growth and development. However, studies of the WOX gene family in blueberry plants have not been reported. RESULTS: In order to understand the biological function of the WOX gene family in blueberries, bioinformatics were used methods to identify WOX gene family members in the blueberry genome, and analyzed the basic physical and chemical properties, gene structure, gene motifs, promoter cis-acting elements, chromosome location, evolutionary relationships, expression pattern of these family members and predicted their functions. Finally, 12 genes containing the WOX domain were identified and found to be distributed on eight chromosomes. Phylogenetic tree analysis showed that the blueberry WOX gene family had three major branches: ancient branch, middle branch, and WUS branch. Blueberry WOX gene family protein sequences differ in amino acid number, molecular weight, isoelectric point and hydrophobicity. Predictive analysis of promoter cis-acting elements showed that the promoters of the VdWOX genes contained abundant light response, hormone, and stress response elements. The VdWOX genes were induced to express in both stems and leaves in response to salt and drought stress. CONCLUSIONS: Our results provided comprehensive characteristics of the WOX gene family and important clues for further exploration of its role in the growth, development and resistance to various stress in blueberry plants.


Subject(s)
Blueberry Plants , Phylogeny , Promoter Regions, Genetic , Blueberry Plants/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Genome, Plant , Multigene Family , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Stress, Physiological/genetics , Chromosomes, Plant/genetics , Evolution, Molecular , Computational Biology/methods
15.
AJNR Am J Neuroradiol ; 45(8): 1106-1115, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-38471785

ABSTRACT

BACKGROUND AND PURPOSE: The efficacy of long-term chronic subthalamic nucleus deep brain stimulation (STN-DBS) in treating Parkinson disease (PD) exhibits substantial variability among individuals. The preoperative identification of suitable deep brain stimulation (DBS) candidates through predictive means becomes crucial. Our study aims to investigate the predictive value of characterizing individualized structural covariance networks for long-term efficacy of DBS, offering patients a precise and cost-effective preoperative screening tool. MATERIALS AND METHODS: We included 138 patients with PD and 40 healthy controls. We developed individualized structural covariance networks from T1-weighted images utilizing network template perturbation, and computed the networks' topological characteristics. Patients were categorized according to their long-term motor improvement following STN-DBS. Intergroup analyses were conducted on individual network edges and topological indices, alongside correlation analyses with long-term outcomes for the entire patient cohort. Finally, machine learning algorithms were employed for regression and classification to predict post-DBS motor improvement. RESULTS: Among the patients with PD, 6 edges (left middle frontal and left caudate nucleus, right olfactory and right insula, left superior medial frontal gyrus and right insula, right middle frontal and left paracentral lobule, right middle frontal and cerebellum, left lobule VIIb of the cerebellum and the vermis of the cerebellum) exhibited significant results in intergroup comparisons and correlation analyses. Increased degree centrality and local efficiency of the cerebellum, parahippocampal gyrus, and postcentral gyrus were associated with DBS improvement. A regression model constructed from these 6 edges revealed a significant correlation between predicted and observed changes in the unified PD rating scale (R = 0.671, P < .001) and receiver operating characteristic analysis demonstrated an area under the curve of 0.802, effectively distinguishing between patients with good and moderate improvement post-DBS. CONCLUSIONS: Our findings reveal the link between individual structural covariance network fingerprints in patients with PD and long-term motor outcome following STN-DBS. Additionally, binary and continuous cerebellum-basal ganglia-frontal structural covariance network edges have emerged as potential predictive biomarkers for DBS motor outcome.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Humans , Parkinson Disease/diagnostic imaging , Parkinson Disease/therapy , Parkinson Disease/physiopathology , Deep Brain Stimulation/methods , Male , Female , Subthalamic Nucleus/diagnostic imaging , Subthalamic Nucleus/physiopathology , Middle Aged , Treatment Outcome , Aged , Magnetic Resonance Imaging/methods , Machine Learning
16.
Environ Sci Technol ; 58(13): 5695-5704, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38502526

ABSTRACT

The limited research on volatile organic compounds (VOCs) has not taken into account the interactions between constituents. We used the weighted quantile sum (WQS) model and generalized linear model (GLM) to quantify the joint effects of ambient VOCs exposome and identify the substances that play key roles. For a 0 day lag, a quartile increase of WQS index for n-alkanes, iso/anti-alkanes, aromatic, halogenated aromatic hydrocarbons, halogenated saturated chain hydrocarbons, and halogenated unsaturated chain hydrocarbons were associated with 1.09% (95% CI: 0.13, 2.06%), 0.98% (95% CI: 0.22, 1.74%), 0.92% (95% CI: 0.14, 1.69%), 1.03% (95% CI: 0.14, 1.93%), 1.69% (95% CI: 0.48, 2.91%), and 1.85% (95% CI: 0.93, 2.79%) increase in cardiovascular disease (CVD) emergency hospital admissions, respectively. Independent effects of key substances on CVD-related emergency hospital admissions were also reported. In particular, an interquartile range increase in 1,1,1-trichloroethane, methylene chloride, styrene, and methylcyclohexane is associated with a greater risk of CVD-associated emergency hospital admissions [3.30% (95% CI: 1.93, 4.69%), 3.84% (95% CI: 1.21, 6.53%), 5.62% (95% CI: 1.35, 10.06%), 8.68% (95% CI: 3.74, 13.86%), respectively]. We found that even if ambient VOCs are present at a considerably low concentration, they can cause cardiovascular damage. This should prompt governments to establish and improve concentration standards for VOCs and their sources. At the same time, policies should be introduced to limit VOCs emission to protect public health.


Subject(s)
Air Pollutants , Cardiovascular Diseases , Exposome , Hydrocarbons, Halogenated , Volatile Organic Compounds , Humans , Volatile Organic Compounds/analysis , Air Pollutants/analysis , Environmental Monitoring , Cardiovascular Diseases/epidemiology , Hydrocarbons , Hospitals
17.
Sci Total Environ ; 927: 172052, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38554972

ABSTRACT

Earthquake prediction and disaster assessment in tectonically active regions require a continuous and complete regional seismic archive, which is commonly difficult to obtain, especially for prehistoric records. Here, high-resolution analysis of the sedimentary sequence from Lake Ebinur in Xinjiang revealed a detailed history of environment evolution since 32 ka ago. Both the Cl content and ultrafine proportion revealed the changing climate: the climate was relatively dry with low lake-water volumes from 32 to 12 ka, while the climate became warmer and wetter since 12 ka. In addition, eight earthquakes were identified by comprehensive analysis of grain size and geochemical element proxies, showing more than two seismic supercycles, with gaps of ∼10.4 ka; these gaps are much larger than those inferred previously (∼4-7 ka). Notably, these seismic events exhibited a pattern of mutual transmittance between the BoA and Jinghenan faults. Such fault interaction can occur in the Lake Ebinur area because it is dominated by weak lithosphere in which strain is easily accumulated and released; the interaction can also be attributed to the unique spatial distribution and immature nature of both faults. Combined with trenching investigations, our high-resolution analysis of lacustrine sediments can reveal a complete history of tectonic activity, which can efficiently serve regional earthquake prediction and disaster assessment.

18.
Environ Pollut ; 349: 123851, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38527582

ABSTRACT

Due to global climate change and intensifying anthropogenic pollution, China confronts the dual challenge of controlling particulate matter 2.5 µm (PM2.5) pollution and reducing carbon emissions. Quantifying the characteristics of PM2.5 concentrations and CO2 emissions, as well as identifying the driving factors and synergistic effects of PM2.5 reduction and CO2 mitigation, are crucial steps in promoting sustainable urban development and achieving the Sustainable Development Goals (SDGs) in China. In this study, we selected 168 cities as our case-study, and quantified spatial characteristics of PM2.5 concentrations and CO2 emissions from 2015 to 2020 in China. Then we analyzed driving factors affecting the spatial heterogeneity of PM2.5 reduction and CO2 mitigation applying Multi-scale Geographically Weighted Regression (MGWR) model. By employing coupling coordination degree (CCD) model, we further detected the spatiotemporal evolution patterns of the synergistic effects between PM2.5 reduction and CO2 mitigation in key Chinese cities. The result showed that: (a) From 2015 to 2020, PM2.5 concentrations experienced a significant reduction from 59.78 µg/m3 to 49.83 µg/m3, while CO2 emissions increased from 44.88 × 106 t in 2015 to 45.77 × 106 t in 2020; (b) Green economy efficiency (gee), government attention (gover), and environmental regulation (envir) demonstrate the most pronounced synergistic effect on pollution reduction and carbon mitigation, with the drivers exhibiting obvious spatial heterogeneity; (c) The overall coupling coordination level of PM2.5 pollution and CO2 emissions in China dropped from 0.49 in 2015 to 0.46 in 2020, and the coupling coordination grade in northern cities was notably higher than that in southern cities. The result enhances our understanding of spatiotemporal patterns of synergistic effects between PM2.5 reduction and CO2 mitigation, and provides the theoretical basis for policy decision-making to realize pollution decrease and carbon neutral and regional environment governance.


Subject(s)
Air Pollutants , Air Pollution , Carbon Dioxide , Environmental Monitoring , Particulate Matter , China , Air Pollution/statistics & numerical data , Air Pollutants/analysis , Particulate Matter/analysis , Carbon Dioxide/analysis , Cities , Climate Change , Carbon/analysis
20.
Neurosurgery ; 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38391200

ABSTRACT

BACKGROUND AND OBJECTIVES: Grading systems, including the novel brain arteriovenous malformation endovascular grading scale (NBAVMES) and arteriovenous malformation embocure score (AVMES), predict embolization outcomes based on arteriovenous malformation (AVM) morphological features. The influence of hemodynamics on embolization outcomes remains unexplored. In this study, we investigated the relationship between hemodynamics and embolization outcomes. METHODS: We conducted a retrospective study of 99 consecutive patients who underwent transarterial embolization at our institution between 2012 and 2018. Hemodynamic features of AVMs were derived from pre-embolization digital subtraction angiography sequences using quantitative digital subtraction angiography. Multivariate logistic regression analysis was performed to determine the significant factors associated with embolization outcomes. RESULTS: Complete embolization (CE) was achieved in 17 (17.2%) patients, and near-complete embolization was achieved in 18 (18.2%) patients. A slower transnidal relative velocity (TRV, odds ratio [OR] = 0.71, P = .002) was significantly associated with CE. Moreover, higher stasis index of the drainage vein (OR = 16.53, P = .023), shorter transnidal time (OR = 0.15, P = .013), and slower TRV (OR = 0.9, P = .049) were significantly associated with complete or near-complete embolization (C/nCE). The area under the receiver operating characteristic curve for predicting CE was 0.87 for TRV, 0.72 for NBAVMES scores (ρ = 0.287, P = .004), and 0.76 for AVMES scores. The area under the receiver operating characteristic curve for predicting C/nCE was 0.77 for TRV, 0.61 for NBAVMES scores, and 0.75 for AVMES scores. Significant Spearman correlation was observed between TRV and NBAVMES scores and AVMES scores (ρ = 0.512, P < .001). CONCLUSION: Preoperative hemodynamic factors have the potential to predict the outcomes of AVM embolization. A higher stasis index of the drainage vein, slower TRV, and shorter transnidal time may indicate a moderate blood flow status or favorable AVM characteristics that can potentially facilitate embolization.

SELECTION OF CITATIONS
SEARCH DETAIL