Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropsychopharmacology ; 48(9): 1318-1327, 2023 08.
Article in English | MEDLINE | ID: mdl-37041207

ABSTRACT

After drug withdrawal, a key factor triggering relapse is progressively intensified cue-associated drug craving, termed incubation of drug craving. After withdrawal from cocaine self-administration, incubation of cocaine craving develops more reliably in rats compared to mice. This species difference provides an opportunity to determine rat-specific cellular adaptations, which may constitute the critical mechanisms that contribute to incubated cocaine craving in humans. Expression of incubated cocaine seeking is mediated, in part, by cocaine-induced cellular adaptations in medium spiny neurons (MSNs) within the nucleus accumbens (NAc). In rats, decreased membrane excitability in NAc MSNs is a prominent cellular adaptation, which is induced after cocaine self-administration and lasts throughout prolonged drug withdrawal. Here, we show that, similar to rats, mice exhibit decreased membrane excitability of dopamine D1 receptor (D1)-, but not D2 (D2)-, expressing MSNs within the NAc shell (NAcSh) after 1 d withdrawal from cocaine self-administration. However, in contrast to rats, this membrane adaptation does not persist in mice, diminishing after 45-d withdrawal. We also find that restoring the membrane excitability of NAcSh MSNs after cocaine withdrawal decreases cocaine seeking in rats. This suggests that drug-induced membrane adaptations are essential for behavioral expression of incubated cocaine craving. In mice, however, experimentally inducing hypoactivity of D1 NAcSh MSNs after cocaine withdrawal does not alter cocaine seeking, suggesting that MSN hypo-excitability alone is insufficient to increase cocaine seeking. Together, our results demonstrate an overall permissive role of cocaine-induced hypoactivity of NAcSh MSNs in gating increased cocaine seeking after prolonged cocaine withdrawal.


Subject(s)
Cocaine-Related Disorders , Cocaine , Substance Withdrawal Syndrome , Humans , Rats , Mice , Animals , Craving , Nucleus Accumbens/metabolism , Neurons/metabolism , Cocaine-Related Disorders/metabolism , Receptors, Dopamine/metabolism , Substance Withdrawal Syndrome/metabolism
2.
J Neurosci ; 41(9): 1996-2011, 2021 03 03.
Article in English | MEDLINE | ID: mdl-33436529

ABSTRACT

Cocaine experience generates AMPA receptor (AMPAR)-silent synapses in the nucleus accumbens (NAc), which are thought to be new synaptic contacts enriched in GluN2B-containing NMDA receptors (NMDARs). After drug withdrawal, some of these synapses mature by recruiting AMPARs, strengthening the newly established synaptic transmission. Silent synapse generation and maturation are two consecutive cellular steps through which NAc circuits are profoundly remodeled to promote cue-induced cocaine seeking after drug withdrawal. However, the basic cellular processes that mediate these two critical steps remains underexplored. Using a combination of electrophysiology, viral-mediated gene transfer, and confocal imaging in male rats as well as knock-in (KI) mice of both sexes, our current study characterized the dynamic roles played by AMPARs and NMDARs in generation and maturation of silent synapses on NAc medium spiny neurons after cocaine self-administration and withdrawal. We report that cocaine-induced generation of silent synapses not only required synaptic insertion of GluN2B-containing NMDARs, but also, counterintuitively, involved insertion of AMPARs, which subsequently internalized, resulting in the AMPAR-silent state on withdrawal day 1. Furthermore, GluN2B NMDARs functioned to maintain these cocaine-generated synapses in the AMPAR-silent state during drug withdrawal, until they were replaced by nonGluN2B NMDARs, a switch that allowed AMPAR recruitment and maturation of silent synapses. These results reveal dynamic interactions between AMPARs and NMDARs during the generation and maturation of silent synapses after cocaine experience and provide a mechanistic basis through which new synaptic contacts and possibly new neural network patterns created by these synapses can be manipulated for therapeutic benefit.SIGNIFICANCE STATEMENT Studies over the past decade reveal a critical role of AMPA receptor-silent, NMDA receptor-containing synapses in forming cocaine-related memories that drive cocaine relapse. However, it remains incompletely understood how AMPA and NMDA receptors traffic at these synapses during their generation and maturation. The current study characterizes a two-step AMPA receptor trafficking cascade that contributes to the generation of silent synapses in response to cocaine experience, and a two-step NMDA receptor trafficking cascade that contributes to the maturation of these synapses after cocaine withdrawal. These results depict a highly regulated cellular procedure through which nascent glutamatergic synapses are generated in the adult brain after drug experience and provide significant insight into the roles of glutamate receptors in synapse formation and maturation.


Subject(s)
Cocaine/pharmacology , Protein Transport/drug effects , Receptors, AMPA/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Synapses/drug effects , Animals , Cocaine-Related Disorders/metabolism , Dopamine Uptake Inhibitors/pharmacology , Female , Male , Mice , Neurons/drug effects , Neurons/metabolism , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Protein Transport/physiology , Rats , Rats, Sprague-Dawley , Synapses/metabolism
3.
Pain ; 162(5): 1322-1333, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33230002

ABSTRACT

ABSTRACT: Pain experience can change the central processing of nociceptive inputs, resulting in persistent allodynia and hyperalgesia. However, the underlying circuit mechanisms remain underexplored. Here, we focus on pain-induced remodeling of the projection from the mediodorsal thalamus (MD) to the anterior cingulate cortex (ACC), a projection that relays spinal nociceptive input for central processing. Using optogenetics combined with slice electrophysiology, we detected in male mice that 7 days of chronic constriction injury (CCI; achieved by loose ligation of the sciatic nerve) generated AMPA receptor (AMPAR)-silent glutamatergic synapses within the contralateral MD-to-ACC projection. AMPAR-silent synapses are typically GluN2B-enriched nascent glutamatergic synapses that mediate the initial formation of neural circuits during early development. During development, some silent synapses mature and become "unsilenced" by recruiting and stabilizing AMPARs, consolidating and strengthening the newly formed circuits. Consistent with these synaptogenic features, pain-induced generation of silent synapses was accompanied by increased densities of immature dendritic spines in ACC neurons and increased synaptic weight of GluN2B-containing NMDA receptors (NMDARs) in the MD-to-ACC projection. After prolonged (∼30 days) CCI, injury-generated silent synapses declined to low levels, which likely resulted from a synaptic maturation process that strengthens AMPAR-mediated MD-to-ACC transmission. Consistent with this hypothesis, viral-mediated knockdown of GluN2B in ACC neurons, which prevented pain-induced generation of silent synapses and silent synapse-mediated strengthening of MD-to-ACC projection after prolonged CCI, prevented the development of allodynia. Taken together, our results depict a silent synapse-mediated mechanism through which key supraspinal neural circuits that regulate pain sensitivity are remodeled to induce allodynia and hyperalgesia.


Subject(s)
Gyrus Cinguli , Neuralgia , Animals , Gyrus Cinguli/metabolism , Male , Mice , Receptors, AMPA/metabolism , Synapses/metabolism , Thalamus
4.
Biol Psychiatry ; 89(4): 386-397, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33069367

ABSTRACT

BACKGROUND: Synaptogenesis is essential in forming new neurocircuits during development, and this is mediated in part by astrocyte-released thrombospondins (TSPs) and activation of their neuronal receptor, α2δ-1. Here, we show that this developmental synaptogenic mechanism is utilized during cocaine experience to induce spinogenesis and the generation of AMPA receptor-silent glutamatergic synapses in the adult nucleus accumbens shell (NAcSh). METHODS: Using multidisciplinary approaches including astrocyte Ca2+ imaging, genetic mouse lines, viral-mediated gene transfer, and operant behavioral procedures, we monitor the response of NAcSh astrocytes to cocaine administration and examine the role of astrocytic TSP-α2δ-1 signaling in cocaine-induced silent synapse generation as well as the behavioral impact of astrocyte-mediated synaptogenesis and silent synapse generation. RESULTS: Cocaine administration acutely increases Ca2+ events in NAcSh astrocytes, while decreasing astrocytic Ca2+ blocks cocaine-induced generation of silent synapses. Furthermore, knockout of TSP2, or pharmacological inhibition or viral-mediated knockdown of α2δ-1, prevents cocaine-induced generation of silent synapses. Moreover, disrupting TSP2-α2δ-1-mediated spinogenesis and synapse generation in NAcSh decreases cue-induced cocaine seeking after withdrawal from cocaine self-administration and cue-induced reinstatement of cocaine seeking after drug extinction. CONCLUSIONS: These results establish that silent synapses are generated by an astrocyte-mediated synaptogenic mechanism in response to cocaine experience and embed critical cue-associated memory traces that promote cocaine relapse.


Subject(s)
Cocaine-Related Disorders , Cocaine , Animals , Astrocytes , Cocaine/pharmacology , Mice , Nucleus Accumbens , Rats , Rats, Sprague-Dawley , Self Administration , Synapses
SELECTION OF CITATIONS
SEARCH DETAIL
...