Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Dev Cell ; 59(6): 695-704.e5, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38359835

ABSTRACT

Primordial germ cells (PGCs) are the earliest precursors of the gametes. During normal development, PGCs only give rise to oocytes or spermatozoa. However, PGCs can acquire pluripotency in vitro by forming embryonic germ (EG) cells and in vivo during teratocarcinogenesis. Classic embryological experiments directly assessed the potency of PGCs by injection into the pre-implantation embryo. As no contribution to embryos or adult mice was observed, PGCs have been described as unipotent. Here, we demonstrate that PGCs injected into 8-cell embryos can initially survive, divide, and contribute to the developing inner cell mass. Apoptosis-deficient PGCs exhibit improved survival in isolated epiblasts and can form naive pluripotent embryonic stem cell lines. However, contribution to the post-implantation embryo is limited, with no functional incorporation observed. In contrast, PGC-like cells show an extensive contribution to mid-gestation chimeras. We thus propose that PGC formation in vivo establishes a latent form of pluripotency that restricts chimera contribution.


Subject(s)
Germ Cells , Pluripotent Stem Cells , Male , Mice , Animals , Germ Cells/metabolism , Embryonic Stem Cells/metabolism , Pluripotent Stem Cells/metabolism , Spermatozoa , Germ Layers , Cell Differentiation
2.
Adv Radiat Oncol ; 9(3): 101399, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38292890

ABSTRACT

Purpose: The emerging online adaptive radiation therapy (OART) treatment strategy based on cone beam computed tomography allows for real-time replanning according to a patient's current anatomy. However, implementing this procedure requires a new approach across the patient's care path and monitoring of the "black box" adaptation process. This study identifies high-risk failure modes (FMs) associated with AI-driven OART and proposes an interdisciplinary workflow to mitigate potential medical errors from highly automated processes, enhance treatment efficiency, and reduce the burden on clinicians. Methods and Materials: An interdisciplinary working group was formed to identify safety concerns in each process step using failure mode and effects analysis (FMEA). Based on the FMEA results, the team designed standardized procedures and safety checklists to prevent errors and ensure successful task completion. The Risk Priority Numbers (RPNs) for the top twenty FMs were calculated before and after implementing the proposed workflow to evaluate its effectiveness. Three hundred seventy-four adaptive sessions across 5 treatment sites were performed, and each session was evaluated for treatment safety and FMEA assessment. Results: The OART workflow has 4 components, each with 4, 8, 13, and 4 sequentially executed tasks and safety checklists. Site-specific template preparation, which includes disease-specific physician directives and Intelligent Optimization Engine template testing, is one of the new procedures introduced. The interdisciplinary workflow significantly reduced the RPNs of the high-risk FMs, with an average decrease of 110 (maximum reduction of 305.5 and minimum reduction of 27.4). Conclusions: This study underscores the importance of addressing high-risk FMs associated with AI-driven OART and emphasizes the significance of safety measures in its implementation. By proposing a structured interdisciplinary workflow and integrated checklists, the study provides valuable insights into ensuring the safe and efficient delivery of OART while facilitating its effective integration into clinical practice.

3.
Nature ; 621(7980): 821-829, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37586410

ABSTRACT

Endothelial cells line the blood and lymphatic vasculature, and act as an essential physical barrier, control nutrient transport, facilitate tissue immunosurveillance and coordinate angiogenesis and lymphangiogenesis1,2. In the intestine, dietary and microbial cues are particularly important in the regulation of organ homeostasis. However, whether enteric endothelial cells actively sense and integrate such signals is currently unknown. Here we show that the aryl hydrocarbon receptor (AHR) acts as a critical node for endothelial cell sensing of dietary metabolites in adult mice and human primary endothelial cells. We first established a comprehensive single-cell endothelial atlas of the mouse small intestine, uncovering the cellular complexity and functional heterogeneity of blood and lymphatic endothelial cells. Analyses of AHR-mediated responses at single-cell resolution identified tissue-protective transcriptional signatures and regulatory networks promoting cellular quiescence and vascular normalcy at steady state. Endothelial AHR deficiency in adult mice resulted in dysregulated inflammatory responses and the initiation of proliferative pathways. Furthermore, endothelial sensing of dietary AHR ligands was required for optimal protection against enteric infection. In human endothelial cells, AHR signalling promoted quiescence and restrained activation by inflammatory mediators. Together, our data provide a comprehensive dissection of the effect of environmental sensing across the spectrum of enteric endothelia, demonstrating that endothelial AHR signalling integrates dietary cues to maintain tissue homeostasis by promoting endothelial cell quiescence and vascular normalcy.


Subject(s)
Endothelial Cells , Receptors, Aryl Hydrocarbon , Humans , Animals , Mice , Receptors, Aryl Hydrocarbon/metabolism , Endothelial Cells/metabolism , Intestines , Signal Transduction , Homeostasis , Ligands
4.
Radiol Imaging Cancer ; 5(4): e230011, 2023 07.
Article in English | MEDLINE | ID: mdl-37449917

ABSTRACT

Adaptive radiation therapy is a feedback process by which imaging information acquired over the course of treatment, such as changes in patient anatomy, can be used to reoptimize the treatment plan, with the end goal of improving target coverage and reducing treatment toxicity. This review describes different types of adaptive radiation therapy and their clinical implementation with a focus on CT-guided online adaptive radiation therapy. Depending on local anatomic changes and clinical context, different anatomic sites and/or disease stages and presentations benefit from different adaptation strategies. Online adaptive radiation therapy, where images acquired in-room before each fraction are used to adjust the treatment plan while the patient remains on the treatment table, has emerged to address unpredictable anatomic changes between treatment fractions. Online treatment adaptation places unique pressures on the radiation therapy workflow, requiring high-quality daily imaging and rapid recontouring, replanning, plan review, and quality assurance. Generating a new plan with every fraction is resource intensive and time sensitive, emphasizing the need for workflow efficiency and clinical resource allocation. Cone-beam CT is widely used for image-guided radiation therapy, so implementing cone-beam CT-guided online adaptive radiation therapy can be easily integrated into the radiation therapy workflow and potentially allow for rapid imaging and replanning. The major challenge of this approach is the reduced image quality due to poor resolution, scatter, and artifacts. Keywords: Adaptive Radiation Therapy, Cone-Beam CT, Organs at Risk, Oncology © RSNA, 2023.


Subject(s)
Radiotherapy Planning, Computer-Assisted , Radiotherapy, Image-Guided , Humans , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Dosage , Radiotherapy, Image-Guided/methods , Cone-Beam Computed Tomography , Organs at Risk
5.
Chem Asian J ; 18(15): e202300424, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37339944

ABSTRACT

We report a practical one-pot glycosylation strategy for synthesis of bacterial inner core oligosaccharides that composed of unavailable L-glycero-D-manno and D-glycero-D-manno-heptopyranose components. The glycosylation method features a new orthogonal glycosylation procedure; whereby a phosphate acceptor is coupled with a thioglycosyl donor producing a disaccharide phosphate, which can be engaged in another orthogonal glycosylation procedure to couple with a thioglycosyl acceptor. The phosphate acceptors used in above one-pot procedure are directly prepared from thioglycosyl acceptors via the in-situ phosphorylation. Such phosphate acceptor preparation protocol eliminates the traditional protection and deprotection procedures. Based on the new one-pot glycosylation strategy, two partial inner core structures of Yersinia pestis lipopolysaccharide and Haemophilus ducreyi lipooligosaccharide were acquired.


Subject(s)
Oligosaccharides , Phosphates , Glycosylation , Oligosaccharides/chemistry , Lipopolysaccharides/chemistry , Disaccharides
6.
J Formos Med Assoc ; 122(10): 1001-1007, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37142476

ABSTRACT

BACKGROUND: /Purpose: Reactivity at the Bacillus Calmette-Guérin (BCG) scar is a pathognomonic feature of Kawasaki disease (KD). However, its value in predicting KD outcomes has not been emphasized. This study explored the clinical significance of BCG scar redness with respect to coronary artery outcomes. METHODS: This retrospective study collected data on children with KD from 13 hospitals in Taiwan during 2019-2021. Children with KD were categorized into four groups based on the KD type and BCG scar reactivity. Risk factors of coronary artery abnormalities (CAA) were analyzed in all groups. RESULTS: BCG scar redness occurred in 49% of 388 children with KD. BCG scar redness was associated with younger age, early intravenous immunoglobulin (IVIG) treatment, hypoalbuminemia, and CAA at the first echocardiogram (p < 0.01). BCG scar redness (RR 0.56) and pyuria (RR 2.61) were independent predictors of any CAA within 1 month (p < 0.05). Moreover, pyuria (RR 5.85, p < 0.05) in children with complete KD plus BCG scar redness was associated with CAA at 2-3 months; first IVIG resistance (RR 15.2) and neutrophil levels ≥80% (RR 8.37) in children with complete KD plus BCG scar non-redness were associated with CAA at 2-3 months (p < 0.05). We failed to detect any significant risk factors of CAA at 2-3 months in children with incomplete KD. CONCLUSION: BCG scar reactivity contributes to diverse clinical features in KD. It can be effectively applied to determine the risk factors of any CAA within 1 month and CAA at 2-3 months.


Subject(s)
BCG Vaccine , Coronary Artery Disease , Mucocutaneous Lymph Node Syndrome , Pyuria , Child , Humans , Infant , BCG Vaccine/adverse effects , Cicatrix/complications , Cicatrix/drug therapy , Coronary Artery Disease/drug therapy , Immunoglobulins, Intravenous/therapeutic use , Mucocutaneous Lymph Node Syndrome/complications , Pyuria/complications , Pyuria/drug therapy , Retrospective Studies
7.
Nat Struct Mol Biol ; 30(4): 489-501, 2023 04.
Article in English | MEDLINE | ID: mdl-36941433

ABSTRACT

Recent studies have shown that repressive chromatin machinery, including DNA methyltransferases and polycomb repressor complexes, binds to chromosomes throughout mitosis and their depletion results in increased chromosome size. In the present study, we show that enzymes that catalyze H3K9 methylation, such as Suv39h1, Suv39h2, G9a and Glp, are also retained on mitotic chromosomes. Surprisingly, however, mutants lacking histone 3 lysine 9 trimethylation (H3K9me3) have unusually small and compact mitotic chromosomes associated with increased histone H3 phospho Ser10 (H3S10ph) and H3K27me3 levels. Chromosome size and centromere compaction in these mutants were rescued by providing exogenous first protein lysine methyltransferase Suv39h1 or inhibiting Ezh2 activity. Quantitative proteomic comparisons of native mitotic chromosomes isolated from wild-type versus Suv39h1/Suv39h2 double-null mouse embryonic stem cells revealed that H3K9me3 was essential for the efficient retention of bookmarking factors such as Esrrb. These results highlight an unexpected role for repressive heterochromatin domains in preserving transcription factor binding through mitosis and underscore the importance of H3K9me3 for sustaining chromosome architecture and epigenetic memory during cell division.


Subject(s)
Proteomics , Transcription Factors , Animals , Mice , Transcription Factors/metabolism , Histones/metabolism , Heterochromatin , DNA Methylation , Mitosis , Polycomb-Group Proteins/genetics , Methyltransferases/metabolism
8.
Radiat Res ; 199(1): 1-16, 2023 01 01.
Article in English | MEDLINE | ID: mdl-35994701

ABSTRACT

Validation of biodosimetry assays is routinely performed using primarily orthovoltage irradiators at a conventional dose rate of approximately 1 Gy/min. However, incidental/ accidental exposures caused by nuclear weapons can be more complex. The aim of this work was to simulate the DNA damage effects mimicking those caused by the detonation of a several kilotons improvised nuclear device (IND). For this, we modeled complex exposures to: 1. a mixed (photons + IND-neutrons) field and 2. different dose rates that may come from the blast, nuclear fallout, or ground deposition of radionuclides (ground shine). Additionally, we assessed whether myeloid cytokines affect the precision of radiation dose estimation by modulating the frequency of dicentric chromosomes. To mimic different exposure scenarios, several irradiation systems were used. In a mixed field study, human blood samples were exposed to a photon field enriched with neutrons (ranging from 10% to 37%) from a source that mimics Hiroshima's A-bomb's energy spectrum (0.2-9 MeV). Using statistical analysis, we assessed whether photons and neutrons act in an additive or synergistic way to form dicentrics. For the dose rates study, human blood was exposed to photons or electrons at dose rates ranging from low (where the dose was spread over 32 h) to extremely high (where the dose was delivered in a fraction of a microsecond). Potential effects of cytokine treatment on biodosimetry dose predictions were analyzed in irradiated blood subjected to Neupogen or Neulasta for 24 or 48 h at the concentration recommended to forestall manifestation of an acute radiation syndrome in bomb survivors. All measurements were performed using a robotic station, the Rapid Automated Biodosimetry Tool II, programmed to culture lymphocytes and score dicentrics in multiwell plates (the RABiT-II DCA). In agreement with classical concepts of radiation biology, the RABiT-II DCA calibration curves suggested that the frequency of dicentrics depends on the type of radiation and is modulated by changes in the dose rate. The resulting dose-response curves suggested an intermediate dicentric yields and additive effects of photons and IND-neutrons in the mixed field. At ultra-high dose rate (600 Gy/s), affected lymphocytes exhibited significantly fewer dicentrics (P < 0.004, t test). In contrast, we did not find the dose-response modification effects of radiomitigators on the yields of dicentrics (Bonferroni corrected P > 0.006, ANOVA test). This result suggests no bias in the dose predictions should be expected after emergency cytokine treatment initiated up to 48 h prior to blood collection for dicentric analysis.


Subject(s)
Chromosome Aberrations , Radiation Exposure , Humans , Dose-Response Relationship, Radiation , Lymphocytes/radiation effects , Chromosomes , Radiometry/methods
9.
Nat Cardiovasc Res ; 1: 918-932, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36531334

ABSTRACT

The mammalian skeletal system shows sex differences in structure, functions, ageing and disease incidences. The role of blood vessels in physiological, regenerative and pathological bone functions indicates the requisite to understanding their sex specificity. Here, we find oestrogen regulates blood vessel physiology during pregnancy and menopause through oestrogen receptor alpha (ERα) and G-protein coupled oestrogen receptor-1 (Gper1) but not ERß-dependent signalling in mice. Oestrogen regulates BECs' lipid use and promotes lipolysis of adipocytes and FA uptake from the microenvironment. Low oestrogen conditions skew endothelial FA metabolism to accumulate lipid peroxides (LPO), leading to vascular ageing. High ferrous ion levels in female BECs intensify LPO accumulation and accelerate the ageing process. Importantly, inhibiting LPO generation using liproxstatin-1 in aged mice significantly improved bone heath. Thus, our findings illustrate oestrogen's effects on BECs and suggest LPO targeting could be an efficient strategy to manage blood and bone health in females.

10.
Nat Metab ; 4(12): 1812-1829, 2022 12.
Article in English | MEDLINE | ID: mdl-36536133

ABSTRACT

RNA alternative splicing (AS) expands the regulatory potential of eukaryotic genomes. The mechanisms regulating liver-specific AS profiles and their contribution to liver function are poorly understood. Here, we identify a key role for the splicing factor RNA-binding Fox protein 2 (RBFOX2) in maintaining cholesterol homeostasis in a lipogenic environment in the liver. Using enhanced individual-nucleotide-resolution ultra-violet cross-linking and immunoprecipitation, we identify physiologically relevant targets of RBFOX2 in mouse liver, including the scavenger receptor class B type I (Scarb1). RBFOX2 function is decreased in the liver in diet-induced obesity, causing a Scarb1 isoform switch and alteration of hepatocyte lipid homeostasis. Our findings demonstrate that specific AS programmes actively maintain liver physiology, and underlie the lipotoxic effects of obesogenic diets when dysregulated. Splice-switching oligonucleotides targeting this network alleviate obesity-induced inflammation in the liver and promote an anti-atherogenic lipoprotein profile in the blood, underscoring the potential of isoform-specific RNA therapeutics for treating metabolism-associated diseases.


Subject(s)
Alternative Splicing , RNA-Binding Proteins , Mice , Animals , Alternative Splicing/genetics , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA/genetics , Liver/metabolism , Homeostasis , Cholesterol/metabolism , Scavenger Receptors, Class B/genetics , Scavenger Receptors, Class B/metabolism
11.
Infect Dis Model ; 7(2): 127-137, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35573860

ABSTRACT

Objective: Mumps is a seasonal infectious disease, always occurring in winter and spring. In this study, we aim to analyze its epidemiological characteristics, transmissibility, and its correlation with meteorological variables. Method: A seasonal Susceptible-Exposed-Infectious/Asymptomatic-Recovered model and a next-generation matrix method were applied to estimate the time-dependent reproduction number (R t ). Results: The seasonal double peak of annual incidence was mainly in May to July and November to December. There was high transmission at the median of R t  = 1.091 (ranged: 0 to 4.393). R t was seasonally distributed mainly from February to April and from September to November. Correlations were found between temperature (Pearson correlation coefficient [r] ranged: from 0.101 to 0.115), average relative humidity (r = 0.070), average local pressure (r = -0.066), and the number of new cases. In addition, average local pressure (r = 0.188), average wind speed (r = 0.111), air temperature (r ranged: -0.128 to -0.150), average relative humidity (r = -0.203) and sunshine duration (r = -0.075) were all correlated with R t . Conclusion: A relatively high level of transmissibility has been found in Xiamen City, leading to a continuous epidemic of mumps. Meteorological factors, especially air temperature and relative humidity, may be more closely associated with mumps than other factors.

12.
Elife ; 112022 04 26.
Article in English | MEDLINE | ID: mdl-35471149

ABSTRACT

Cohesin and CTCF are major drivers of 3D genome organization, but their role in neurons is still emerging. Here, we show a prominent role for cohesin in the expression of genes that facilitate neuronal maturation and homeostasis. Unexpectedly, we observed two major classes of activity-regulated genes with distinct reliance on cohesin in mouse primary cortical neurons. Immediate early genes (IEGs) remained fully inducible by KCl and BDNF, and short-range enhancer-promoter contacts at the IEGs Fos formed robustly in the absence of cohesin. In contrast, cohesin was required for full expression of a subset of secondary response genes characterized by long-range chromatin contacts. Cohesin-dependence of constitutive neuronal genes with key functions in synaptic transmission and neurotransmitter signaling also scaled with chromatin loop length. Our data demonstrate that key genes required for the maturation and activation of primary cortical neurons depend on cohesin for their full expression, and that the degree to which these genes rely on cohesin scales with the genomic distance traversed by their chromatin contacts.


Subject(s)
Cell Cycle Proteins , Chromatin , Animals , CCCTC-Binding Factor/genetics , CCCTC-Binding Factor/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone , Gene Expression , Mice , Neurons/metabolism , Cohesins
13.
Kidney Int Rep ; 7(3): 507-515, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35257063

ABSTRACT

Introduction: The 2019 Kidney Disease Outcome Quality Initiative (K/DOQI) guideline recommended evaluating arteriovenous fistula (AVF) malfunction risks primarily based on clinical monitoring, which can be assisted with the value of vascular access flow (Qa). Nevertheless, Qa thresholds recommended by different guidelines vary, ranging from 300 to 500 ml/min. This study investigated the optimal Qa threshold to predict future functional patency in AVFs with Qa <500 ml/min. Methods: Both the clinical indicators of access dysfunction and the Qa value were monitored in patients receiving hemodialysis by the radiocephalic AVF. Routine access flow surveillance was performed by the ultrasound dilution method (HD03, Transonic Inc.). The development of clinically significant indicators of access dysfunction, which necessitated percutaneous transluminal angiography (PTA) to maintain functional patency, was analyzed in this cohort. Results: Among the enrolled 302 patients, Qa of 52 patients was under 500 ml/min. These 52 patients received 2 Qa measurements during the follow-up period. Of these 52 patients, serial Qa of 17 patients varied trivially and their AVF remained functional. Multivariable logistic regression analysis revealed that a low Qa per ideal body weight (IBW) is an independent predictor of AVF functional loss. Receiver operating characteristic curve analysis of Qa/IBW in predicting future AVF functional loss revealed that the best cutoff value of Qa is 7.1 times the IBW. Conclusion: For radiocephalic AVFs with Qa <500 ml/min, the minimally required Qa to maintain access function is associated with individual IBW. The IBW-based Qa threshold assessment would allow more flexibility in the treatment of patients and reduce unnecessary invasive measures.

14.
Aging (Albany NY) ; 14(5): 2113-2130, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35241635

ABSTRACT

Arsenic exposure is associated with lung cancer. Angiogenesis is essential for tumor development. However, the role and mechanism of human vascular endothelial cells in tumor growth and angiogenesis induced by arsenic-transformed bronchial epithelial (As-T) cells remain to be elucidated. In this study, we found that endothelial cells significantly increased As-T cell-induced tumor growth compared to those induced by As-T cells alone. To understand the molecular mechanism, we found that endothelial cells co-cultured with As-T cells or cultured in conditioned medium (CM) prepared from As-T cells showed much higher cell migration, proliferation, and tube formation compared to those co-cultured with BEAS-2B (B2B) cells or cultured in CM from B2B. We identified that higher levels of intracellular interleukin 8 (IL-8) were secreted by As-T cells, which activated IL-8/IL-8R signaling to promote endothelial cells migration and tube formation. IL-8 silencing and knockout (KO) in As-T cells, or IL-8 neutralizing antibody dramatically suppressed endothelial cell proliferation, migration, tube formation in vitro, and tumor growth and angiogenesis in vivo, suggesting a key role of IL-8 in As-T cells to induce angiogenesis via a paracrine effect. Finally, blocking of IL-8 receptors C-X-C chemokine receptor type 1 (CXCR1) and CXCR2 with neutralizing antibodies and chemical inhibitors inhibited tube formation, indicating that IL-8Rs on endothelial cells are necessary for As-T cell-induced angiogenesis. Overall, this study reveals an important molecular mechanism of arsenic-induced carcinogenesis, and suggests a new option to prevent and treat arsenic-induced angiogenesis.


Subject(s)
Arsenic , Neoplasms , Arsenic/metabolism , Arsenic/toxicity , Bronchi/metabolism , Cell Movement , Cell Proliferation , Culture Media, Conditioned/metabolism , Culture Media, Conditioned/pharmacology , Endothelial Cells/metabolism , Epithelial Cells/metabolism , Humans , Interleukin-8/metabolism , Neoplasms/metabolism , Neovascularization, Pathologic/metabolism , Receptors, Interleukin-8A/metabolism
15.
Virus Res ; 312: 198716, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35240224

ABSTRACT

Acute influenza infection has been reported to be associated with neurological symptoms such as influenza-associated encephalopathy (IAE). Although the pathophysiology of this condition remain unclear, neuroinflammation and associated alterations in the central nervous system (CNS) are usually induced. Microglia (MGs), CNS-resident macrophages, are generally the first cells to be activated in response to brain infection or damage. We performed reverse transcriptase droplet digital PCR (RT-ddPCR) and luminex assays to investigate virus proliferation and immune reactions in BV2 MGs infected with influenza A(H1N1)pdm09 virus. Furthermore, isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomics methods were used to investigate the dynamic change in the protein expression profile in BV2 MGs to gain insight into the CNS response to influenza A (H1N1) pdm09 infection. Our results showed that the influenza A(H1N1)pdm09 virus was replicative and productive in BV2 MG cells, which produced cytokines such as interleukin (IL)-1ß, IL-6, tumour necrosis factor (TNF)-α and monocyte chemoattractant protein (MCP)-1. The expression of osteopontin (OPN) in the influenza A (H1N1) pdm09-infected BV2 MGs was upregulated at 16 and 32 h post-infection (hpi) compared to that in the control group, resulting in aggravated brain damage and inflammation. Our study indicates that OPN signalling might provide new insights into the treatment of CNS injury and neurodegenerative diseases in IAE.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza, Human , Cytokines/genetics , Gene Expression , Humans , Influenza A Virus, H1N1 Subtype/genetics , Microglia
16.
J Appl Clin Med Phys ; 23(7): e13595, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35332646

ABSTRACT

PURPOSE: Dose computation using cone beam computed tomography (CBCT) images is inaccurate for the purpose of adaptive treatment planning. The main goal of this study is to assess the dosimetric accuracy of synthetic computed tomography (CT)-based calculation for adaptive planning in the upper abdominal region. We hypothesized that deep learning-based synthetically generated CT images will produce comparable results to a deformed CT (CTdef) in terms of dose calculation, while displaying a more accurate representation of the daily anatomy and therefore superior dosimetric accuracy. METHODS: We have implemented a cycle-consistent generative adversarial networks (CycleGANs) architecture to synthesize CT images from the daily acquired CBCT image with minimal error. CBCT and CT images from 17 liver stereotactic body radiation therapy (SBRT) patients were used to train, test, and validate the algorithm. RESULTS: The synthetically generated images showed increased signal-to-noise ratio, contrast resolution, and reduced root mean square error, mean absolute error, noise, and artifact severity. Superior edge matching, sharpness, and preservation of anatomical structures from the CBCT images were observed for the synthetic images when compared to the CTdef registration method. Three verification plans (CBCT, CTdef, and synthetic) were created from the original treatment plan and dose volume histogram (DVH) statistics were calculated. The synthetic-based calculation shows comparatively similar results to the CTdef-based calculation with a maximum mean deviation of 1.5%. CONCLUSIONS: Our findings show that CycleGANs can produce reliable synthetic images for the adaptive delivery framework. Dose calculations can be performed on synthetic images with minimal error. Additionally, enhanced image quality should translate into better daily alignment, increasing treatment delivery accuracy.


Subject(s)
Deep Learning , Radiotherapy Planning, Computer-Assisted , Cone-Beam Computed Tomography/methods , Humans , Image Processing, Computer-Assisted/methods , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Tomography, X-Ray Computed
17.
Nucleic Acids Res ; 50(6): 3379-3393, 2022 04 08.
Article in English | MEDLINE | ID: mdl-35293570

ABSTRACT

Pre-mRNA processing is an essential mechanism for the generation of mature mRNA and the regulation of gene expression in eukaryotic cells. While defects in pre-mRNA processing have been implicated in a number of diseases their involvement in metabolic pathologies is still unclear. Here, we show that both alternative splicing and alternative polyadenylation, two major steps in pre-mRNA processing, are significantly altered in non-alcoholic fatty liver disease (NAFLD). Moreover, we find that Serine and Arginine Rich Splicing Factor 10 (SRSF10) binding is enriched adjacent to consensus polyadenylation motifs and its expression is significantly decreased in NAFLD, suggesting a role mediating pre-mRNA dysregulation in this condition. Consistently, inactivation of SRSF10 in mouse and human hepatocytes in vitro, and in mouse liver in vivo, was found to dysregulate polyadenylation of key metabolic genes such as peroxisome proliferator-activated receptor alpha (PPARA) and exacerbate diet-induced metabolic dysfunction. Collectively our work implicates dysregulated pre-mRNA polyadenylation in obesity-induced liver disease and uncovers a novel role for SRSF10 in this process.


Subject(s)
Cell Cycle Proteins/metabolism , Non-alcoholic Fatty Liver Disease , Polyadenylation , Repressor Proteins/metabolism , Serine-Arginine Splicing Factors/metabolism , Animals , Hepatocytes/metabolism , Humans , Liver/metabolism , Mice , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , RNA Precursors/genetics , RNA Precursors/metabolism , RNA Splicing
18.
Nature ; 600(7890): 737-742, 2021 12.
Article in English | MEDLINE | ID: mdl-34880491

ABSTRACT

Stability of the epigenetic landscape underpins maintenance of the cell-type-specific transcriptional profile. As one of the main repressive epigenetic systems, DNA methylation has been shown to be important for long-term gene silencing; its loss leads to ectopic and aberrant transcription in differentiated cells and cancer1. The developing mouse germ line endures global changes in DNA methylation in the absence of widespread transcriptional activation. Here, using an ultra-low-input native chromatin immunoprecipitation approach, we show that following DNA demethylation the gonadal primordial germ cells undergo remodelling of repressive histone modifications, resulting in a sex-specific signature in mice. We further demonstrate that Polycomb has a central role in transcriptional control in the newly hypomethylated germline genome as the genetic loss of Ezh2 leads to aberrant transcriptional activation, retrotransposon derepression and dramatic loss of developing female germ cells. This sex-specific effect of Ezh2 deletion is explained by the distinct landscape of repressive modifications observed in male and female germ cells. Overall, our study provides insight into the dynamic interplay between repressive chromatin modifications in the context of a developmental reprogramming system.


Subject(s)
Chromatin Assembly and Disassembly , Germ Cells , Animals , Chromatin/genetics , Chromatin/metabolism , Chromatin Immunoprecipitation , DNA Methylation , Epigenesis, Genetic , Female , Germ Cells/metabolism , Male , Mice , Polycomb-Group Proteins/metabolism
19.
J Immunol ; 207(12): 2976-2991, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34810221

ABSTRACT

RUNX1 is a transcription factor that plays key roles in hematopoietic development and in hematopoiesis and lymphopoiesis. In this article, we report that RUNX1 regulates a gene expression program in naive mouse B cells that affects the dynamics of cell cycle entry in response to stimulation of the BCR. Conditional knockout of Runx1 in mouse resting B cells resulted in accelerated entry into S-phase after BCR engagement. Our results indicate that Runx1 regulates the cyclin D2 (Ccnd2) gene, the immediate early genes Fosl2, Atf3, and Egr2, and the Notch pathway gene Rbpj in mouse B cells, reducing the rate at which transcription of these genes increases after BCR stimulation. RUNX1 interacts with the chromatin remodeler SNF-2-related CREB-binding protein activator protein (SRCAP), recruiting it to promoter and enhancer regions of the Ccnd2 gene. BCR-mediated activation triggers switching between binding of RUNX1 and its paralog RUNX3 and between SRCAP and the switch/SNF remodeling complex member BRG1. Binding of BRG1 is increased at the Ccnd2 and Rbpj promoters in the Runx1 knockout cells after BCR stimulation. We also find that RUNX1 exerts positive or negative effects on a number of genes that affect the activation response of mouse resting B cells. These include Cd22 and Bank1, which act as negative regulators of the BCR, and the IFN receptor subunit gene Ifnar1 The hyperresponsiveness of the Runx1 knockout B cells to BCR stimulation and its role in regulating genes that are associated with immune regulation suggest that RUNX1 could be involved in regulating B cell tolerance.


Subject(s)
B-Lymphocytes , Core Binding Factor Alpha 2 Subunit , Animals , B-Lymphocytes/metabolism , Cell Cycle/genetics , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Hematopoiesis , Mice , Promoter Regions, Genetic
20.
Mol Biol Cell ; 32(22): ar40, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34613789

ABSTRACT

Mesendoderm cells are key intermediate progenitors that form at the early primitive streak (PrS) and give rise to mesoderm and endoderm in the gastrulating embryo. We have identified an interaction between CNOT3 and the cell cycle kinase Aurora B that requires sequences in the NOT box domain of CNOT3 and regulates MAPK/ERK signaling during mesendoderm differentiation. Aurora B phosphorylates CNOT3 at two sites located close to a nuclear localization signal and promotes localization of CNOT3 to the nuclei of mouse embryonic stem cells (ESCs) and metastatic lung cancer cells. ESCs that have both sites mutated give rise to embryoid bodies that are largely devoid of mesoderm and endoderm and are composed mainly of cells with ectodermal characteristics. The mutant ESCs are also compromised in their ability to differentiate into mesendoderm in response to FGF2, BMP4, and Wnt3 due to reduced survival and proliferation of differentiating mesendoderm cells. We also show that the double mutation alters the balance of interaction of CNOT3 with Aurora B and with ERK and reduces phosphorylation of ERK in response to FGF2. Our results identify a potential adaptor function for CNOT3 that regulates the Ras/MEK/ERK pathway during embryogenesis.


Subject(s)
Aurora Kinase B/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Mouse Embryonic Stem Cells/cytology , Transcription Factors/metabolism , A549 Cells , Animals , Aurora Kinase B/genetics , Cell Differentiation/physiology , Cell Survival , Cells, Cultured , Endoderm/cytology , Endoderm/physiology , Extracellular Signal-Regulated MAP Kinases/genetics , Female , Humans , Mesoderm/cytology , Mice , Mouse Embryonic Stem Cells/physiology , Mutation , Phosphorylation , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...