Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(6): e0291568, 2024.
Article in English | MEDLINE | ID: mdl-38848420

ABSTRACT

Polymeric IgMs are secreted from plasma cells abundantly despite their structural complexity and intricate multimerization steps. To gain insights into IgM's assembly mechanics that underwrite such high-level secretion, we characterized the biosynthetic process of a natural human IgM, SAM-6, using a heterologous HEK293(6E) cell platform that allowed the production of IgMs both in hexameric and pentameric forms in a controlled fashion. By creating a series of mutant subunits that differentially disrupt secretion, folding, and specific inter-chain disulfide bond formation, we assessed their effects on various aspects of IgM biosynthesis in 57 different subunit chain combinations, both in hexameric and pentameric formats. The mutations caused a spectrum of changes in steady-state subcellular subunit distribution, ER-associated inclusion body formation, intracellular subunit detergent solubility, covalent assembly, secreted IgM product quality, and secretion output. Some mutations produced differential effects on product quality depending on whether the mutation was introduced to hexameric IgM or pentameric IgM. Through this systematic combinatorial approach, we consolidate diverse overlapping knowledge on IgM biosynthesis for both hexamers and pentamers, while unexpectedly revealing that the loss of certain inter-chain disulfide bonds, including the one between µHC and λLC, is tolerated in polymeric IgM assembly and secretion. The findings highlight the differential roles of underlying non-covalent protein-protein interactions in hexamers and pentamers when orchestrating the initial subunit interactions and maintaining the polymeric IgM product integrity during ER quality control steps, secretory pathway trafficking, and secretion.


Subject(s)
Immunoglobulin M , Mutation , Humans , Immunoglobulin M/metabolism , Immunoglobulin M/genetics , HEK293 Cells , Protein Multimerization , Protein Subunits/metabolism , Protein Subunits/genetics , Endoplasmic Reticulum/metabolism
2.
Arch Gynecol Obstet ; 309(6): 2863-2880, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38575798

ABSTRACT

PURPOSES: To investigate the effect and safety of ovarian tissue cryopreservation (OTC) for fertility preservation in female patients with hematological diseases. METHODS: We designed a retrospective study. The clinical data of patients with hematological diseases undergoing OTC admitted to Peking University People's Hospital from April 2017 to January 2023 were analyzed and summarized. RESULTS: A total of 24 patients were included in the study, including 19 patients with malignant hematological diseases and 5 patients with non-malignant hematological diseases. The former included 14 patients with acute leukemia, 1 patient with chronic leukemia, and 4 patients with myelodysplastic syndrome, while the latter 5 patients were aplastic anemia (AA). 16 patients had received chemotherapy before OTC. The average age of 24 patients was 22.80 ± 6.81 years. The average anti-Mullerian hormone (AMH) was 1.97 ± 2.12 ng/mL, and the average follicle-stimulating hormone (FSH) was 7.01 ± 4.24 IU/L in examination before OTC. FSH was greater than 10.0 IU/L in 4 cases. The pre-OTC laboratory tests showed that the average white blood cell (WBC) count was (3.33 ± 1.35) × 109/L, the average hemoglobin was 91.42 ± 22.84 g/L, and the average platelet was (147.38 ± 114.46) × 109/L. After injection of recombinant human granulocyte colony-stimulating factor (rhG-CSF), blood transfusion, and iron supplementation in pre-OTC treatment, the average WBC count was (4.91 ± 3.07) × 109/L, the average hemoglobin was 98.67 ± 15.43 g/L, and the average platelet was (156.38 ± 103.22) × 109/L. Of the 24 patients, 22 underwent laparoscopic bilateral partial oophorectomy and oophoroplasty, and 2 underwent laparoscopic unilateral oophorectomy. The average duration of OTC was 59.54 ± 17.58 min, and the average blood loss was 32.1 ± 41.6 mL. The maximum blood loss was 200 mL. There was no significant difference in WBC count and hemoglobin concentration after OTC compared to pre-OTC period. Only the platelet count after OTC surgery was significantly different from that before surgery ([134.54 ± 80.84 vs. 156.38 ± 103.22] × 109/L, p < 0.05). None of the 24 patients had serious complications after OTC. 2 patients had mild infection symptoms, but both recovered well. 23 patients underwent hematopoietic stem cell transplantation (HSCT) after OTC. The median and interquartile range from OTC to the pretreatment of HSCT was 33 (57) days, and the median and interquartile range from OTC to HSCT was 41 (57) days. Seven of them began pretreatment of HSCT within 20 days and began HSCT within 30 days after OTC. All patients were followed up. Of the 23 patients who underwent HSCT after surgery, 22 presented with amenorrhea and 1 with scanty menstrual episodes. Seven patients underwent hormone replacement therapy (HRT) after HSCT. A patient with AA underwent ovarian tissue transplantation (OTT) 3 years after HSCT and resumed regular menstruation 6 months after OTT. CONCLUSIONS: Ovarian tissue cryopreservation has a promising future in fertility protection in patients with hematological diseases. However, patients with hematological malignancies often have received gonadotoxic therapy before OTC, which may be accompanied by myelosuppression while patients with non-malignant hematological diseases often present with severe hemocytopenia. So perioperative complete blood count of patients should be paid attention to. There was no significant difference in the WBC count and hemoglobin concentration in patients with hematological diseases before and after OTC surgery, and the platelet count decreased slightly within the normal range. Infection is the most common post-OTC complication, and HSCT pretreatment can be accepted as early as the 10th day after OTC. OTC has no adverse effects on patients with hematological diseases and does not delay HSCT treatment. For young patients with hematological diseases, OTC is an effective method of fertility preservation.


Subject(s)
Cryopreservation , Fertility Preservation , Ovary , Humans , Female , Fertility Preservation/methods , Retrospective Studies , Adult , Young Adult , Adolescent , Hematologic Diseases/therapy , Anti-Mullerian Hormone/blood , Follicle Stimulating Hormone/blood , Myelodysplastic Syndromes/therapy
3.
Comput Biol Med ; 172: 108243, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38484694

ABSTRACT

OBJECTIVE: This study aimed to develop and evaluate a machine learning model utilizing non-invasive clinical parameters for the classification of endometrial non-benign lesions, specifically atypical hyperplasia (AH) and endometrioid carcinoma (EC), in postmenopausal women. METHODS: Our study collected clinical parameters from a cohort of 999 patients with postmenopausal endometrial lesions and conducted preprocessing to identify 57 relevant characteristics from these irregular clinical data. To predict the presence of postmenopausal endometrial non-benign lesions, including atypical hyperplasia and endometrial cancer, we employed various models such as eXtreme Gradient Boosting (XGBoost), Random Forest (RF), Logistic Regression (LR), Support Vector Machine (SVM), Back Propagation Neural Network (BPNN), as well as two ensemble models. Additionally, a test set was performed on an independent dataset consisting of 152 patients. The performance evaluation of all models was based on metrics including the area under the receiver operating characteristic curve (AUC), sensitivity, specificity, precision, and F1 score. RESULTS: The RF model demonstrated superior recognition capabilities for patients with non-benign lesions compared to other models. In the test set, it attained a sensitivity of 88.1% and an AUC of 0.93, surpassing all alternative models evaluated in this study. Furthermore, we have integrated this model into our hospital's Clinical Decision Support System (CDSS) and implemented it within the outpatient electronic medical record system to continuously validate and optimize its performance. CONCLUSIONS: We have trained a model and deployed a system with high discriminatory power that may provide a novel approach to identify patients at higher risk of postmenopausal endometrial non-benign lesions who may benefit from more tailored screening and clinical intervention.


Subject(s)
Decision Support Systems, Clinical , Postmenopause , Humans , Female , Hyperplasia , Benchmarking , Machine Learning
4.
Cancer Res ; 83(24): 4047-4062, 2023 12 15.
Article in English | MEDLINE | ID: mdl-38098451

ABSTRACT

Identifying novel cell surface receptors that regulate leukemia cell differentiation and can be targeted to inhibit cellular proliferation is crucial to improve current treatment modalities in acute myeloid leukemia (AML), especially for relapsed or chemotherapy-refractory leukemia. Leukocyte immunoglobulin-like receptor type B (LILRB) is an immunomodulatory receptor originally found to be expressed in myeloid cells. In this study, we found that LILRB receptors can be induced under inflammatory stimuli and chemotherapy treatment conditions. Blockade of LILRB3 inhibited leukemia cell proliferation and leukemia progression. In addition, treatment with LILRB3 blocking antibodies upregulated myeloid lineage differentiation transcription factors, including PU.1, C/EBP family, and IRF, whereas phosphorylation of proliferation regulators, for example, AKT, cyclin D1, and retinoblastoma protein, was decreased. Conversely, transcriptomic analysis showed LILRB3 activation by agonist antibodies may enhance leukemia survival through upregulation of cholesterol metabolism, which has been shown to promote leukemia cell survival. Moreover, LILRB3-targeted CAR T cells exhibited potent antitumor effects both in vitro and in vivo. Taken together, our results suggest that LILRB3 is a potentially potent target for multiple treatment modalities in AML. SIGNIFICANCE: LILRB3 regulates differentiation and proliferation in acute myeloid leukemia and can be targeted with monoclonal antibodies and CAR T cells to suppress leukemia growth.


Subject(s)
Immunotherapy, Adoptive , Leukemia, Myeloid, Acute , Humans , Immunotherapy, Adoptive/methods , T-Lymphocytes , Leukemia, Myeloid, Acute/pathology , Receptors, Cell Surface/metabolism , Myeloid Cells/metabolism , Receptors, Immunologic/metabolism , Antigens, CD/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL