Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(8): 167459, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39134286

ABSTRACT

Accumulation in the brain of amyloid-ß (Aß), derived from cleavage of Aß precursor protein (APP), is a hallmark of Alzheimer's disease (AD). Oleanonic acid (OA), a phytochemical from several plants, has proven anti-inflammatory effects, but its role in AD remains unknown. Here we found that OA reduced APP expression and inhibited oxidative stress via Nrf2/HO-1 signaling in SH-SY5Y neuroblastoma cells stably overexpressing APP. OA suppressed phosphorylated mTOR but increased autophagy markers ATG5 and LC3-II. Moreover, OA rescued ferroptosis-related factors GPX4, NCOA, and COX2 and ER stress markers GRP78, CHOP, and three main induction pathways of ER stress including IRE1/XBP1s, PERK/EIF2α, and ATF6. OA alleviated mitochondrial damage through MFN1, MFN2, OPA1, FIS1, and DRP1. Furthermore, OA upregulated GDF11 expression and downregulated phosphorylation of ErbB4 and TrkB without affecting BDNF levels. Thus, OA might protect neurons from APP-induced neurotoxicity by inhibiting oxidative stress, autophagy deficits, ferroptosis, mitochondrial damage, and ER stress in AD, providing a new promising therapeutic strategy in patients with AD.

2.
iScience ; 27(7): 110401, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39104571

ABSTRACT

The study of vocal communication in non-human animals can uncover the roots of human languages. Recent studies of language have focused on two linguistic laws: Zipf's law and the Menzerath-Altmann law. However, whether bats' social vocalizations follow these linguistic laws, especially Menzerath's law, has largely been unexplored. Here, we used Asian particolored bats, Vespertilio sinensis, to examine whether aggressive vocalizations conform to Zipf's and Menzerath's laws. Aggressive vocalizations of V. sinensis adhere to Zipf's law, with the most frequent syllables being the shortest in duration. There was a negative association between the syllable number within a call and the average syllable duration, in agreement with Menzerath's law. A decrease in the proportion of some long syllables and a decrease in the duration of several syllable types in long-duration calls explain the occurrence of this law. Our results indicate that a general compression principle organizes aspects of bat vocal communication systems.

3.
Eur J Med Chem ; 277: 116719, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39094276

ABSTRACT

Ferroptosis is a new type of programmed cell death characterized by iron-dependent lipid peroxidation, during which glutathione peroxidase 4 (GPX4) plays an essential role and is well-recognized as a promising therapeutic target for cancer treatment. Although some GPX4 degradation molecules have been developed to induce ferroptosis, the discovery of GPX4 degraders with hydrophobic tagging (HyT) as an innovative approach is more challenging. Herein, we designed and synthesized a series of HyT degraders by linking the GPX4 inhibitor RSL3 with a hydrophobic and bulky group of adamantane. Among them, compound R8 is a potent degrader (DC50, 24h = 0.019 µM) which can effectively degrade GPX4 in a dose- and time-dependent manner. Furthermore, compound R8 exhibited superior in vitro antitumor potency against HT1080 and MDA-MB-231 cell lines with IC50 values of 24 nM and 32 nM respectively, which are 4 times more potent than parental compound RSL3. Mechanistic investigation evidenced that R8 consumes GPX4 protein mainly through the ubiquitin proteasome (UPS) and enables to induce the accumulation of LPO, thereby triggering ferroptosis. Our work presented the novel GPX4 degrader of R8 by HyT strategy, and provided a promising pathway of degradation agents for the treatment of ferroptosis relevant diseases.

4.
Environ Res ; 260: 119622, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39019141

ABSTRACT

Rapid urbanization worldwide, poses numerous environmental challenges between escalating land use land cover (LULC) changes and groundwater quality dynamics. The main objective of this study was to investigate the dynamics of groundwater quality and LULC changes in Sargodha district, Punjab, Pakistan. Groundwater hydrochemistry reveals acceptable pH levels (<8) but total dissolved solids (TDS), electrical conductivity (EC) and HCO3- showed dynamic fluctuations by exceeding WHO limits. Piper diagrams, indicated dominance by magnesium and bicarbonate types, underscoring the influence of natural processes and anthropogenic activities. Major ion relationships in 2010, 2015, and 2021 showed a high correlation (R2 > 0.85) between Na+ and Cl-, suggesting salinization. whereas, the poor correlation (<0.17) between Ca2+ and HCO3- does not support calcite dissolution as the primary process affecting groundwater composition. The examination of nitrate contamination in groundwater across the years 2010, 2015, and 2021 was found to be high in the municipal sewage zone, suggesting a prevailing issue of nitrate contamination attributed to urban activities. The Nitrate Pollution Index (NPI) reveals a concerning trend, with a higher proportion of samples classified under moderate to high pollution categories in 2015 and 2021 compared to 2010. The qualitative assessment of nitrate concentration on spatiotemporal scale showed lower values in 2010 while a consistent rise from 2015 to 2021 in north-east and western parts of district. Likewise, NPI was high in the north-eastern and south-western regions in 2010, then reduced in subsequent years, which may be attributed to effective waste management practices and alterations in agricultural practices. The health risk assessment of 2010 indicated Total Health Hazard Quotient (THQ) within the standard limit, while in 2015 and 2021, elevated health risk was observed. This study emphasizes the need to use multiple approaches to groundwater management for sustainable land use planning and regulations that prioritize groundwater quality conservation.

5.
Angew Chem Int Ed Engl ; : e202408211, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39076073

ABSTRACT

A palladium-catalyzed highly C‒S-selective Stille cross-coupling between aryl thianthrenium salts and tri- or tetrasubstituted alkenyl stannanes is described. Herein, critical challenges including site- and chemoselectivity control are well addressed through C‒H thianthrenation and C‒S alkenylation, thereby providing an expedient access to stereodefined tri- and tetrasubstituted alkenes in a stereoretentive fashion. Indeed, the palladium-catalyzed Stille-alkenylation of poly(pseudo)halogenated arenes displays privileged capability to differentiate C‒S over C‒I, C‒Br, C‒Cl bonds, as well as oxygen-based triflates (C‒OTf), tosylates (C‒OTs), carbamates and sulfamates under mild reaction conditions. Sequential and multiple cross-couplings via selective C‒X functionalization should be widely applicable for increasing functional molecular complexity. Modular installation of stereospecific alkene motifs into pharmaceuticals illustrated the synthetic application of the present protocol in drug discovery.

6.
BMC Plant Biol ; 24(1): 653, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987678

ABSTRACT

BACKGROUND: Walnut anthracnose caused by Colletotrichum gloeosporioides seriously endangers the yield and quality of walnut, and has now become a catastrophic disease in the walnut industry. Therefore, understanding both pathogen invasion mechanisms and host response processes is crucial to defense against C. gloeosporioides infection. RESULTS: Here, we investigated the mechanisms of interaction between walnut fruits (anthracnose-resistant F26 fruit bracts and anthracnose-susceptible F423 fruit bracts) and C. gloeosporioides at three infection time points (24hpi, 48hpi, and 72hpi) using a high-resolution time series dual transcriptomic analysis, characterizing the arms race between walnut and C. gloeosporioides. A total of 20,780 and 6670 differentially expressed genes (DEGs) were identified in walnut and C. gloeosporioides against 24hpi, respectively. Generous DEGs in walnut exhibited opposite expression patterns between F26 and F423, which indicated that different resistant materials exhibited different transcriptional responses to C. gloeosporioides during the infection process. KEGG functional enrichment analysis indicated that F26 displayed a broader response to C. gloeosporioides than F423. Meanwhile, the functional analysis of the C. gloeosporioides transcriptome was conducted and found that PHI, SignalP, CAZy, TCDB genes, the Fungal Zn (2)-Cys (6) binuclear cluster domain (PF00172.19) and the Cytochrome P450 (PF00067.23) were largely prominent in F26 fruit. These results suggested that C. gloeosporioides secreted some type of effector proteins in walnut fruit and appeared a different behavior based on the developmental stage of the walnut. CONCLUSIONS: Our present results shed light on the arms race process by which C. gloeosporioides attacked host and walnut against pathogen infection, laying the foundation for the green prevention of walnut anthracnose.


Subject(s)
Colletotrichum , Juglans , Plant Diseases , Juglans/microbiology , Juglans/genetics , Colletotrichum/physiology , Plant Diseases/microbiology , Plant Diseases/genetics , RNA-Seq , Fruit/microbiology , Fruit/genetics , Transcriptome , Gene Expression Regulation, Plant , Gene Expression Profiling , Host-Pathogen Interactions/genetics , Disease Resistance/genetics
7.
Front Endocrinol (Lausanne) ; 15: 1414350, 2024.
Article in English | MEDLINE | ID: mdl-39076510

ABSTRACT

Bone homeostasis in physiology depends on the balance between bone formation and resorption, and in pathology, this homeostasis is susceptible to disruption by different influences, especially under ageing condition. Gut microbiota has been recognized as a crucial factor in regulating host health. Numerous studies have demonstrated a significant association between gut microbiota and bone metabolism through host-microbiota crosstalk, and gut microbiota is even an important factor in the pathogenesis of bone metabolism-related diseases that cannot be ignored. This review explores the interplay between gut microbiota and bone metabolism, focusing on the roles of gut microbiota in bone ageing and aging-related bone diseases, including osteoporosis, fragility fracture repair, osteoarthritis, and spinal degeneration from different perspectives. The impact of gut microbiota on bone metabolism during aging through modification of endocrinology system, immune system and gut microbiota metabolites are summarized, facilitating a better grasp of the pathogenesis of aging-related bone metabolic diseases. This review offers innovative insights into targeting the gut microbiota for the treatment of bone ageing-related diseases as a clinical therapeutic strategy.


Subject(s)
Aging , Bone Diseases , Bone and Bones , Gastrointestinal Microbiome , Humans , Aging/metabolism , Aging/physiology , Gastrointestinal Microbiome/physiology , Bone and Bones/metabolism , Bone and Bones/microbiology , Bone Diseases/microbiology , Bone Diseases/metabolism , Animals , Osteoporosis/metabolism , Osteoporosis/microbiology
8.
ACS Appl Mater Interfaces ; 16(29): 37806-37817, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38988002

ABSTRACT

Food waste is an enormous challenge, with implications for the environment, society, and economy. Every year around the world, 1.3 billion tons of food are wasted or lost, and food waste-associated costs are around $2.6 trillion. Waste upcycling has been shown to mitigate these negative impacts. This study's optimized pomelo-peel biomass-derived porous material-based triboelectric nanogenerator (PP-TENG) had an open circuit voltage of 58 V and a peak power density of 254.8 mW/m2. As porous structures enable such triboelectric devices to respond sensitively to external mechanical stimuli, we tested our optimized PP-TENG's ability to serve as a self-powered sensor of biomechanical motions. As well as successfully harvesting sufficient mechanical energy to power light-emitting diodes and portable electronics, our PP-TENGs successfully monitored joint motions, neck movements, and gait patterns, suggesting their strong potential for use in healthcare monitoring and physical rehabilitation, among other applications. As such, the present work opens up various new possibilities for transforming a prolific type of food waste into value-added products and thus could enhance long-term sustainability while reducing such waste.


Subject(s)
Biomass , Electric Power Supplies , Porosity , Nanotechnology , Food , Humans , Citrus/chemistry , Food Loss and Waste
9.
Food Res Int ; 190: 114550, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945594

ABSTRACT

Fungal contaminations of cereal grains are a profound food-safety and food-security concern worldwide, threatening consumers' and animals' health and causing enormous economic burdens. Because far-ultraviolet C (far-UVC) light at 222 nm has recently been shown to be human-safe, we investigated its efficacy as an alternative to thermal, chemical, and conventional 254 nm UVC anti-fungal treatments. Our microplasma-based far-UVC lamp system achieved a 5.21-log reduction in the conidia of Aspergillus flavus suspended in buffer with a dose of 1032.0 mJ/cm2, and a 5.11-log reduction of Fusarium graminearum conidia in suspension with a dose of 619.2 mJ/cm2. We further observed that far-UVC treatments could induce fungal-cell apoptosis, alter mitochondrial membrane potential, lead to the accumulation of intracellular reactive oxygen species, cause lipid peroxidation, and result in cell-membrane damage. The lamp system also exhibited a potent ability to inhibit the mycelial growth of both A. flavus and F. graminearum. On potato dextrose agar plates, such growth was completely inhibited after doses of 576.0 mJ/cm2 and 460.8 mJ/cm2, respectively. To test our approach's efficacy at decontaminating actual cereal grains, we designed a cubical 3D treatment chamber fitted with six lamps. At a dose of 780.0 mJ/cm2 on each side, the chamber achieved a 1.88-log reduction of A. flavus on dried yellow corn kernels and a 1.11-log reduction of F. graminearum on wheat grains, without significant moisture loss to either cereal type (p > 0.05). The treatment did not cause significant changes in the propensity of wheat grains to germinate in the week following treatment (p > 0.05). However, it increased the germination propensity of corn kernels by more than 71% in the same timeframe (p < 0.05). Collectively, our results demonstrate that 222 nm far-UVC radiation can effectively inactivate fungal growth in liquid, on solid surfaces, and on cereal grains. If scalable, its emergence as a safe, cost-effective alternative tool for reducing fungi-related post-harvest cereal losses could have important positive implications for the fight against world hunger and food insecurity.


Subject(s)
Aspergillus flavus , Edible Grain , Fusarium , Ultraviolet Rays , Fusarium/radiation effects , Fusarium/growth & development , Aspergillus flavus/growth & development , Aspergillus flavus/radiation effects , Edible Grain/microbiology , Spores, Fungal/radiation effects , Spores, Fungal/growth & development , Food Contamination/prevention & control , Food Irradiation/methods , Food Microbiology , Reactive Oxygen Species/metabolism
10.
Nutrients ; 16(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38892508

ABSTRACT

Circulating 25-hydroxyvitamin D (25(OH)D) significantly influences endothelial function. This study assessed the correlation between serum 25(OH)D and endothelial function using the vascular reactivity index (VRI) in patients with type 2 diabetes mellitus (T2DM). Fasting blood samples from 102 T2DM participants and VRI were assessed. Patients were divided into three categories based on VRI: low (VRI < 1.0), intermediate (1.0 ≤ VRI < 2.0), and good (VRI ≥ 2.0). Among these patients, 30 (29.4%) had poor, 39 (38.2%) had intermediate, and 33 (32.4%) exhibited good vascular reactivity. Higher serum fasting glucose (p = 0.019), glycated hemoglobin (p = 0.009), and urinary albumin-to-creatinine ratio (p = 0.006) were associated, while lower prevalence of hypertension (p = 0.029), lower systolic blood pressure (p = 0.027), lower diastolic blood pressure (p < 0.001), and lower circulation 25(OH)D levels (p < 0.001) were associated with poor vascular reactivity. Significant independent associations between diastolic blood pressure (p = 0.002) and serum 25(OH)D level (p < 0.001) and VRI were seen in T2DM patients according to multivariable forward stepwise linear regression analysis. Serum 25(OH)D positively correlated with VRI values, and lower levels of serum 25(OH)D were linked to endothelial dysfunction in T2DM patients.


Subject(s)
Diabetes Mellitus, Type 2 , Endothelium, Vascular , Vitamin D , Humans , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Vitamin D/analogs & derivatives , Vitamin D/blood , Male , Female , Middle Aged , Aged , Endothelium, Vascular/physiopathology , Blood Pressure , Cross-Sectional Studies , Blood Glucose/analysis , Blood Glucose/metabolism , Vitamin D Deficiency/blood , Vitamin D Deficiency/complications , Glycated Hemoglobin/analysis , Glycated Hemoglobin/metabolism , Hypertension/blood
11.
ACS Appl Mater Interfaces ; 16(23): 29600-29609, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38832656

ABSTRACT

Hydrogel tubes made of sodium alginate (SA) have potential applications in drug delivery, soft robots, biomimetic blood vessels, tissue stents, and other fields. However, the continuous preparation of hollow SA hydrogel tubes with good stability and size control remains a huge challenge for chemists, material scientists, and medical practitioners. Inspired by the plant apical growth strategy, a new method named soft cap-guided growth was proposed to produce SA hydrogel tubes. Due to the introduction of inert low gravity substances, such as air and heptane, into the extrusion needle in front of calcium chloride solution to form a soft cap, the SA hydrogel tubes with controllable sizes were fabricated rapidly and continuously without using a template through a negative gravitropism mechanism. The SA hydrogel tubes had good tensile strength, high burst pressure, and good cell compatibility. In addition, hydrogel tubes with complex patterns were conveniently created by controlling the motion path of a soft cap, such as a rotating SA bath or magnetic force. Our research provided a simple innovative technique to steer the growth of hydrogel tubes, which made it possible to mass produce hydrogel tubes with controllable sizes and programmable patterns.


Subject(s)
Alginates , Hydrogels , Alginates/chemistry , Hydrogels/chemistry , Tensile Strength
12.
Nat Commun ; 15(1): 5157, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886340

ABSTRACT

The eukaryotic asparagine (N)-linked glycan is pre-assembled as a fourteen-sugar oligosaccharide on a lipid carrier in the endoplasmic reticulum (ER). Seven sugars are first added to dolichol pyrophosphate (PP-Dol) on the cytoplasmic face of the ER, generating Man5GlcNAc2-PP-Dol (M5GN2-PP-Dol). M5GN2-PP-Dol is then flipped across the bilayer into the lumen by an ER translocator. Genetic studies identified Rft1 as the M5GN2-PP-Dol flippase in vivo but are at odds with biochemical data suggesting Rft1 is dispensable for flipping in vitro. Thus, the question of whether Rft1 plays a direct or an indirect role during M5GN2-PP-Dol translocation has been controversial for over two decades. We describe a completely reconstituted in vitro assay for M5GN2-PP-Dol translocation and demonstrate that purified Rft1 catalyzes the translocation of M5GN2-PP-Dol across the lipid bilayer. These data, combined with in vitro results demonstrating substrate selectivity and rft1∆ phenotypes, confirm the molecular identity of Rft1 as the M5GN2-PP-Dol ER flippase.


Subject(s)
Endoplasmic Reticulum , Endoplasmic Reticulum/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Biological Transport , Oligosaccharides/metabolism , Dolichol Phosphates/metabolism , Dolichol Phosphates/genetics , Lipid Bilayers/metabolism , Phospholipid Transfer Proteins/metabolism , Phospholipid Transfer Proteins/genetics , Intracellular Membranes/metabolism , Lipopolysaccharides
13.
Autophagy ; : 1-11, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38869076

ABSTRACT

Protein aggregation caused by the disruption of proteostasis will lead to cellular cytotoxicity and even cell death, which is implicated in multiple neurodegenerative diseases. The elimination of aggregated proteins is mediated by selective macroautophagy receptors, which is termed aggrephagy. However, the identity and redundancy of aggrephagy receptors in recognizing substrates remain largely unexplored. Here, we find that CCDC50, a highly expressed autophagy receptor in brain, is recruited to proteotoxic stresses-induced polyubiquitinated protein aggregates and ectopically expressed aggregation-prone proteins. CCDC50 recognizes and further clears these cytotoxic aggregates through autophagy. The ectopic expression of CCDC50 increases the tolerance to stress-induced proteotoxicity and hence improved cell survival in neuron cells, whereas CCDC50 deficiency caused accumulation of lipid deposits and polyubiquitinated protein conjugates in the brain of one-year-old mice. Our study illustrates how aggrephagy receptor CCDC50 combats proteotoxic stress for the benefit of neuronal cell survival, thus suggesting a protective role in neurotoxic proteinopathy.Abbreviations: AD: Alzheimer disease; ALS: amyotrophic lateral sclerosis; ATG5: autophagy related 5; BODIPY: boron-dipyrromethene; CASP3: caspase 3; CCDC50: coiled-coil domain containing 50; CCT2: chaperonin containing TCP1 subunit 2; CHX: cycloheximide; CQ: chloroquine; CRISPR: clustered regulatory interspaced short palindromic repeat; Cas9: CRISPR-associated system 9; DAPI: 4',6-diamidino-2-phenylindole; FK2: Anti-ubiquitinylated proteins antibody, clone FK2; FUS: FUS RNA binding protein; GFP: green fluorescent protein; HD: Huntington disease; HTT: huntingtin; KEGG: Kyoto Encyclopedia of Genes and Genomes; LDS: LIR-docking site; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAPT/tau: microtubule associated protein tau; MIU: motif interacting with ubiquitin; NBR1: NBR1, autophagy cargo receptor; OPTN: optineurin; PD: Parkinson disease; PI: propidium iodide; ROS: reactive oxygen species; SOD1: superoxide dismutase 1; SQSTM1/p62: sequestosome 1; TAX1BP1: Tax1 binding protein 1; Ub: ubiquitin; UDS: UIM-docking site; UIM: ubiquitin interacting motif; UPS: ubiquitin-proteasome system.

14.
Cancer Manag Res ; 16: 651-661, 2024.
Article in English | MEDLINE | ID: mdl-38919872

ABSTRACT

Aim: This article aimed to find appropriate pancreatic cancer (PC) patients to treat with Gemcitabine with better survival outcomes by detecting hENT1 levels. Methods: We collected surgical pathological tissues from PC patients who received radical surgery in our hospital from September 2004 to December 2014. A total of 375 PC tissues and paired adjacent nontumor tissues were employed for the construction of 4 tissue microarrays (TMAs). The quality of the 4 TMAs was examined by HE staining. We performed immunohistochemistry analysis to evaluate hENT1 expression in the TMAs. Moreover, we detected hENT1 expression level and proved the role of hENT1 in cell proliferation, drug resistance, migration and invasion in vivo and vitro. Results: The results indicated that low hENT1 expression indicated a significantly poor outcome in PC patients, including shortened DFS (21.6±2.8 months versus 36.9±4.0 months, p<0.001) and OS (33.6±3.9 versus 39.6±3.9, p=0.004). Meanwhile, patients in stage I/II of TNM stage had a longer OS (40.2±3.4 versus 15.4±1.7, p=0.002) and DFS (31.0±3.1 versus 12.4±1.9, p=0.016) than patients in stage III/IV. Patients in M0 stage had a longer OS (39.7±3.4 versus 16.2±1.9, p=0.026) and DFS(30.7±3.0 versus 11.8±2.2, p=0.031) than patients in M1 stage, and patients with tumors not invading the capsule had a better DFS than those with tumor invasion into the capsule (30.8±3.0 versus 12.6±2.3, p=0.053). Patients with preoperative CA19-9 values ≤467 U/mL have longer DFS than that of patients who had preoperative CA19-9 values >467 U/mL (37.9±4.1 versus 22.9±4.0, p=0.04). In the subgroup analysis, a high hENT1 expression level was related to a longer OS(39.4±4.0 versus 31.5±3.9, p=0.001) and DFS(35.7±4.0 versus 20.6±2.7; p<0.0001) in the Gemcitabine subgroup. Conclusion: PC patients with high hENT1 expression have a better survival outcomes when receiving Gemcitabine. hENT1 expression can be a great prognostic indicator for PC patients to receive Gemcitabine treatment.

15.
Sci Total Environ ; 935: 173441, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38782289

ABSTRACT

Rice is a staple food for more than half of humanity, and 90 % of rice is grown and consumed in Asia. However, paddy rice cultivation creates an ideal environment for the production and release of methane (CH4). How to estimate regional CH4 emissions accurately and how to mitigate them efficiently have been of key concern. Here, with a machine learning method, we investigate the spatiotemporal changes, the major controlling factors and mitigation potentials of paddy rice CH4 emissions across Monsoon Asia at a resolution of 0.1° (∼10 km). Spatially CH4 emissions are highly heterogeneous, with the Indo-Gangetic Plain, Deltas of the Mekong, and Yangtze River Basin as the hotspots. Nationwide, China, India, Bangladesh and Vietnam are the major emitters. Straw applied on season is a critical controlling factor for CH4 emission in rice fields. The single-season rice contributes to over 80 % of the total emissions. CH4 emissions from Monsoon Asia have notably declined since 2007. Three mitigation strategies, including water management techniques, off-season straw return, and straw to biochar, may reduce CH4 emissions by 27.66 %, 23.78 %, and 21.79 %, respectively, with the most effective strategy being rice cultivation type-specific and environment-specific. Our findings gain new insights into CH4 emissions and mitigations across Monsoon Asia, providing evidence to adopt precise mitigation strategies based on rice cultivation types and local environment.

16.
Sci Rep ; 14(1): 10698, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730235

ABSTRACT

Janus group-III chalcogenide monolayers and based heterostructures with breaking vertical structural symmetry offer additional prospects in the upcoming high-performance photoelectric devices. We studied the geometrical, electronic, and photoelectric properties of Janus group-III chalcogenide monolayers and heterostructures. The most energy favorable stacking design of ten vertical heterostructures are considered. The results showed that the Janus Se-In-Ga-S and S-In-Ga-Se monolayers exhibit semiconducting characteristics with the band gaps of 1.295 eV and 1.752 eV, respectively. Furthermore, the different stacking configurations and surface termination at interface can realize the transition of band alignment between type I and type II due to the interlayer coupling. Moreover, we systematically investigated the photoelectric properties of Janus group-III chalcogenide heterostructures and predicated an optimized power conversion efficiency of 16.2%. These findings can aid in comprehending the customized characteristics of Janus group-III chalcogenide heterostructures, offering theoretical guidance for creating innovative photoelectric devices.

17.
Int J Mol Sci ; 25(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38732044

ABSTRACT

High malignancy is a prominent characteristic of epithelial ovarian cancer (EOC), emphasizing the necessity for further elucidation of the potential mechanisms underlying cancer progression. Aneuploidy and copy number variation (CNV) partially contribute to the heightened malignancy observed in EOC; however, the precise features of aneuploidy and their underlying molecular patterns, as well as the relationship between CNV and aneuploidy in EOC, remain unclear. In this study, we employed single-cell sequencing data along with The Cancer Genome Atlas (TCGA) to investigate aneuploidy and CNV in EOC. The technique of fluorescence in situ hybridization (FISH) was employed using specific probes. The copy number variation within the genomic region of chromosome 8 (42754568-47889815) was assessed and utilized as a representative measure for the ploidy status of individual cells in chromosome 8. Differential expression analysis was performed between different subgroups based on chromosome 8 ploidy. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), protein-protein interaction (PPI), and hub-gene analyses were subsequently utilized to identify crucial genes involved. By classifying enriched tumor cells into distinct subtypes based on chromosome 8 ploidy combined with TCGA data integration, we identified key genes driving chromosome 8 aneuploidy in EOC, revealing that PRKDC gene involvement through the mediated non-homologous end-joining pathway may play a pivotal role in disease progression. Further validation through analysis of the GEO and TCGA database and survival assessment, considering both mRNA expression levels and CNV status of PRKDC, has confirmed its involvement in the progression of EOC. Further functional analysis revealed an upregulation of PRKDC in both ovarian EOC cells and tissues, with its expression showing a significant correlation with the extent of copy number variation (CNV) on chromosome 8. Taken together, CNV amplification and aneuploidy of chromosome 8 are important characteristics of EOC. PRKDC and the mediated NHEJ pathway may play a crucial role in driving aneuploidy on chromosome 8 during the progression of EOC.


Subject(s)
Aneuploidy , Chromosomes, Human, Pair 8 , DNA Copy Number Variations , Disease Progression , Ovarian Neoplasms , Female , Humans , Carcinoma, Ovarian Epithelial/genetics , Carcinoma, Ovarian Epithelial/pathology , Chromosomes, Human, Pair 8/genetics , Gene Expression Regulation, Neoplastic , In Situ Hybridization, Fluorescence , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology
18.
J Inorg Biochem ; 257: 112599, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38749082

ABSTRACT

The urgent global health problem of antimicrobial resistance (AMR) calls for the discovery of new antibiotics with innovative modes of action while considering the low toxicity to mammalian cells. This paper proposes a novel strategy for designing antibiotics with selective bacterial toxicity by exploiting the positional differences of electron transport chains (ETC) in bacterial and mammalian cells. The focus is on cytochrome c (cyt C) and its maturation system in E. coli. The catalytic oxidative activity of metallophthalocyanine (MPc), which have a distinctive M-N4 structure, is being investigated. Unlike previous applications based on light-activated reactive oxygen species (ROS) generation, this study exploits the ability of MPcs to oxidize Fe2+ to Fe3+ in cyt C and catalyze the formation of disulfide bonds between cysteine residues to interfere with cyt C maturation, disrupt the bacterial respiratory chain and selectively kills bacteria. In contrast, in mammalian cells, these MPcs are located in the lysosomes and cannot access the ETC in the mitochondria, thus achieving selective bacterial toxicity. Two MPcs that showed effective antibacterial activity in a wound infection model were identified. This study provides a valuable reference for the design of novel antibiotics based on M-N4-based metal complex molecules.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Indoles , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Escherichia coli/drug effects , Indoles/chemistry , Indoles/pharmacology , Animals , Cytochromes c/metabolism , Cytochromes c/chemistry , Isoindoles , Humans , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Mice , Microbial Sensitivity Tests , Reactive Oxygen Species/metabolism , Oxidation-Reduction
19.
Biosensors (Basel) ; 14(4)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38667187

ABSTRACT

Antimicrobial-resistant (AMR) bacteria pose a significant global health threat, and bacteria that produce New Delhi metallo-ß-lactamase (NDM) are particularly concerning due to their resistance to most ß-lactam antibiotics, including carbapenems. The emergence and spread of NDM-producing genes in food-producing animals highlight the need for a fast and accurate method for detecting AMR bacteria. We therefore propose a PCR-coupled CRISPR/Cas12a-based fluorescence assay that can detect NDM-producing genes (blaNDM) in bacteria. Thanks to its designed gRNA, this CRISPR/Cas12a system was able to simultaneously cleave PCR amplicons and ssDNA-FQ reporters, generating fluorescence signals. Our method was found to be highly specific when tested against other foodborne pathogens that do not carry blaNDM and also demonstrated an excellent capability to distinguish single-nucleotide polymorphism. In the case of blaNDM-1 carrying E. coli, the assay performed exceptionally well, with a detection limit of 2.7 × 100 CFU/mL: 100 times better than conventional PCR with gel electrophoresis. Moreover, the developed assay detected AMR bacteria in food samples and exhibited enhanced performance compared to previously published real-time PCR assays. Thus, this novel PCR-coupled CRISPR/Cas12a-based fluorescence assay has considerable potential to improve current approaches to AMR gene detection and thereby contribute to mitigating the global threat of AMR.


Subject(s)
Bacterial Proteins , CRISPR-Associated Proteins , CRISPR-Cas Systems , Carbapenems , Endodeoxyribonucleases , beta-Lactamases , Carbapenems/pharmacology , beta-Lactamases/genetics , Carbapenem-Resistant Enterobacteriaceae/genetics , Enterobacteriaceae/genetics , Enterobacteriaceae/drug effects , Anti-Bacterial Agents/pharmacology , Escherichia coli/genetics , Escherichia coli/drug effects , Biosensing Techniques , Drug Resistance, Bacterial/genetics
20.
Biomed Pharmacother ; 174: 116542, 2024 May.
Article in English | MEDLINE | ID: mdl-38574620

ABSTRACT

Previous studies have demonstrated that the underlying mechanisms of myocardial ischemia/reperfusion injury (MIRI) are complex and involve multiple types of regulatory cell death, including ferroptosis, apoptosis, and autophagy. Thus, we aimed to identify the mechanisms underlying MIRI and validate the protective role of epigallocatechin-3-gallate (EGCG) and its related mechanisms in MIRI. An in vivo and in vitro models of MIRI were constructed. The results showed that pretreatment with EGCG could attenuate MIRI, as indicated by increased cell viability, reduced lactate dehydrogenase (LDH) activity and apoptosis, inhibited iron overload, abnormal lipid metabolism, preserved mitochondrial function, decreased infarct size, maintained cardiac function, decreased reactive oxygen species (ROS) level, and reduced TUNEL-positive cells. Additionally, EGCG pretreatment could attenuate ferroptosis, apoptosis, and autophagy induced by MIRI via upregulating 14-3-3η protein levels. Furthermore, the protective effects of EGCG could be abolished with pAd/14-3-3η-shRNA or Compound C11 (a 14-3-3η inhibitor) but not pAd/NC-shRNA. In conclusion, EGCG pretreatment attenuated ferroptosis, apoptosis, and autophagy by mediating 14-3-3η and protected cardiomyocytes against MIRI.


Subject(s)
14-3-3 Proteins , Apoptosis , Autophagy , Catechin , Catechin/analogs & derivatives , Ferroptosis , Myocardial Reperfusion Injury , Catechin/pharmacology , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/drug therapy , Animals , Autophagy/drug effects , Apoptosis/drug effects , Ferroptosis/drug effects , 14-3-3 Proteins/metabolism , Male , Mice, Inbred C57BL , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Reactive Oxygen Species/metabolism , Mice , Cardiotonic Agents/pharmacology , Cell Survival/drug effects , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL