Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 134
Filter
1.
Arch Gynecol Obstet ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575798

ABSTRACT

PURPOSES: To investigate the effect and safety of ovarian tissue cryopreservation (OTC) for fertility preservation in female patients with hematological diseases. METHODS: We designed a retrospective study. The clinical data of patients with hematological diseases undergoing OTC admitted to Peking University People's Hospital from April 2017 to January 2023 were analyzed and summarized. RESULTS: A total of 24 patients were included in the study, including 19 patients with malignant hematological diseases and 5 patients with non-malignant hematological diseases. The former included 14 patients with acute leukemia, 1 patient with chronic leukemia, and 4 patients with myelodysplastic syndrome, while the latter 5 patients were aplastic anemia (AA). 16 patients had received chemotherapy before OTC. The average age of 24 patients was 22.80 ± 6.81 years. The average anti-Mullerian hormone (AMH) was 1.97 ± 2.12 ng/mL, and the average follicle-stimulating hormone (FSH) was 7.01 ± 4.24 IU/L in examination before OTC. FSH was greater than 10.0 IU/L in 4 cases. The pre-OTC laboratory tests showed that the average white blood cell (WBC) count was (3.33 ± 1.35) × 109/L, the average hemoglobin was 91.42 ± 22.84 g/L, and the average platelet was (147.38 ± 114.46) × 109/L. After injection of recombinant human granulocyte colony-stimulating factor (rhG-CSF), blood transfusion, and iron supplementation in pre-OTC treatment, the average WBC count was (4.91 ± 3.07) × 109/L, the average hemoglobin was 98.67 ± 15.43 g/L, and the average platelet was (156.38 ± 103.22) × 109/L. Of the 24 patients, 22 underwent laparoscopic bilateral partial oophorectomy and oophoroplasty, and 2 underwent laparoscopic unilateral oophorectomy. The average duration of OTC was 59.54 ± 17.58 min, and the average blood loss was 32.1 ± 41.6 mL. The maximum blood loss was 200 mL. There was no significant difference in WBC count and hemoglobin concentration after OTC compared to pre-OTC period. Only the platelet count after OTC surgery was significantly different from that before surgery ([134.54 ± 80.84 vs. 156.38 ± 103.22] × 109/L, p < 0.05). None of the 24 patients had serious complications after OTC. 2 patients had mild infection symptoms, but both recovered well. 23 patients underwent hematopoietic stem cell transplantation (HSCT) after OTC. The median and interquartile range from OTC to the pretreatment of HSCT was 33 (57) days, and the median and interquartile range from OTC to HSCT was 41 (57) days. Seven of them began pretreatment of HSCT within 20 days and began HSCT within 30 days after OTC. All patients were followed up. Of the 23 patients who underwent HSCT after surgery, 22 presented with amenorrhea and 1 with scanty menstrual episodes. Seven patients underwent hormone replacement therapy (HRT) after HSCT. A patient with AA underwent ovarian tissue transplantation (OTT) 3 years after HSCT and resumed regular menstruation 6 months after OTT. CONCLUSIONS: Ovarian tissue cryopreservation has a promising future in fertility protection in patients with hematological diseases. However, patients with hematological malignancies often have received gonadotoxic therapy before OTC, which may be accompanied by myelosuppression while patients with non-malignant hematological diseases often present with severe hemocytopenia. So perioperative complete blood count of patients should be paid attention to. There was no significant difference in the WBC count and hemoglobin concentration in patients with hematological diseases before and after OTC surgery, and the platelet count decreased slightly within the normal range. Infection is the most common post-OTC complication, and HSCT pretreatment can be accepted as early as the 10th day after OTC. OTC has no adverse effects on patients with hematological diseases and does not delay HSCT treatment. For young patients with hematological diseases, OTC is an effective method of fertility preservation.

2.
BMC Genomics ; 25(1): 385, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38641598

ABSTRACT

BACKGROUND: The C2H2 zinc finger protein family plays important roles in plants. However, precisely how C2H2s function in Opisthopappus (Opisthopappus taihangensis and Opisthopappus longilobus) remains unclear. RESULTS: In this study, a total of 69 OpC2H2 zinc finger protein genes were identified and clustered into five Groups. Seven tandem and ten fragment repeats were found in OpC2H2s, which underwent robust purifying selection. Of the identified motifs, motif 1 was present in all OpC2H2s and conserved at important binding sites. Most OpC2H2s possessed few introns and exons that could rapidly activate and react when faced with stress. The OpC2H2 promoter sequences mainly contained diverse regulatory elements, such as ARE, ABRE, and LTR. Under salt stress, two up-regulated OpC2H2s (OpC2H2-1 and OpC2H2-14) genes and one down-regulated OpC2H2 gene (OpC2H2-7) might serve as key transcription factors through the ABA and JA signaling pathways to regulate the growth and development of Opisthopappus species. CONCLUSION: The above results not only help to understand the function of C2H2 gene family but also drive progress in genetic improvement for the salt tolerance of Opisthopappus species.


Subject(s)
CYS2-HIS2 Zinc Fingers , CYS2-HIS2 Zinc Fingers/genetics , Salt Stress/genetics , Genome, Plant , Transcription Factors/metabolism , Zinc Fingers/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Phylogeny
3.
Adv Sci (Weinh) ; : e2400426, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38666466

ABSTRACT

Adaptive metabolic responses and innate metabolites hold promising therapeutic potential for stroke, while targeted interventions require a thorough understanding of underlying mechanisms. Adiposity is a noted modifiable metabolic risk factor for stroke, and recent research suggests that it benefits neurological rehabilitation. During the early phase of experimental stroke, the lipidomic results showed that fat depots underwent pronounced lipolysis and released fatty acids (FAs) that feed into consequent hepatic FA oxidation and ketogenesis. Systemic supplementation with the predominant ketone beta-hydroxybutyrate (BHB) is found to exert discernible effects on preserving blood-brain barrier (BBB) integrity and facilitating neuroinflammation resolution. Meanwhile, blocking FAO-ketogenesis processes by administration of CPT1α antagonist or shRNA targeting HMGCS2 exacerbated endothelial damage and aggravated stroke severity, whereas BHB supplementation blunted these injuries. Mechanistically, it is unveiled that BHB infusion is taken up by monocarboxylic acid transporter 1 (MCT1) specifically expressed in cerebral endothelium and upregulated the expression of tight junction protein ZO-1 by enhancing local ß-hydroxybutyrylation of H3K9 at the promoter of TJP1 gene. Conclusively, an adaptive metabolic mechanism is elucidated by which acute lipolysis stimulates FAO-ketogenesis processes to restore BBB integrity after stroke. Ketogenesis functions as an early metabolic responder to restrain stroke progression, providing novel prospectives for clinical translation.

4.
Plants (Basel) ; 13(4)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38498538

ABSTRACT

When plants are exposed to salt stress, endogenous hormones are essential for their responses through biosynthesis and signal transduction pathways. However, the roles of endogenous hormones in two cliff species (Opisthopappus taihangensis and Opisthopappus longilobus (Opisthopappus genus)) in the Taihang Mountains under salt stress have not been investigated to date. Following different time treatments under 500 mM salt concentrations, 239 differentially expressed gene (DEG)-related endogenous hormones were identified that exhibited four change trends, which in Profile 47 were upregulated in both species. The C-DEG genes of AUX, GA, JA, BR, ETH, and ABA endogenous hormones were significantly enriched in Opisthopappus taihangensis (O. taihangensis) and Opisthopappus longilobus (O. longilobus). During the responsive process, mainly AUX, GA, and JA biosynthesis and signal transduction were triggered in the two species. Subsequently, crosstalk further influenced BR, EHT, ABA, and MAPK signal transduction pathways to improve the salt resistance of the two species. Within the protein-protein interactions (PPI), seven proteins exhibited the highest interactions, which primarily involved two downregulated genes (SAUR and GA3ox) and eight upregulated genes (ACX, MFP2, JAZ, BRI1, BAK1, ETR, EIN2, and SNRK2) of the above pathways. The more upregulated expression of ZEP (in the ABA biosynthesis pathway), DELLA (in the GA signaling pathway), ABF (in the ABA signaling pathway), and ERF1 (in the ETH signaling pathway) in O. taihangensis revealed that it had a relatively higher salt resistance than O. longilobus. This revealed that the responsive patterns to salt stress between the two species had both similarities and differences. The results of this investigation shed light on the potential adaptive mechanisms of O. taihangensis and O. longilobus under cliff environments, while laying a foundation for the study of other cliff species in the Taihang Mountains.

5.
Comput Biol Med ; 171: 108200, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38428099

ABSTRACT

BACKGROUND: The COVID-19 pandemic caused by SARS-CoV-2 has led to significant global morbidity and mortality, with potential neurological consequences, such as Parkinson's disease (PD). However, the underlying mechanisms remain elusive. METHODS: To address this critical question, we conducted an in-depth transcriptome analysis of dopaminergic (DA) neurons in both COVID-19 and PD patients. We identified common pathways and differentially expressed genes (DEGs), performed enrichment analysis, constructed protein‒protein interaction networks and gene regulatory networks, and employed machine learning methods to develop disease diagnosis and progression prediction models. To further substantiate our findings, we performed validation of hub genes using a single-cell sequencing dataset encompassing DA neurons from PD patients, as well as transcriptome sequencing of DA neurons from a mouse model of MPTP(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced PD. Furthermore, a drug-protein interaction network was also created. RESULTS: We gained detailed insights into biological functions and signaling pathways, including ion transport and synaptic signaling pathways. CD38 was identified as a potential key biomarker. Disease diagnosis and progression prediction models were specifically tailored for PD. Molecular docking simulations and molecular dynamics simulations were employed to predict potential therapeutic drugs, revealing that genistein holds significant promise for exerting dual therapeutic effects on both PD and COVID-19. CONCLUSIONS: Our study provides innovative strategies for advancing PD-related research and treatment in the context of the ongoing COVID-19 pandemic by elucidating the common pathogenesis between COVID-19 and PD in DA neurons.


Subject(s)
COVID-19 , Parkinson Disease , Animals , Mice , Humans , Parkinson Disease/genetics , Parkinson Disease/metabolism , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/therapeutic use , Molecular Docking Simulation , Pandemics , SARS-CoV-2 , Disease Models, Animal
6.
Langmuir ; 40(12): 6107-6117, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38466815

ABSTRACT

Many advanced materials are designed for the removal of heavy metal ions from water. However, materials for eliminating trace heavy metal ions from wastewater to meet drinking water standards remain a major challenge. Herein, epoxy group-functionalized open-cellular beads are synthesized by UV polymerization of a water-in-oil-in-water system. The epoxy groups are further transformed into diethylenetriaminepentaacetic acid (DTPA) with hexamethylene diamine as a bridging agent. The resulting material (DTPA@polyHIPE beads) can eliminate trace Cu(II), Cr(III), Pb(II), Fe(III), or Cd(II) from water. When 0.15 g of DTPA@polyHIPE beads are used to adsorb metal ions of 20 mg in 100 mL of water, the residue concentrations of Cu(II), Cr(III), Pb(II), Fe(III), and Cd(II) are reduced to 0.08, 0.06, 0.02, 0.09, and 0.07 mg/L, respectively. The adsorption efficiencies of the beads for these ions are all higher than 99.55%. The adsorbent is durable and exhibits good recyclability by retaining an adsorption capacity of ≥91% after 5 cycles. The negative values of ΔG in the adsorption process indicate that the adsorption is feasible and spontaneous. The chemical adsorption follows the Freundlich adsorption model, indicating a multilayer heterogeneous adsorption. The DTPA@polyHIPE beads have a great potential application in dealing with trace heavy metal ion polluted water.

7.
Comput Biol Med ; 172: 108243, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38484694

ABSTRACT

OBJECTIVE: This study aimed to develop and evaluate a machine learning model utilizing non-invasive clinical parameters for the classification of endometrial non-benign lesions, specifically atypical hyperplasia (AH) and endometrioid carcinoma (EC), in postmenopausal women. METHODS: Our study collected clinical parameters from a cohort of 999 patients with postmenopausal endometrial lesions and conducted preprocessing to identify 57 relevant characteristics from these irregular clinical data. To predict the presence of postmenopausal endometrial non-benign lesions, including atypical hyperplasia and endometrial cancer, we employed various models such as eXtreme Gradient Boosting (XGBoost), Random Forest (RF), Logistic Regression (LR), Support Vector Machine (SVM), Back Propagation Neural Network (BPNN), as well as two ensemble models. Additionally, a test set was performed on an independent dataset consisting of 152 patients. The performance evaluation of all models was based on metrics including the area under the receiver operating characteristic curve (AUC), sensitivity, specificity, precision, and F1 score. RESULTS: The RF model demonstrated superior recognition capabilities for patients with non-benign lesions compared to other models. In the test set, it attained a sensitivity of 88.1% and an AUC of 0.93, surpassing all alternative models evaluated in this study. Furthermore, we have integrated this model into our hospital's Clinical Decision Support System (CDSS) and implemented it within the outpatient electronic medical record system to continuously validate and optimize its performance. CONCLUSIONS: We have trained a model and deployed a system with high discriminatory power that may provide a novel approach to identify patients at higher risk of postmenopausal endometrial non-benign lesions who may benefit from more tailored screening and clinical intervention.


Subject(s)
Decision Support Systems, Clinical , Postmenopause , Humans , Female , Hyperplasia , Benchmarking , Machine Learning
8.
Nat Ecol Evol ; 8(4): 717-728, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38383853

ABSTRACT

Viruses are crucial in shaping soil microbial functions and ecosystems. However, studies on soil viromes have been limited in both spatial scale and biome coverage. Here we present a comprehensive synthesis of soil virome biogeographic patterns using the Global Soil Virome dataset (GSV) wherein we analysed 1,824 soil metagenomes worldwide, uncovering 80,750 partial genomes of DNA viruses, 96.7% of which are taxonomically unassigned. The biogeography of soil viral diversity and community structure varies across different biomes. Interestingly, the diversity of viruses does not align with microbial diversity and contrasts with it by showing low diversity in forest and shrubland soils. Soil texture and moisture conditions are further corroborated as key factors affecting diversity by our predicted soil viral diversity atlas, revealing higher diversity in humid and subhumid regions. In addition, the binomial degree distribution pattern suggests a random co-occurrence pattern of soil viruses. These findings are essential for elucidating soil viral ecology and for the comprehensive incorporation of viruses into soil ecosystem models.


Subject(s)
Soil , Viruses , Soil/chemistry , Ecosystem , Virome , Soil Microbiology , Ecology , Viruses/genetics
9.
Radiat Oncol ; 19(1): 3, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38191431

ABSTRACT

OBJECTIVES: Deep learning-based auto-segmentation of head and neck cancer (HNC) tumors is expected to have better reproducibility than manual delineation. Positron emission tomography (PET) and computed tomography (CT) are commonly used in tumor segmentation. However, current methods still face challenges in handling whole-body scans where a manual selection of a bounding box may be required. Moreover, different institutions might still apply different guidelines for tumor delineation. This study aimed at exploring the auto-localization and segmentation of HNC tumors from entire PET/CT scans and investigating the transferability of trained baseline models to external real world cohorts. METHODS: We employed 2D Retina Unet to find HNC tumors from whole-body PET/CT and utilized a regular Unet to segment the union of the tumor and involved lymph nodes. In comparison, 2D/3D Retina Unets were also implemented to localize and segment the same target in an end-to-end manner. The segmentation performance was evaluated via Dice similarity coefficient (DSC) and Hausdorff distance 95th percentile (HD95). Delineated PET/CT scans from the HECKTOR challenge were used to train the baseline models by 5-fold cross-validation. Another 271 delineated PET/CTs from three different institutions (MAASTRO, CRO, BERLIN) were used for external testing. Finally, facility-specific transfer learning was applied to investigate the improvement of segmentation performance against baseline models. RESULTS: Encouraging localization results were observed, achieving a maximum omnidirectional tumor center difference lower than 6.8 cm for external testing. The three baseline models yielded similar averaged cross-validation (CV) results with a DSC in a range of 0.71-0.75, while the averaged CV HD95 was 8.6, 10.7 and 9.8 mm for the regular Unet, 2D and 3D Retina Unets, respectively. More than a 10% drop in DSC and a 40% increase in HD95 were observed if the baseline models were tested on the three external cohorts directly. After the facility-specific training, an improvement in external testing was observed for all models. The regular Unet had the best DSC (0.70) for the MAASTRO cohort, and the best HD95 (7.8 and 7.9 mm) in the MAASTRO and CRO cohorts. The 2D Retina Unet had the best DSC (0.76 and 0.67) for the CRO and BERLIN cohorts, and the best HD95 (12.4 mm) for the BERLIN cohort. CONCLUSION: The regular Unet outperformed the other two baseline models in CV and most external testing cohorts. Facility-specific transfer learning can potentially improve HNC segmentation performance for individual institutions, where the 2D Retina Unets could achieve comparable or even better results than the regular Unet.


Subject(s)
Deep Learning , Head and Neck Neoplasms , Humans , Positron Emission Tomography Computed Tomography , Reproducibility of Results , Head and Neck Neoplasms/diagnostic imaging , Positron-Emission Tomography
10.
Int J Mol Sci ; 25(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38279226

ABSTRACT

Salt stress profoundly affects plant growth, prompting intricate molecular responses, such as alternative splicing (AS), for environmental adaptation. However, the response of AS events to salt stress in Opisthopappus (Opisthopappus taihangensis and Opisthopappus longilobus) remains unclear, which is a Taihang Mountain cliff-dwelling species. Using RNA-seq data, differentially expressed genes (DEGs) were identified under time and concentration gradients of salt stress. Two types of AS, skipped exon (SE) and mutually exclusive exons (MXE), were found. Differentially alternative splicing (DAS) genes in both species were significantly enriched in "protein phosphorylation", "starch and sucrose metabolism", and "plant hormone signal transduction" pathways. Meanwhile, distinct GO terms and KEGG pathways of DAS occurred between two species. Only a small subset of DAS genes overlapped with DEGs under salt stress. Although both species likely adopted protein phosphorylation to enhance salt stress tolerance, they exhibited distinct responses. The results indicated that the salt stress mechanisms of both Opisthopappus species exhibited similarities and differences in response to salt stress, which suggested that adaptive divergence might have occurred between them. This study initially provides a comprehensive description of salt responsive AS events in Opisthopappus and conveys some insights into the molecular mechanisms behind species tolerance on the Taihang Mountains.


Subject(s)
Alternative Splicing , Salt Stress , Salt Stress/genetics , RNA-Seq , Salt Tolerance/genetics , Plant Growth Regulators , Gene Expression Regulation, Plant , Transcriptome , Gene Expression Profiling
11.
Exp Hematol Oncol ; 13(1): 3, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38229178

ABSTRACT

As integral components of the immune microenvironment, tissue resident macrophages (TRMs) represent a self-renewing and long-lived cell population that plays crucial roles in maintaining homeostasis, promoting tissue remodeling after damage, defending against inflammation and even orchestrating cancer progression. However, the exact functions and roles of TRMs in cancer are not yet well understood. TRMs exhibit either pro-tumorigenic or anti-tumorigenic effects by engaging in phagocytosis and secreting diverse cytokines, chemokines, and growth factors to modulate the adaptive immune system. The life-span, turnover kinetics and monocyte replenishment of TRMs vary among different organs, adding to the complexity and controversial findings in TRMs studies. Considering the complexity of tissue associated macrophage origin, macrophages targeting strategy of each ontogeny should be carefully evaluated. Consequently, acquiring a comprehensive understanding of TRMs' origin, function, homeostasis, characteristics, and their roles in cancer for each specific organ holds significant research value. In this review, we aim to provide an outline of homeostasis and characteristics of resident macrophages in the lung, liver, brain, skin and intestinal, as well as their roles in modulating primary and metastatic cancer, which may inform and serve the future design of targeted therapies.

12.
Neurol Sci ; 45(5): 2211-2221, 2024 May.
Article in English | MEDLINE | ID: mdl-38038810

ABSTRACT

BACKGROUND: The brain functional network plays a crucial role in cognitive impairment in temporal lobe epilepsy (TLE). Based on voxel-mirrored homotopic connectivity (VMHC), this study explored how directed functional connectivity changes and is associated with impaired cognition in right TLE (rTLE). METHODS: Twenty-seven patients with rTLE and twenty-seven healthy controls were included to perform VMHC and Granger causality analysis (GCA). Correlation analysis was performed based on GCA and cognitive function. RESULTS: Bilateral middle frontal gyrus (MFG), middle temporal gyrus, dorsolateral superior frontal gyrus (SFGdor), and supramarginal gyrus (SMG) exhibited decreased VMHC values in the rTLE group. Brain regions with altered VMHC had abnormal directed functional connectivity with multiple brain regions, mainly belonging to the default mode network, sensorimotor network, and visual network. Besides, the Montreal Cognitive Assessment (MoCA) score was positively correlated with the connectivity from the left SFGdor to the right cerebellum crus2 and was negatively correlated with the connectivity from the left SMG to the right supplementary motor area (SMA) before correction. Before correction, both phasic and intrinsic alertness reaction time were positively correlated with the connectivity from the left MFG to the left precentral gyrus (PreCG), connectivity from the left SMG to the right PreCG, and the connectivity from the left SMG to the right SMA. The executive control effect reaction time was positively correlated with the connectivity from the left MFG to the left calcarine fissure surrounding cortex before correction. CONCLUSION: The disordered functional network tended to be correlated with cognition impairment in rTLE.


Subject(s)
Epilepsy, Temporal Lobe , Motor Cortex , Humans , Epilepsy, Temporal Lobe/diagnostic imaging , Magnetic Resonance Imaging , Brain/diagnostic imaging , Temporal Lobe
13.
Article in English | MEDLINE | ID: mdl-38036035

ABSTRACT

The causes of neurodegenerative diseases remain largely elusive, increasing their personal and societal impacts. To reveal the causal effects of iron load on Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis and multiple sclerosis, we used Mendelian randomisation and brain imaging data from a UK Biobank genome-wide association study of 39,691 brain imaging samples (predominantly of European origin). Using susceptibility-weighted images, which reflect iron load, we analysed genetically significant brain regions. Inverse variance weighting was used as the main estimate, while MR Egger and weighted median were used to detect heterogeneity and pleiotropy. Nine clear associations were obtained. For AD and PD, an increased iron load was causative: the right pallidum for AD and the right caudate, left caudate and right accumbens for PD. However, a reduced iron load was identified in the right and left caudate for multiple sclerosis, the bilateral hippocampus for mixed vascular dementia and the left thalamus and bilateral accumbens for subcortical vascular dementia. Thus, changes in iron load in different brain regions have causal effects on neurodegenerative diseases. Our results are crucial for understanding the pathogenesis and investigating the treatment of these diseases.


Subject(s)
Alzheimer Disease , Multiple Sclerosis , Neurodegenerative Diseases , Parkinson Disease , Humans , Neurodegenerative Diseases/diagnostic imaging , Neurodegenerative Diseases/pathology , Iron , Genome-Wide Association Study , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/pathology , Alzheimer Disease/pathology
14.
J Chem Phys ; 159(22)2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38063222

ABSTRACT

The classical three-stage model of stochastic gene expression predicts the statistics of single cell mRNA and protein number fluctuations as a function of the rates of promoter switching, transcription, translation, degradation and dilution. While this model is easily simulated, its analytical solution remains an unsolved problem. Here we modify this model to explicitly include cell-cycle dynamics and then derive an exact solution for the time-dependent joint distribution of mRNA and protein numbers. We show large differences between this model and the classical model which captures cell-cycle effects implicitly via effective first-order dilution reactions. In particular we find that the Fano factor of protein numbers calculated from a population snapshot measurement are underestimated by the classical model whereas the correlation between mRNA and protein can be either over- or underestimated, depending on the timescales of mRNA degradation and promoter switching relative to the mean cell-cycle duration time.


Subject(s)
Models, Genetic , Proteins , Proteins/metabolism , RNA, Messenger/genetics , Promoter Regions, Genetic/genetics , Gene Expression , Stochastic Processes
16.
Cancer Res ; 83(24): 4047-4062, 2023 12 15.
Article in English | MEDLINE | ID: mdl-38098451

ABSTRACT

Identifying novel cell surface receptors that regulate leukemia cell differentiation and can be targeted to inhibit cellular proliferation is crucial to improve current treatment modalities in acute myeloid leukemia (AML), especially for relapsed or chemotherapy-refractory leukemia. Leukocyte immunoglobulin-like receptor type B (LILRB) is an immunomodulatory receptor originally found to be expressed in myeloid cells. In this study, we found that LILRB receptors can be induced under inflammatory stimuli and chemotherapy treatment conditions. Blockade of LILRB3 inhibited leukemia cell proliferation and leukemia progression. In addition, treatment with LILRB3 blocking antibodies upregulated myeloid lineage differentiation transcription factors, including PU.1, C/EBP family, and IRF, whereas phosphorylation of proliferation regulators, for example, AKT, cyclin D1, and retinoblastoma protein, was decreased. Conversely, transcriptomic analysis showed LILRB3 activation by agonist antibodies may enhance leukemia survival through upregulation of cholesterol metabolism, which has been shown to promote leukemia cell survival. Moreover, LILRB3-targeted CAR T cells exhibited potent antitumor effects both in vitro and in vivo. Taken together, our results suggest that LILRB3 is a potentially potent target for multiple treatment modalities in AML. SIGNIFICANCE: LILRB3 regulates differentiation and proliferation in acute myeloid leukemia and can be targeted with monoclonal antibodies and CAR T cells to suppress leukemia growth.


Subject(s)
Immunotherapy, Adoptive , Leukemia, Myeloid, Acute , Humans , Immunotherapy, Adoptive/methods , T-Lymphocytes , Leukemia, Myeloid, Acute/pathology , Receptors, Cell Surface/metabolism , Myeloid Cells/metabolism , Receptors, Immunologic/metabolism , Antigens, CD/metabolism
17.
Nat Commun ; 14(1): 7318, 2023 11 11.
Article in English | MEDLINE | ID: mdl-37951952

ABSTRACT

Soil harbors a vast expanse of unidentified microbes, termed as microbial dark matter, presenting an untapped reservo)ir of microbial biodiversity and genetic resources, but has yet to be fully explored. In this study, we conduct a large-scale excavation of soil microbial dark matter by reconstructing 40,039 metagenome-assembled genome bins (the SMAG catalogue) from 3304 soil metagenomes. We identify 16,530 of 21,077 species-level genome bins (SGBs) as unknown SGBs (uSGBs), which expand archaeal and bacterial diversity across the tree of life. We also illustrate the pivotal role of uSGBs in augmenting soil microbiome's functional landscape and intra-species genome diversity, providing large proportions of the 43,169 biosynthetic gene clusters and 8545 CRISPR-Cas genes. Additionally, we determine that uSGBs contributed 84.6% of previously unexplored viral-host associations from the SMAG catalogue. The SMAG catalogue provides an useful genomic resource for further studies investigating soil microbial biodiversity and genetic resources.


Subject(s)
Microbiota , Soil , Microbiota/genetics , Metagenome/genetics , Biodiversity , Genomics , Soil Microbiology
18.
J Eat Disord ; 11(1): 207, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37986127

ABSTRACT

BACKGROUND: Bulimia nervosa (BN) is an eating disorder characterized by recurrent binge eating and compensatory behaviors. The thalamus plays a crucial role in the neural circuitry related to eating behavior and needs to be further explored in BN. METHODS: In this study, 49 BN patients and 44 healthy controls (HCs) were recruited. We applied the fractional amplitude of low-frequency fluctuation to investigate regional brain activity in the thalamus and functional connectivity (FC) to examine the synchronization of activity between thalamic subregions and other brain regions in both groups. All results underwent false discovery rate (p < 0.05, FDR correction) correction. Pearson correlation analysis was performed to assess the relationship between the patients' abnormal clinical performance and the thalamic alterations (p < 0.05, FDR correction). RESULTS: We found no significant differences in neural activity between BN patients and HCs in the sixteen thalamic subregions. However, compared to the HCs, the individuals with BN showed decreased FC between the thalamic subregions and several regions, including the bilateral prefrontal cortex, right inferior parietal lobule, right supplementary motor area, right insula, cingulate gyrus and vermis. Additionally, BN patients showed increased FC between the thalamic subregions and visual association regions, primary sensorimotor cortex, and left cerebellum. These altered FC patterns in the thalamus were found to be correlated with clinical variables (the frequency of binge eating/purging per week and external eating behavior scale scores) in the BN group. All results have passed FDR correction. CONCLUSIONS: Our study provides evidence that there is disrupted FC between thalamic subregions and other brain regions in BN patients during resting state. These regions are primarily located within the frontoparietal network, default mode network, somatosensory, and visual network. These findings elucidate the neural activity characteristics underlying BN and suggest that thalamic subregions have potential as targets for future neuromodulation interventions.


The high recurrence rate of bulimia nervosa (BN) poses a clinical challenge, and thus, it is crucial to improve the characterization and identification of brain functional abnormalities as direct targets for novel therapies. To investigate the neural circuitry associated with BN, the thalamus is a critical node since it serves as a higher-order relay point in the cortico-thalamo-cortical information pathway. Our findings reveal that altered functional connectivity (FC) between thalamic nuclei and other brain regions is evident throughout the whole brain, particularly within the frontoparietal network, default mode network, somatosensory, and visual network. These changes in FC are significantly associated with disordered eating behavior and the severity of illness in BN patients. Therefore, these findings help identify the neural mechanisms underlying disordered eating behavior and BN severity and suggest potential targets for future neuromodulation interventions.

19.
Quant Imaging Med Surg ; 13(10): 7077-7091, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37869275

ABSTRACT

Background: Accumulating evidence indicates maladaptive neural information interactions between different brain regions underlie bulimia nervosa (BN). However, little is known about the alterations in interhemispheric communication of BN, which is facilitated by the corpus callosum (CC), the major commissural fiber connecting the two hemispheres. To shed light on the interhemispheric communications in BN, the present study aims to explore alterations of interhemispheric homotopic functional connectivity and the CC microstructure in BN. Methods: Based on magnetic resonance imaging (MRI) data collected from 42 BN patients and 38 healthy controls (HCs), the group differences of voxel-mirrored homotopic connectivity (VMHC) index and CC white matter microstructure were compared. Then brain regions with significant group differences in VMHC were selected as seeds for subsequent functional connectivity (FC) analysis. Seed-based fiber tracking and correlation analysis were used to analyze the relationship between VMHC and CC changes. And correlation analysis was used to reveal the correlation between abnormal imaging variables and the clinical features of BN. Results: Compared with HCs, the BN group showed decreased fractional anisotropy (FA) in middle part of CC (CCMid) and increased VMHC in bilateral orbitofrontal cortex (OFC) and middle temporal gyrus (MTG) [false discovery rate (FDR) correction with a corrected threshold of P<0.05]. Subsequent FC analyses indicated increased FC between left OFC and right OFC, bilateral MTG, left middle occipital gyrus and right precuneus (PCUN); between right OFC and left cerebellum crus II and right PCUN; and between left MTG and right inferior temporal gyrus, right cerebellum lobule VI and right medial superior frontal gyrus (FDR correction with a corrected threshold of P<0.05). The VMHC values of OFC and MTG showed no correlations with FA values of the CCMid and the white fibers between the bilateral OFC and MTG were not through the CCMid. In addition, several regions with abnormal FC had a potential correlation trend with abnormal eating behaviors in BN patients (P<0.05, uncorrected). Conclusions: Aberrant interhemispheric homotopic functional connectivity and CC microstructure were observed in BN, and they may be independent of each other. Regions with aberrant interhemispheric homotopic functional connectivity showed hyperconnectivity with regions related to reward processing, body shape perception, and self-reference.

20.
Health Promot Int ; 38(5)2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37874985

ABSTRACT

The aim of this study was to explore the chain mediation model of self-efficacy and health literacy between empowerment and quality of life among spousal caregivers of disabled elderly based on 'Marriage Binding'. From December 2020 to June 2022, the cross-sectional study was conducted in hospitals and communities, in Guangdong, Fujian, Sichuan, Hunan, Jiangxi, Guangxi and Yunnan provinces, China. Descriptive statistics were used to describe the demographic data and four main variables, including empowerment, self-efficacy, health literacy and quality of life. Spearman correlation analysis was used to analyze the correlation between the four main research variables. Multiple Linear Regression and bootstrap analysis were used to analyze the direct and indirect effects among them. Any two variables of spousal caregivers were correlated among empowerment, self-efficacy, health literacy and quality of life. Self-efficacy and health literacy can separately and sequentially mediate the relationship between empowerment and quality of life. To improve the quality of life of spousal caregivers of disabled elderly, the mediating role of self-efficacy, the mediating role of health literacy and the chain mediating role of self-efficacy and health literacy should take effect. In the future, some intervention studies should be taken to enhance the effects of those variables that may be beneficial for improving quality of life of spousal caregivers of disabled elderly.


Subject(s)
Health Literacy , Humans , Aged , Quality of Life , Caregivers , Self Efficacy , Cross-Sectional Studies , China
SELECTION OF CITATIONS
SEARCH DETAIL
...