Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Language
Publication year range
1.
Commun Biol ; 6(1): 1067, 2023 10 19.
Article in English | MEDLINE | ID: mdl-37857855

ABSTRACT

The physicochemical and structural properties of antimicrobial peptides (AMPs) determine their mechanism of action and biological function. However, the development of AMPs as therapeutic drugs has been traditionally limited by their toxicity for human cells. Tuning the physicochemical properties of such molecules may abolish toxicity and yield synthetic molecules displaying optimal safety profiles and enhanced antimicrobial activity. Here, natural peptides were modified to improve their activity by the hybridization of sequences from two different active peptide sequences. Hybrid AMPs (hAMPs) were generated by combining the amphipathic faces of the highly toxic peptide VmCT1, derived from scorpion venom, with parts of four other naturally occurring peptides having high antimicrobial activity and low toxicity against human cells. This strategy led to the design of seven synthetic bioactive variants, all of which preserved their structure and presented increased antimicrobial activity (3.1-128 µmol L-1). Five of the peptides (three being hAMPs) presented high antiplasmodial at 0.8 µmol L-1, and virtually no undesired toxic effects against red blood cells. In sum, we demonstrate that peptide hybridization is an effective strategy for redirecting biological activity to generate novel bioactive molecules with desired properties.


Subject(s)
Anti-Infective Agents , Antimicrobial Cationic Peptides , Humans , Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemistry , Anti-Infective Agents/pharmacology , Amino Acid Sequence
2.
Schizophr Bull ; 47(1): 149-159, 2021 01 23.
Article in English | MEDLINE | ID: mdl-32766733

ABSTRACT

BACKGROUND: Functional connectivity abnormalities between Broca's and Wernicke's areas and the putamen revealed by functional magnetic resonance imaging (fMRI) are related to auditory hallucinations (AH). In long-term schizophrenia, reduced white matter structural integrity revealed by diffusion imaging in left arcuate fasciculus (connecting Broca's and Wernicke's areas) is likely related to AH. The structural integrity of connections with putamen and their relation to AH are unknown. Little is known about this relationship in first-episode psychosis (FEP), although auditory transcallosal connections were reported to play a role. White matter in the Broca's-Wernicke's-putamen language-related circuit and auditory transcallosal fibers was examined to investigate associations with AH in FEP. METHODS: White matter connectivity was measured in 40 FEP and 32 matched HC using generalized fractional anisotropy (gFA) derived from diffusion spectrum imaging (DSI). RESULTS: FEP and HC did not differ in gFA in any fiber bundle. In FEP, AH severity was significantly inversely related to gFA in auditory transcallosal fibers and left arcuate fasciculus. Although the right hemisphere arcuate fasciculus-AH association did not attain significance, the left and right arcuate fasciculus associations were not significantly different. CONCLUSIONS: Despite overall normal gFA in FEP, AH severity was significantly related to gFA in transcallosal auditory fibers and the left hemisphere connection between Broca's and Wernicke's areas. Other bilateral tracts' gFA were weakly associated with AH. At the first psychotic episode, AH are more robustly associated with left hemisphere arcuate fasciculus and interhemispheric auditory fibers microstructural deficits, likely reflecting mistiming of information flow between language-related cortical centers.


Subject(s)
Affective Disorders, Psychotic/pathology , Auditory Perception , Broca Area/pathology , Corpus Callosum/pathology , Hallucinations/pathology , Psychotic Disorders/pathology , Putamen/pathology , Schizophrenia/pathology , Wernicke Area/pathology , White Matter/pathology , Adolescent , Adult , Affective Disorders, Psychotic/diagnostic imaging , Broca Area/diagnostic imaging , Corpus Callosum/diagnostic imaging , Diffusion Magnetic Resonance Imaging , Female , Hallucinations/diagnostic imaging , Humans , Male , Neural Pathways/diagnostic imaging , Neural Pathways/pathology , Psychotic Disorders/diagnostic imaging , Putamen/diagnostic imaging , Schizophrenia/diagnostic imaging , Wernicke Area/diagnostic imaging , White Matter/diagnostic imaging , Young Adult
3.
Braz J Med Biol Res ; 52(3): e8098, 2019 Feb 25.
Article in English | MEDLINE | ID: mdl-30810624

ABSTRACT

This aim of this study was to assess the molecular mechanism of osteoporosis in schizophrenia patients with risperidone use. Here, we investigated the effects of risperidone on cellular proliferation and apoptosis of a preosteoblast cell line, MC3T3-E1. Cell viability and apoptotic rate of MC3T3-E1 were detected by cell counting kit-8 and flow cytometry at a serial dose of risperidone and at different time points, respectively. Bone transformation relevant gene serum osteocalcin (BGP), collagen 1, tumor necrosis factor-α (TNF-α), osteoprotegerin (OPG), and receptor activator of nuclear factor-κB ligand (RANKL) mRNA levels were determined by real-time PCR (qPCR). Their protein expression patterns were evaluated using western blot. The results revealed that risperidone dramatically inhibited MC3T3-E1 cell proliferation in a dose-dependent manner. It also significantly induced MC3T3-E1 cell apoptosis. TNF-α gene and protein levels were greatly enhanced after risperidone treatment. In contrast, BGP, collagen 1, OPG, and RANKL gene and protein levels were markedly downregulated. Our study indicated that risperidone suppressed MC3T3-E1 cell proliferation and induced apoptosis. It also regulated BGP gene and protein expression.


Subject(s)
Apoptosis/drug effects , Cell Proliferation/drug effects , Osteoblasts/drug effects , Risperidone/pharmacology , Animals , Cell Line , Collagen/drug effects , Flow Cytometry , Osteocalcin/drug effects , Osteoprotegerin/drug effects , Receptor Activator of Nuclear Factor-kappa B/drug effects , Tumor Necrosis Factor-alpha/drug effects
4.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;52(3): e8098, 2019. tab, graf
Article in English | LILACS | ID: biblio-984039

ABSTRACT

This aim of this study was to assess the molecular mechanism of osteoporosis in schizophrenia patients with risperidone use. Here, we investigated the effects of risperidone on cellular proliferation and apoptosis of a preosteoblast cell line, MC3T3-E1. Cell viability and apoptotic rate of MC3T3-E1 were detected by cell counting kit-8 and flow cytometry at a serial dose of risperidone and at different time points, respectively. Bone transformation relevant gene serum osteocalcin (BGP), collagen 1, tumor necrosis factor-α (TNF-α), osteoprotegerin (OPG), and receptor activator of nuclear factor-κB ligand (RANKL) mRNA levels were determined by real-time PCR (qPCR). Their protein expression patterns were evaluated using western blot. The results revealed that risperidone dramatically inhibited MC3T3-E1 cell proliferation in a dose-dependent manner. It also significantly induced MC3T3-E1 cell apoptosis. TNF-α gene and protein levels were greatly enhanced after risperidone treatment. In contrast, BGP, collagen 1, OPG, and RANKL gene and protein levels were markedly downregulated. Our study indicated that risperidone suppressed MC3T3-E1 cell proliferation and induced apoptosis. It also regulated BGP gene and protein expression.


Subject(s)
Animals , Osteoblasts/drug effects , Apoptosis/drug effects , Risperidone/pharmacology , Cell Proliferation/drug effects , Osteocalcin/drug effects , Cell Line , Collagen/drug effects , Tumor Necrosis Factor-alpha/drug effects , Receptor Activator of Nuclear Factor-kappa B/drug effects , Osteoprotegerin/drug effects , Flow Cytometry
5.
J Pediatr ; 174: 204-210.e1, 2016 07.
Article in English | MEDLINE | ID: mdl-27174143

ABSTRACT

OBJECTIVE: To characterize the phenotypes of Dent disease in Chinese children and their heterozygous mothers and to establish genetic diagnoses. STUDY DESIGN: Using a modified protocol, we screened 1288 individuals with proteinuria. A diagnosis of Dent disease was established in 19 boys from 16 families by the presence of loss of function/deleterious mutations in CLCN5 or OCRL1. We also analyzed 16 available patients' mothers and examined their pregnancy records. RESULTS: We detected 14 loss of function/deleterious mutations of CLCN5 in 15 boys and 2 mutations of OCRL1 in 4 boys. Of the patients, 16 of 19 had been wrongly diagnosed with other diseases and 11 of 19 had incorrect or unnecessary treatment. None of the patients, but 6 of 14 mothers, had nephrocalcinosis or nephrolithiasis at diagnosis. Of the patients, 8 of 14 with Dent disease 1 were large for gestational age (>90th percentile); 8 of 15 (53.3%) had rickets. We also present predicted structural changes for 4 mutant proteins. CONCLUSIONS: Pediatric Dent disease often is misdiagnosed; genetic testing achieves a correct diagnosis. Nephrocalcinosis or nephrolithiasis may not be sensitive diagnostic criteria. We identified 10 novel mutations in CLCN5 and OCRL1. The possibility that altered CLCN5 function could affect fetal growth and a possible link between a high rate of rickets and low calcium intake are discussed.


Subject(s)
Asian People/genetics , Chloride Channels/genetics , Dent Disease/diagnosis , Dent Disease/genetics , Mutation/genetics , Phosphoric Monoester Hydrolases/genetics , Adolescent , Adult , Child , Child, Preschool , China , Female , Fetal Development/genetics , Heterozygote , Humans , Male , Mothers , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL