Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
BMC Genomics ; 25(1): 465, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741087

ABSTRACT

BACKGROUND: The early 2 factor (E2F) family is characterized as a kind of transcription factor that plays an important role in cell division, DNA damage repair, and cell size regulation. However, its stress response has not been well revealed. RESULTS: In this study, ZmE2F members were comprehensively identified in the maize genome, and 21 ZmE2F genes were identified, including eight E2F subclade members, seven DEL subfamily genes, and six DP genes. All ZmE2F proteins possessed the DNA-binding domain (DBD) characterized by conserved motif 1 with the RRIYD sequence. The ZmE2F genes were unevenly distributed on eight maize chromosomes, showed diversity in gene structure, expanded by gene duplication, and contained abundant stress-responsive elements in their promoter regions. Subsequently, the ZmE2F6 gene was cloned and functionally verified in drought response. The results showed that the ZmE2F6 protein interacted with ZmPP2C26, localized in the nucleus, and responded to drought treatment. The overexpression of ZmE2F6 enhanced drought tolerance in transgenic Arabidopsis with longer root length, higher survival rate, and biomass by upregulating stress-related gene transcription. CONCLUSIONS: This study provides novel insights into a greater understanding and functional study of the E2F family in the stress response.


Subject(s)
Droughts , Gene Expression Regulation, Plant , Plant Proteins , Stress, Physiological , Transcription Factors , Zea mays , Zea mays/genetics , Zea mays/metabolism , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Phylogeny , Plants, Genetically Modified , Arabidopsis/genetics , Promoter Regions, Genetic , Chromosomes, Plant/genetics
2.
Int J Biol Macromol ; 266(Pt 1): 131208, 2024 May.
Article in English | MEDLINE | ID: mdl-38552695

ABSTRACT

In this study, three activators and two activation methods were employed to activate sesame lignin-based biochar. The biochar samples were comprehensively characterized, their abilities to adsorb benzo[a]pyrene (BaP) from sesame oil were assessed, and the mechanism was analyzed. The results showed that the biochar obtained by one-step activation was more effective in removing BaP from sesame oil than the biochar produced by two-step activation. Among them, the biochar generated by one-step activation with ZnCl2 as the activator had the largest specific surface area (1068.8776 m3/g), and the richest mesoporous structure (0.7891 m3/g); it removed 90.53 % of BaP from sesame oil. BaP was mainly adsorbed by the mesopores of biochar. Mechanistically, pore-filling, π-π conjugations, hydrogen bonding, and n-π interactions were involved. The adsorption was spontaneous and heat-absorbing. In conclusion, the preparation of sesame lignin biochar using one-step activation with ZnCl2 as the activator was found to be the best for removing BaP from sesame oil. This biochar may be an economical adsorbent for the industrial removal of BaP from sesame oil.


Subject(s)
Benzo(a)pyrene , Charcoal , Lignin , Sesame Oil , Sesamum , Charcoal/chemistry , Lignin/chemistry , Benzo(a)pyrene/chemistry , Adsorption , Sesame Oil/chemistry , Sesamum/chemistry , Zinc Compounds/chemistry , Chlorides/chemistry
3.
Eur J Med Chem ; 265: 116067, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38171146

ABSTRACT

Overexpression of ß3-tubulin is a common occurrence in human tumors and is associated with resistance to microtubule-targeting agents. PROTAC strategy has demonstrated significant potential in overcoming drug resistance. Herein, we report the discovery of W13 as the first PROTAC against tubulin, which was created by connecting a CRBN ligand to the widely recognized microtubule-destabilizing agent CA-4. Notably, it retains the inhibitory activity of the parental CA-4 and further exhibits substantial degradation of α/ß/ß3-tubulin in both A549 and A549/Taxol cell lines. The degradation of tubulin was subsequently verified to be mediated by the ubiquitin-proteasome system. Importantly, tumor xenograft research clearly showed W13's promising antitumor activity against human lung cancer. Taken together, the discovery of W13 demonstrated the practicality and feasibility of PROTAC targeting tubulin, hence establishing a potential therapeutic approach for treating NSCLC caused by the overexpression of ß3-tubulin.


Subject(s)
Lung Neoplasms , Paclitaxel , Sulfonamides , Humans , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Tubulin/metabolism , Drug Resistance, Neoplasm , Lung Neoplasms/pathology , Proteolysis , Ubiquitin-Protein Ligases/metabolism
4.
Plant Physiol Biochem ; 205: 108188, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37979574

ABSTRACT

Drought stress is a common abiotic factor and restricts plant growth and development. Exploring maize stress-related genes and their regulatory mechanisms is crucial for ensuring agricultural productivity and food security. The BRI1-EMS1 suppressor (BES1)/brassinazole-resistant 1 (BZR1) transcription factors (TFs) play important roles in plant growth, development, and stress response. However, maize ZmBES1/BZR1s are rarely reported. In the present study, the ZmBES1/BZR1-1 gene was cloned from maize B73 and functionally characterized in transgenic Arabidopsis and rice in drought stress response. The ZmBES1/BZR1-1 protein possessed a conserved bHLH domain characterized by BES1/BZR1 TFs, localized in the nucleus, and showed transcription activation activity. The expression of ZmBES1/BZR1-1 exhibited no tissue specificity but drought-inhibitory expression in maize. Under drought stress, overexpression of ZmBES1/BZR1-1 resulted in the enhancement of drought sensitivity of transgenic Arabidopsis and rice with a lower survival rate, reactive oxygen species (ROS) level and relative water content (RWC) and a higher stomatal aperture and relative electrolyte leakage (REL). The RNA-seq results showed that 56 differentially expressed genes (DEGs) were regulated by ZmBES1/BZR1-1 by binding to E-box elements in their promoters. The GO analysis showed that the DEGs were significantly annotated with response to oxidative stress and oxygen level. The study suggests that the ZmBES1/BZR1-1 gene negatively regulates drought stress, which provides insights into further underlying molecular mechanisms in the drought stress response mediated by BZR1/BES1s.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Transcription Factors/genetics , Transcription Factors/metabolism , Arabidopsis/metabolism , Drought Resistance , Zea mays/metabolism , Abscisic Acid/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Gene Expression Regulation, Plant , Stress, Physiological/genetics , Droughts , DNA-Binding Proteins/genetics , Arabidopsis Proteins/genetics
5.
Int J Mol Sci ; 24(18)2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37762337

ABSTRACT

The Pumilio (Pum) RNA-binding protein family regulates post-transcription and plays crucial roles in stress response and growth. However, little is known about Pum in plants. In this study, a total of 19 ZmPum genes were identified and classified into two groups in maize. Although each ZmPum contains the conserved Pum domain, the ZmPum members show diversity in the gene and protein architectures, physicochemical properties, chromosomal location, collinearity, cis-elements, and expression patterns. The typical ZmPum proteins have eight α-helices repeats, except for ZmPum2, 3, 5, 7, and 14, which have fewer α-helices. Moreover, we examined the expression profiles of ZmPum genes and found their involvement in kernel development. Except for ZmPum2, ZmPum genes are expressed in maize embryos, endosperms, or whole seeds. Notably, ZmPum4, 7, and 13 exhibited dramatically high expression levels during seed development. The study not only contributes valuable information for further validating the functions of ZmPum genes but also provides insights for improvement and enhancing maize yield.


Subject(s)
Endosperm , Zea mays , Zea mays/genetics , Seeds/genetics
6.
Plants (Basel) ; 12(16)2023 Aug 19.
Article in English | MEDLINE | ID: mdl-37631206

ABSTRACT

In model plants, the BRI1-EMS suppressor 1 (BES1)/brassinazole-resistant 1 (BZR1) transcription factors play vital roles in regulating growth, development, and stimuli response. However, the roles of maize ZmBES1/BZR1 members are largely unknown. In this research, the ZmBES1/BZR1-9 gene was ectopically expressed in Arabidopsis and rice for the phenotyping of flowering. We found that the complementation and overexpression of ZmBES1/BZR1-9 in bes1-D mutant and wild type Arabidopsis both resulted in early flowering that was about 10 days shorter than in the untransformed control under long-day conditions. In addition, there was no difference in the rosette leaf number between all transgenic lines and the control. Subsequently, the ZmBES1/BZR1-9 gene was overexpressed in rice. It was found that overexpression lines of rice exhibited early flowering with heading dates that were 8 days shorter compared with untransformed plants. Moreover, the results of RNA-seq and qRT-PCR showed that five flowering-regulated genes, namely At2-MMP, AtPCC1, AtMYB56, AtPELPK1, and AtPRP10, were significantly up-regulated in all complementary and overexpressing lines of Arabidopsis. Meanwhile, the results of RNA-seq showed that 69 and 33 differentially expressed genes (DEGs) were up- and down-regulated in transgenic rice, respectively. Four flowering-related genes, namely OsGA20OX1, OsCCR19, OsBTBN19, and OsRNS4 were significantly up-regulated in transgenic lines. To sum up, our findings demonstrate that ZmBES1/BZR1-9 is involved in controlling flowering and provide insights into further underlying roles of BES1/BZR1s in regulating growth and development in crops.

7.
Nat Mater ; 22(10): 1218-1226, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37620645

ABSTRACT

Replacement or debottlenecking of the extremely energy-intensive cryogenic distillation technology for the separation of ethylene from ethane has been a long-standing challenge. Membrane technology could be a desirable alternative with potentially lower energy consumption. However, the current key obstacle for industrial implementation of membrane technology is the low mixed-gas selectivity of polymeric, inorganic or hybrid membrane materials, arising from the similar sizes of ethylene (3.75 Å) and ethane (3.85 Å). Here we report precise molecular sieving and plasticization-resistant carbon membranes made by pyrolysing a shape-persistent three-dimensional triptycene-based ladder polymer of intrinsic microporosity with unparalleled mixed-gas performance for ethylene/ethane separation, with a selectivity of ~100 at 10 bar feed pressure, and with long-term continuous stability for 30 days demonstrated. These submicroporous carbon membranes offer opportunities for membrane technology in a wide range of notoriously difficult separation applications in the petrochemical and natural gas industry.

8.
Front Cell Infect Microbiol ; 13: 1150043, 2023.
Article in English | MEDLINE | ID: mdl-37180443

ABSTRACT

Background: The etiology of allergic rhinitis (AR) is complicated. Traditional therapy of AR still has challenges, such as low long-term treatment compliance, unsatisfactory therapeutic outcomes, and a high financial burden. It is urgent to investigate the pathophysiology of allergic rhinitis from different perspectives and explore brand-new possible preventative or treatment initiatives. Objective: The aim is to apply a multi-group technique and correlation analysis to explore more about the pathogenesis of AR from the perspectives of gut microbiota, fecal metabolites, and serum metabolism. Methods: Thirty BALB/c mice were randomly divided into the AR and Con(control) groups. A standardized Ovalbumin (OVA)-induced AR mouse model was established by intraperitoneal OVA injection followed by nasal excitation. We detected the serum IL-4, IL-5, and IgE by enzyme-linked immunosorbent assay (ELISA), evaluated the histological characteristics of the nasal tissues by the hematoxylin and eosin (H&E) staining, and observed the nasal symptoms (rubs and sneezes) to evaluate the reliability of the AR mouse model. The colonic NF-κB protein was detected by Western Blot, and the colonic histological characteristics were observed by the H&E staining to evaluate inflammation of colon tissue. We analyzed the V3 and V4 regions of the 16S ribosomal DNA (rDNA) gene from the feces (colon contents) through 16S rDNA sequencing technology. Untargeted metabolomics was used to examine fecal and serum samples to find differential metabolites. Finally, through comparison and correlation analysis of differential gut microbiota, fecal metabolites, and serum metabolites, we further explore the overall impact of AR on gut microbiota, fecal metabolites, and host serum metabolism and its correlation. Results: In the AR group, the IL-4, IL-5, IgE, eosinophil infiltration, and the times of rubs and sneezes were significantly higher than those in the Con group, indicating the successful establishment of the AR model. No differences in diversity were detected between the AR and Con groups. However, there were modifications in the microbiota's structure. At the phylum level, the proportion of Firmicutes and Proteobacteria in the AR group increased significantly, while the proportion of Bacteroides decreased significantly, and the ratio of Firmicutes/Bacteroides was higher. The key differential genera, such as Ruminococcus, were increased significantly in the AR group, while the other key differential genera, such as Lactobacillus, Bacteroides, and Prevotella, were significantly decreased in the Con group. Untargeted metabolomics analysis identified 28 upregulated and 4 downregulated differential metabolites in feces and 11 upregulated and 16 downregulated differential metabolites in serum under AR conditions. Interestingly, one of the significant difference metabolites, α-Linoleic acid (ALA), decreased consistently in feces and serum of AR. KEGG functional enrichment analysis and correlation analysis showed a close relationship between differential serum metabolites and fecal metabolites, and changes in fecal and serum metabolic patterns are associated with altered gut microbiota in AR. The NF-κB protein and inflammatory infiltration of the colon increased considerably in the AR group. Conclusion: Our study reveals that AR alters fecal and serum metabolomic signatures and gut microbiota characteristics, and there is a striking correlation between the three. The correlation analysis of the microbiome and metabolome provides a deeper understanding of AR's pathogenesis, which may provide a theoretical basis for AR's potential prevention and treatment strategies.


Subject(s)
Gastrointestinal Microbiome , Rhinitis, Allergic , Mice , Animals , Gastrointestinal Microbiome/genetics , NF-kappa B/metabolism , Interleukin-4 , Interleukin-5 , Reproducibility of Results , Rhinitis, Allergic/drug therapy , Rhinitis, Allergic/metabolism , Feces/microbiology , Metabolomics/methods , Immunoglobulin E , DNA, Ribosomal/analysis , RNA, Ribosomal, 16S/genetics
9.
Front Pediatr ; 11: 1134678, 2023.
Article in English | MEDLINE | ID: mdl-37114011

ABSTRACT

Objective: To evaluate serum inflammatory markers of YKL-40, Interleukin-6 (IL-6), Interleukin-8(IL-8), Interleukin-10(IL-10), TNF-α(tumor necrosis factor-α), and CRP (C-reactive protein) in children with and without OSAS. Methods: The ELISA technique has been used to identify the concentration of inflammatory markers such as YKL-40, IL-6, IL-8, IL-10, TNF-α, and CRP in the serum of 83 children with OSAS and 83 children without OSAS. Results: Serum levels of YKL-40, IL-6, IL-8, and IL-10 were found to be increased in children with OSAS. YKL-40 was found to be positively correlated with IL-6 and IL-8, and negatively correlated with IL-10. At the same time,YKL-40 was also found to be positively correlated with OAHI and LoSpO2% in OSAS group. IL-8 was positively correlated with OAHI whereas IL-10 was positively correlated with LoSpO2. Conclusion: Children with OSAS are in a systemic inflammatory state. YKL-40 together with IL-8 may act as serum inflammatory markers and provide an indication for the diagnosis of children with OSAS.

10.
Front Neurol ; 14: 1100469, 2023.
Article in English | MEDLINE | ID: mdl-36908598

ABSTRACT

Objective: This systematic review was performed to identify the role of cognitive reserve (CR) proxies in the functional outcome and mortality prognostication of patients after acute ischemic stroke. Methods: PubMed, Embase, Web of Science, and Cochrane Library were comprehensively searched by two independent reviewers from their inception to 31 August 2022, with no restrictions on language. The reference lists of reviews or included articles were also searched. Cohort studies with a follow-up period of ≥3 months identifying the association between CR indicators and the post-stroke functional outcome and mortality were included. The outcome records for patients with hemorrhage and ischemic stroke not reported separately were excluded. The Quality In Prognosis Studies (QUIPS) tool was used to assess the quality of included studies. Results: Our search yielded 28 studies (n = 1,14,212) between 2004 and 2022, of which 14 were prospective cohort studies and 14 were retrospective cohort studies. The follow-up period ranged from 3 months to 36 years, and the mean or median age varied from 39.6 to 77.2 years. Of the 28 studies, 15 studies used the functional outcome as their primary outcome interest, and 11 of the 28 studies included the end-point interest of mortality after ischemic stroke. In addition, two of the 28 studies focused on the interest of functional outcomes and mortality. Among the included studies, CR proxies were measured by education, income, occupation, premorbid intelligence quotient, bilingualism, and socioeconomic status, respectively. The quality of the review studies was affected by low to high risk of bias. Conclusion: Based on the current literature, patients with ischemic stroke with higher CR proxies may have a lower risk of adverse outcomes. Further prospective studies involving a combination of CR proxies and residuals of fMRI measurements are warranted to determine the contribution of CR to the adverse outcome of ischemic stroke. Systematic review registration: PROSPERO, identifier CRD42022332810, https://www.crd.york.ac.uk/PROSPERO/.

11.
Brain Res Bull ; 194: 1-12, 2023 03.
Article in English | MEDLINE | ID: mdl-36603794

ABSTRACT

Over-activated microglia and inflammatory mediators are found in patients with depression, while manipulation of the microglia function might represent a potential therapeutic strategy. Insulin-like growth factor 2 (IGF2) has been implicated in bacterial infections and autoimmune disorders, but the role of IGF2 on the active phenotype of microglia and neuroinflammation has not been well established. IGF2 influences in modulating microglia responding to neuroinflammation induced by lipopolysaccharide(LPS)challenge will be carefully examined. In the current study, we verified that systemic IGF2 treatment could produce an anti-depression effect in LPS-treated mice. Particularly, we found that systemic IGF2 treatment inhibited microglia over-activation and prevented its transformation to a pro-inflammatory phenotype, thereby protecting hippocampal neurogenesis. Since microglia reactive to neuroinflammation is a common feature of neuropsychiatric disorders, the discoveries from the present study may provide therapeutic innovation for these diseases.


Subject(s)
Depression , Insulin-Like Growth Factor II , Microglia , Animals , Male , Mice , Hippocampus/drug effects , Hippocampus/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Lipopolysaccharides , Microglia/drug effects , Microglia/metabolism , Neuroinflammatory Diseases , Phenotype , Insulin-Like Growth Factor II/metabolism , Insulin-Like Growth Factor II/pharmacology , Depression/drug therapy
12.
Behav Brain Res ; 439: 114223, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36427589

ABSTRACT

Pyroptosis, a newly discovered proinflammatory programmed cell death, is involved in the regulation of cognitive dysfunction, such as Alzheimer's disease. Exploring potential drug targets that prevent pyroptotic procedures might benefit the development of a cure for these diseases. In the present study, we explored whether the transient receptor potential vanilloid 4 (TRPV4) blocker HC067047 and knockdown of TRPV4 in the hippocampus could improve cognitive behavior through the inhibition of pyroptosis in a mouse model developed using systemic administration of lipopolysaccharide (LPS). We found that systemic administration of HC067047 or knockdown of hippocampal TRPV4 prevented the activation of canonical and noncanonical pyroptosis in the hippocampus of LPS-treated mice. Consistent with the inhibition of the hippocampal pyroptosis pathway, a knockdown of hippocampal TRPV4 lowered expression of TNF-α, IL-1ß, IL-18, and IL-6. Furthermore, we verified that the main pyroptosis cell type might be a neuron, indicated by reduced neuronal marker expression. Mechanically, we also found that knockdown of hippocampal TRPV4 might inhibit phosphorylation of CamkⅡα which results in NFκb mediated inflammasome reduction in the hippocampus of LPS-treated mice. More interestingly, mice intraperitoneally injected with HC067047 or the hippocampus injected with TRPV4 shRNA showed improved cognitive behavior, as indicated by the enhanced discrimination ratio in the NORT, NOPT, and SNPT. Collectively, we consider that HC067047 might be a small molecular drug that prevents pyroptosis, and TRPV4 could be an effective therapeutic target for preventing pyroptosis-induced cognitive dysfunction.


Subject(s)
Antineoplastic Agents , Cognitive Dysfunction , Mice , Animals , Lipopolysaccharides/pharmacology , Pyroptosis , TRPV Cation Channels , Inflammasomes/metabolism , Cognitive Dysfunction/drug therapy , Antineoplastic Agents/pharmacology , Hippocampus/metabolism
13.
Int J Mol Sci ; 23(24)2022 Dec 11.
Article in English | MEDLINE | ID: mdl-36555363

ABSTRACT

Early responsive dehydration (ERD) genes can be rapidly induced by dehydration. ERD15 genes have been confirmed to regulate various stress responses in plants. However, the maize ERD15 members have not been characterized. In the present study, a total of five ZmERD15 genes were identified from the maize genome and named ZmERD15a, ZmERD15b, ZmERD15c, ZmERD15d, and ZmERD15e. Subsequently, their protein properties, gene structure and duplication, chromosomal location, cis-acting elements, subcellular localization, expression pattern, and over-expression in yeast were analyzed. The results showed that the ZmERD15 proteins were characterized by a similar size (113-159 aa) and contained a common domain structure, with PAM2 and adjacent PAE1 motifs followed by an acidic region. The ZmERD15 proteins exhibited a close phylogenetic relationship with OsERD15s from rice. Five ZmERD15 genes were distributed on maize chromosomes 2, 6, 7, and 9 and showed a different exon-intron organization and were expanded by duplication. Besides, the promoter region of the ZmERD15s contained abundant cis-acting elements that are known to be responsive to stress and hormones. Subcellular localization showed that ZmERD15b and ZmERD15c were localized in the nucleus. ZmERD15a and ZmERD15e were localized in the nucleus and cytoplasm. ZmERD15d was localized in the nucleus and cell membrane. The results of the quantitative real-time PCR (qRT-PCR) showed that the expression of the ZmERD15 genes was regulated by PEG, salinity, and ABA. The heterologous expression of ZmERD15a, ZmERD15b, ZmERD15c, and ZmERD15d significantly enhanced salt tolerance in yeast. In summary, a comprehensive analysis of ZmERD15s was conducted in the study. The results will provide insights into further dissecting the biological function and molecular mechanism of ZmERD15s regulating of the stress response in maize.


Subject(s)
Saccharomyces cerevisiae , Zea mays , Zea mays/genetics , Zea mays/metabolism , Promoter Regions, Genetic , Phylogeny , Saccharomyces cerevisiae/metabolism , Dehydration/genetics , Plant Proteins/metabolism , Multigene Family , Gene Expression Regulation, Plant , Stress, Physiological/genetics
14.
Int J Clin Pract ; 2022: 3882975, 2022.
Article in English | MEDLINE | ID: mdl-36474552

ABSTRACT

Objective: This study aims to compare the effect of blended teaching and traditional teaching in higher medical education during the pandemic era. Methods: Taking the teaching of neurology as an example, 293 Yangzhou University Clinical Medicine 2016 undergraduate students were selected as the research subjects, and were randomly divided into 2 groups a blended teaching group (n = 148) and a traditional teaching group (n = 145), and received blended teaching and traditional teaching, respectively. The blended teaching was based on a Massive Open Online Course, problem-based learning, and case-based learning and supplemented by Tencent video conferences, QQ messaging groups, and other auxiliary teaching tools. At the end of the course, the teaching effect and satisfaction rate were evaluated through theory assessment, practical skills assessment, and an anonymous questionnaire survey. Results: There were significant differences in theoretical achievements (81.83 ± 6.23 vs 76.79 ± 6.87, P < 0.001) and practical skill achievements (84.74 ± 6.50 vs 78.48 ± 6.53, P < 0.001). In addition, significant differences in all aspects of satisfaction rate were observed between the two groups (all P < 0.001). Conclusion: Blended teaching is beneficial to students' learning and stimulates their enthusiasm, cultivates clinical thinking ability, and improves teaching quality. Thus, it has played a positive role in the reform of higher medical teaching during the pandemic era.


Subject(s)
Education, Medical , Humans
16.
Front Cell Neurosci ; 16: 1012968, 2022.
Article in English | MEDLINE | ID: mdl-36439205

ABSTRACT

Microglia, the most prominent resident immune cells, exhibit multiple functional states beyond their immunomodulatory roles. Non-immune functions such as synaptic reorganization, removal of cellular debris, and deposition of abnormal substances are mediated by phagocytosis of normal or enhanced microglia. Activation or migration of microglia occurs when environmental cues are altered. In response to pathological factors, microglia change into various phenotypes, preventing or exacerbating tissue damage. Interleukin-33 (IL-33) is an important cytokine that regulates innate immunity, and microglia are thought to be its target cells. Here, we outline the role of IL-33 in the expression of microglial functions such as phagocytosis, migration, activation, and inflammatory responses. We focus on microglial properties and diverse functional states in health and disease, including the different effects of IL-33 perturbation on microglia in vivo and in vitro. We also highlight several well-established mechanisms of microglial function mediated by IL-33, which may be initiators and regulators of microglial function and require elucidation and expansion of the underlying mechanisms.

17.
Front Microbiol ; 13: 1002084, 2022.
Article in English | MEDLINE | ID: mdl-36439824

ABSTRACT

Objective: This study aims to explore how gut microbiota dysbiosis affects allergic rhinitis (AR) and whether short-chain fatty acids (SCFAs) play a role in this process. Methods: A mouse gut microbiota dysbiosis model was established by adding vancomycin to drinking water for 2 weeks before ovalbumin (OVA) sensitization. Then an OVA-alum AR mouse model was established by intraperitoneal OVA injection followed by nasal excitation. Hematoxylin and eosin (H&E) staining was performed to observe pathological changes in nasal and colon tissues of AR mice. Serum levels of total-IgE, OVA-sIgE, IL-4, IL-5, IL-10, and TGF-ß1 were measured. The composition and diversity of the mouse gut microbiota were observed by 16S rDNA sequencing. Levels of SCFAs in feces were determined using SCFA-targeted metabolomics. Sodium butyrate (NaB) was added daily to mice on a low-fiber basal diet 2 weeks before the first sensitization, until the end of the study. Results: After gut microbiota dysbiosis, serum levels of the total IgE, OVA-sIgE, IL-4, and IL-5 in AR mice were significantly increased, compared with the control group. The composition and diversity of gut microbiota were significantly altered after gut microbiota dysbiosis, with the fecal SCFAs significantly reduced as well. The reduced bacterial genera after gut microbiota dysbiosis, such as Ruminococcus and Lactobacillus, were significantly and positively correlated with SCFAs. In contrast, the increased genera in the Van group, such as Escherichia-Shigella and Klebsiella, were significantly negatively correlated with SCFAs in feces. NaB treatment significantly reduced total-IgE, OVA-sIgE, IL-4, and IL-5 levels in serum, and inflammatory infiltration of the nasal and colon mucosa. In addition, serum levels of IL-10 and TGF-ß1 increased significantly after NaB treatment. Foxp3 protein in the colon was upregulated considerably after NaB intervention. Conclusion: Vancomycin-induced gut microbiota dysbiosis increased susceptibility and severity of AR, which is significantly related to reduced SCFA-producing bacteria, fecal SCFAs, and specific bacterial taxa. In addition, it was found that NaB alleviated low dietary fiber base-fed symptoms and immune status in AR mice.

18.
Int J Mol Sci ; 23(22)2022 Nov 19.
Article in English | MEDLINE | ID: mdl-36430848

ABSTRACT

Biotic constraints, including pathogenic fungi, viruses and bacteria, herbivory insects, as well as parasitic nematodes, cause significant yield loss and quality deterioration of crops. The effect of conventional management of these biotic constraints is limited. The advances in transgenic technologies provide a direct and directional approach to improve crops for biotic resistance. More than a hundred transgenic events and hundreds of cultivars resistant to herbivory insects, pathogenic viruses, and fungi have been developed by the heterologous expression of exogenous genes and RNAi, authorized for cultivation and market, and resulted in a significant reduction in yield loss and quality deterioration. However, the exploration of transgenic improvement for resistance to bacteria and nematodes by overexpression of endogenous genes and RNAi remains at the testing stage. Recent advances in RNAi and CRISPR/Cas technologies open up possibilities to improve the resistance of crops to pathogenic bacteria and plant parasitic nematodes, as well as other biotic constraints.


Subject(s)
Crops, Agricultural , Nematoda , Animals , Plants, Genetically Modified/genetics , Crops, Agricultural/genetics , RNA Interference , Nematoda/genetics
19.
Front Pharmacol ; 13: 980340, 2022.
Article in English | MEDLINE | ID: mdl-36059947

ABSTRACT

Methamphetamine, commonly referred to as METH, is a highly addictive psychostimulant and one of the most commonly misused drugs on the planet. Using METH continuously can increase your risk for drug addiction, along with other health complications like attention deficit disorder, memory loss, and cognitive decline. Neurotoxicity caused by METH is thought to play a significant role in the onset of these neurological complications. The molecular mechanisms responsible for METH-caused neuronal damage are discussed in this review. According to our analysis, METH is closely associated with programmed cell death (PCD) in the process that causes neuronal impairment, such as apoptosis, autophagy, necroptosis, pyroptosis, and ferroptosis. In reviewing this article, some insights are gained into how METH addiction is accompanied by cell death and may help to identify potential therapeutic targets for the neurological impairment caused by METH abuse.

20.
Nat Mater ; 21(10): 1183-1190, 2022 10.
Article in English | MEDLINE | ID: mdl-35941363

ABSTRACT

The development of membranes that block solutes while allowing rapid water transport is of great importance. The microstructure of the membrane needs to be rationally designed at the molecular level to achieve precise molecular sieving and high water flux simultaneously. We report the design and fabrication of ultrathin, ordered conjugated-polymer-framework (CPF) films with thicknesses down to 1 nm via chemical vapour deposition and their performance as separation membranes. Our CPF membranes inherently have regular rhombic sub-nanometre (10.3 × 3.7 Å) channels, unlike membranes made of carbon nanotubes or graphene, whose separation performance depends on the alignment or stacking of materials. The optimized membrane exhibited a high water/NaCl selectivity of ∼6,900 and water permeance of ∼112 mol m-2 h-1 bar-1, and salt rejection >99.5% in high-salinity mixed-ion separations driven by osmotic pressure. Molecular dynamics simulations revealed that water molecules quickly and collectively pass through the membrane by forming a continuous three-dimensional network within the hydrophobic channels. The advent of ordered CPF provides a route towards developing carbon-based membranes for precise molecular separation.


Subject(s)
Graphite , Nanotubes, Carbon , Polymers , Sodium Chloride , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...