Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
1.
JCI Insight ; 9(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38587080

ABSTRACT

BACKGROUNDAs Omicron is prompted to replicate in the upper airway, neutralizing antibodies (NAbs) delivered through inhalation might inhibit early-stage infection in the respiratory tract. Thus, elucidating the prophylactic efficacy of NAbs via nasal spray addresses an important clinical need.METHODSThe applicable potential of a nasal spray cocktail containing 2 NAbs was characterized by testing its neutralizing potency, synergetic neutralizing mechanism, emergency protective and therapeutic efficacy in a hamster model, and pharmacokinetics/pharmacodynamic (PK/PD) in human nasal cavity.RESULTSThe 2 NAbs displayed broad neutralizing efficacy against Omicron, and they could structurally compensate each other in blocking the Spike-ACE2 interaction. When administrated through the intranasal mucosal route, this cocktail demonstrated profound efficacy in the emergency prevention in hamsters challenged with authentic Omicron BA.1. The investigator-initiated trial in healthy volunteers confirmed the safety and the PK/PD of the NAb cocktail delivered via nasal spray. Nasal samples from the participants receiving 4 administrations over a course of 16 hours demonstrated potent neutralization against Omicron BA.5 in an ex vivo pseudovirus neutralization assay.CONCLUSIONThese results demonstrate that the NAb cocktail nasal spray provides a good basis for clinical prophylactic efficacy against Omicron infections.TRIAL REGISTRATIONwww.chictr.org.cn, ChiCTR2200066525.FUNDINGThe National Science and Technology Major Project (2017ZX10202203), the National Key Research and Development Program of China (2018YFA0507100), Guangzhou National Laboratory (SRPG22-015), Lingang Laboratory (LG202101-01-07), Science and Technology Commission of Shanghai Municipality (YDZX20213100001556), and the Emergency Project from the Science & Technology Commission of Chongqing (cstc2021jscx-fyzxX0001).


Subject(s)
Antibodies, Neutralizing , Nasal Sprays , Animals , Cricetinae , Humans , China , Trachea , Healthy Volunteers
2.
Int J Biol Sci ; 20(6): 1992-2007, 2024.
Article in English | MEDLINE | ID: mdl-38617547

ABSTRACT

Objective: Osteoarthritis (OA) is the most prominent chronic arthritic disease, affecting over 3 billion people globally. Synovial macrophages, as immune cells, play an essential role in cartilage damage in OA. Therefore, regulating macrophages is crucial for controlling the pathological changes in OA. Triggering receptor expressed on myeloid cells 2 (TREM2), as expressed on immune cell surfaces, such as macrophages and dendritic cells, has suppressed inflammation and regulated M2 macrophage polarization but demonstrated an unknown role in synovial macrophage polarization in OA. This study aimed to investigate TREM2 expression downregulation in OA mice macrophages. Furthermore, the expression trend of TREM2 was associated with polarization-related molecule expression in macrophages of OA mice. Results: We used TREM2 knockout (TREM2-KO) mice to observe that TREM2 deficiency significantly exacerbated the joint inflammation response in OA mice, thereby accelerating disease progression. Separating macrophages and chondrocytes from TREM2-KO mice and co-cultivating them significantly increased chondrocyte apoptosis and inhibited chondrocyte proliferation. Further, TREM2 deficiency also significantly enhanced phosphatidylinositol 3-kinase(PI3K)/AKT signaling pathway activation, increasing nuclear factor kappa light chain enhancer of activated B cells (NF-κB) signaling and C-X-C Motif Chemokine Ligand 3 (CXCL3) expression. Furthermore, NF-κB signaling pathway inhibition significantly suppressed arthritis inflammation in OA mice, thereby effectively alleviating TREM2 deficiency-related adverse effects on chondrocytes. Notably, knocking down CXCL3 of TREM2-KO mice macrophages significantly inhibits inflammatory response and promotes chondrocyte proliferation. Intravenous recombinant TREM2 protein (soluble TREM2, sTREM2) injection markedly promotes macrophage polarization from M1 to M2 and improves the joint tissue pathology and inflammatory response of OA. Conclusion: Our study reveals that TREM2 promotes macrophage polarization from M1 to M2 during OA by NF-κB/CXCL3 axis regulation, thereby improving the pathological state of OA.


Subject(s)
NF-kappa B , Osteoarthritis , Animals , Mice , Chemokines, CXC , Inflammation , Membrane Glycoproteins/genetics , Osteoarthritis/genetics , Phosphatidylinositol 3-Kinases , Receptors, Immunologic/genetics , Signal Transduction/genetics
3.
In Vitro Cell Dev Biol Anim ; 60(3): 300-306, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38506940

ABSTRACT

The culture of preimplantation embryos in vitro is an important method for human and mouse reproductive technology. This study aims to investigate the influence of different conditions of culture media on the preimplantation stage of mouse embryos cultured in vitro, and monitor the post-implantation development of new mice after embryo transfer to surrogate females. We demonstrated here that mouse embryos cultured in vitro in fresh M16, KSOM, Global, and HTF embryo culture media from one cell to the blastocyst stage and the subsequent embryo transfer to surrogate females are able to proceed through post-implantation development and, after birth, develop into healthy mice. However, culture of embryos in differently aged media shows various (often unpredictable) results. To find the optimal storage conditions of culture media, we suggest that the freezing and long-term storage of these media at - 80°C will not influence the quality of the media. To test this hypothesis, we grew embryos from one cell to blastocysts in vitro in the selected media after thawing and subsequently transferring them to surrogate females. Embryo culture in these four media after thawing does not affect preimplantation and postnatal mouse development. Thus, we have shown that storage of embryo culture media at low temperature (- 80°C) does not impact the quality of the media, and subsequently, it can be used for the culture of embryos for the full preimplantation period, the same as in fresh media.


Subject(s)
Embryo Culture Techniques , Embryo Transfer , Female , Mice , Humans , Animals , Culture Media/pharmacology , Embryo Culture Techniques/methods , Embryo Transfer/methods , Embryo, Mammalian , Embryonic Development , Blastocyst
4.
Heliyon ; 10(5): e27466, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38463824

ABSTRACT

Objective: Chondrocyte death is the hallmark of cartilage degeneration during osteoarthritis (OA). However, the specific pathogenesis of cell death in OA chondrocytes has not been elucidated. This study aims to validate the role of CDKN1A, a key programmed cell death (PCD)-related gene, in chondrogenic differentiation using a combination of single-cell and bulk sequencing approaches. Design: OA-related RNA-seq data (GSE114007, GSE55235, GSE152805) were downloaded from Gene Expression Omnibus database. PCD-related genes were obtained from GeneCards database. RNA-seq was performed to annotate the cell types in OA and control samples. Differentially expressed genes (DEGs) among those cell types (scRNA-DEGs) were screened. A nomogram of OA was constructed based on the featured genes, and potential drugs targeting the featured genes were predicted. The presence of key genes was confirmed using Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR), Western blot (WB), and immunohistochemistry (IHC). Micromass culture and Alcian blue staining were used to determine the effect of CDKN1A on chondrogenesis. Results: Six cell types, namely HomC, HTC, RepC, preFC, FC, and RegC, were annotated in scRNA-seq data. Five featured genes (JUN, CDKN1A, HMGB2, DDIT3, and DDIT4) were screened by multiple biological information analysis methods. TAXOTERE had the highest ability to dock with DDIT3. Functional analysis indicated that CDKN1A was enriched in processes related to collagen catabolism and acts as a positive regulator of autophagy. Additionally, CDKN1A was found to be associated with several KEGG pathways, including those involved in acute myeloid leukemia and autoimmune thyroid disease. CDKN1A was confirmed down-regulated in the joint tissues of OA mouse model and OA model cell. Inhibiting the expression of CDKN1A can significantly suppress the differentiation of OA chondrocytes. Conclusion: Our findings highlight the critical role of CDKN1A in promoting cartilage formation in both in vivo and in vitro and suggest its potential as a therapeutic target for OA treatment.

5.
Comput Biol Med ; 171: 108179, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38394803

ABSTRACT

Continuous stimulation of tumor neoantigens and various cytokines in the tumor microenvironment leads to T cell dysfunction, but the specific mechanisms by which these key factors are distributed among different cell subpopulations and how they affect patient outcomes and treatment response are incompletely characterized. By integrating single-cell and bulk sequencing data of non-small cell lung cancer patients, we constructed a clinical outcome-associated T cell exhaustion signature. We discovered a significant association between the T cell exhaustion state and tumor cell hypoxia. Hypoxic malignant cells were significantly correlated with the proportion of exhausted T cells, and they co-occurred in patients at advanced stage. By analyzing the ligand-receptor interactions between these two cell states, we observed that T cells were recruited towards tumor cells through production of chemokines such as CXCL16-CXCR6 axis and CCL3/CCL4/CCL5-CCR5 axis. Based on 15 immune checkpoint blockade (ICB)-treatment cohorts, we constructed an interaction signature that can be used to predict the response to immune checkpoint blockade therapy. Among genes composed of the signature, CXCR6 alone has similarly high prediction efficacy (Area Under Curve (AUC) = 1, 0.89 and 0.73 for GSE126044, GSE135222 and GSE93157, respectively) with the signature and thus could serve as a potential biomarker for predicting immunotherapy response. Together, we have discovered and validated a significant association between exhausted T cells and hypoxic malignant cells, elucidating key interaction factors that significantly associated with response to immunotherapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/therapy , Immune Checkpoint Inhibitors , Lung Neoplasms/genetics , Lung Neoplasms/therapy , T-Lymphocytes , Sequence Analysis, RNA , Hypoxia , Tumor Microenvironment/genetics
6.
Small ; 20(7): e2305873, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37803396

ABSTRACT

N-doped carbon (NC)-encapsulated transition metal (TM) nanocomposites are considered as alternatives to Pt-based hydrogen evolution reaction (HER) electrocatalysts; however, their poor electron transfer and mass diffusion capability at high current densities hinder their practical application. Herein, an oriented coupling strategy for the in situ grafting of ultrafine Co nanoparticle-embedded hollow porous C polyhedra onto Si nanowires (Co/NC-HP@Si-NWs) is proposed to address this concern. Experimental investigations reveal that the intimate coupling between the Si-NW and Co/NC nanocage forms a multithreaded conductive network, lowering the energy barrier for internal electron transfer. When functionalized as an HER electrocatalyst in 0.5 m H2 SO4 , Co/NC-HP@Si-NWs deliver overpotentials as low as 57 and 440 mV at 10 and 500 mA cm-2 , respectively, which are much better than those of the pristine Co/NC-HP. Moreover, Co/NC-HP@Si-NWs show an outstanding cycle durability of 24 h at 10 and 500 mA cm-2 . The findings of this study are expected to inspire revolutionary work on the development of Si-mediated TM-based electrocatalysts for the HER.

7.
In Vivo ; 37(6): 2480-2489, 2023.
Article in English | MEDLINE | ID: mdl-37905663

ABSTRACT

BACKGROUND/AIM: The quantity and the phenotypes of desired T cell receptor engineered T (TCR-T) cells in the final cell product determine their in vivo anti-tumor efficacy. Optimization of key steps in the TCR-T cell production process, such as T cell activation, has been shown to improve cell quality. MATERIALS AND METHODS: Using a modified TCR (mTCR) derived from mice transducing PBMCs, we assessed the proportions of low-density lipoprotein receptor (LDL-R) and mTCR expressing cells under the various activation conditions of CD3/CD28-Dynabeads or OKT3 via flow cytometry. RESULTS: We demonstrate that the proportion of T cells expressing LDL-R post activation is positively correlated with the percentage of mTCR+CD8+ T cells with their less differentiated subtypes in the final product. In addition, we show that shifting the CD3/CD28-Dynabeads activation duration from a typical 48 h to 24 h can significantly increase the production of the desired mTCR+CD8+ T cells. Importantly, the percentages of TCR-T cells with less-differentiated phenotypes, namely mTCR central memory T cells (TCM), were found to be preserved with markedly higher efficiency when T cell activation was optimized. CONCLUSION: Our findings suggest that the proportion of LDL-R+ T cells may serve as an early assessment parameter for evaluating TCR-T cell quality, possibly facilitating the functional and economical improvement of current adoptive therapy.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Mice , Animals , CD3 Complex , CD28 Antigens/metabolism , Receptors, Antigen, T-Cell/genetics , Neoplasms/therapy , Lymphocyte Activation
8.
Nanotechnology ; 34(37)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37311447

ABSTRACT

The design and construction of three-dimensional covalent organic frameworks (3D COF) remains a major challenge, and it is necessary to explore new strategies to synthesize 3D COF with ideal structure. Here, we utilize two-dimensional covalent organic framework (2D COF) with allyl side chain to achieve interlayer crosslinking through olefin metathesis reaction, thereby constructing a 3D COF with cage-like structures. This new material named CAGE-COF has larger specific surface area and more open pore structure than the original 2D COF. The cathode material with CAGE-COF retained 78.7% of its initial capacity after 500 cycles, and the fading rate is 0.04% each cycle.


Subject(s)
Lithium , Metal-Organic Frameworks , Electrodes , Alkenes , Electric Power Supplies , Sulfur
9.
Ther Clin Risk Manag ; 19: 193-205, 2023.
Article in English | MEDLINE | ID: mdl-36876223

ABSTRACT

Purpose: To compare the effects of an allogeneic bone graft and a non-filled bone graft on the rate of osteotomy gap union in medial opening wedge high tibial osteotomy (MOWHTO) with an opening width less than 10 mm. Methods: A total of 65 patients undergoing MOWHTO between January 2018 and December 2020 were enrolled in this retrospective study. The patients were divided into two groups: the allograft group (MOWHTO with allogeneic bone grafting, 30 patients) and the non-filling group (MOWHTO without bone void fillers, 35 patients). The clinical outcomes, including the Western Ontario and McMaster Universities Osteoarthritis index (WOMAC), Lysholm score, and post-operative complications, were compared. The radiographic evaluation included changes in hip-knee-ankle angle (HKA), medial proximal tibial angle (MPTA), femorotibial angle (FTA), and weight-bearing line ratio (WBLR) at pre-operation, at two-day post-operation, and the last follow-up. Radiographs were obtained at three, six and twelve months post-surgery, and at the time of the last follow-up to assess the fill area of the osteotomy gap. The union rate of the osteotomy gap was calculated and compared, and risk factors that may affect the rate of osteotomy gap union were also discussed. Results: The rate of osteotomy gap union at 3 and 6 months after the operation in the allograft group was significantly higher compared with the non-filling group (all P<0.05), while no significant difference was found after the 1-year post-operative and at the last follow-up. Also, the WOMAC and Lysholm scores of the allograft group were significantly higher than those of the non-filling group (all P<0.05), and there was no significant difference between the two groups at the last follow-up. Conclusion: Filling the gaps with the allograft bones may accelerate the union of osteotomy gap, improve clinical outcomes, and have important implications for patient rehabilitation in the early post-operative course. Bone grafting did not affect the final rate of osteotomy gap union and the clinical score of patients.

10.
J Cachexia Sarcopenia Muscle ; 14(2): 1003-1018, 2023 04.
Article in English | MEDLINE | ID: mdl-36864250

ABSTRACT

BACKGROUND: It is well known that muscle disuse atrophy is associated with mitochondrial dysfunction, which is implicated in reduced nicotinamide adenine dinucleotide (NAD+ ) levels. Nicotinamide phosphoribosyltransferase (NAMPT), a rate-limiting enzyme in NAD+ biosynthesis, may serve as a novel strategy to treat muscle disuse atrophy by reversing mitochondrial dysfunction. METHODS: To investigate the effects of NAMPT on the prevention of disuse atrophy of skeletal muscles predominantly composed of slow-twitch (type I) or fast-twitch (type II) fibres, rabbit models of rotator cuff tear-induced supraspinatus muscle atrophy and anterior cruciate ligament (ACL) transection-induced extensor digitorum longus (EDL) atrophy were established and then administered NAMPT therapy. Muscle mass, fibre cross-sectional area (CSA), fibre type, fatty infiltration, western blot, and mitochondrial function were assayed to analyse the effects and molecular mechanisms of NAMPT in preventing muscle disuse atrophy. RESULTS: Acute disuse of the supraspinatus muscle exhibited significant loss of mass (8.86 ± 0.25 to 5.10 ± 0.79 g; P < 0.001) and decreased fibre CSA (3939.6 ± 136.1 to 2773.4 ± 217.6 µm2 , P < 0.001), which were reversed by NAMPT (muscle mass 6.17 ± 0.54 g, P = 0.0033; fibre CSA, 3219.8 ± 289.4 µm2 , P = 0.0018). Disuse-induced impairment of mitochondrial function were significantly improved by NAMPT, including citrate synthase activity (40.8 ± 6.3 to 50.5 ± 5.6 nmol/min/mg, P = 0.0043), and NAD+ biosynthesis (279.9 ± 48.7 to 392.2 ± 43.2 pmol/mg, P = 0.0023). Western blot revealed that NAMPT increases NAD+ levels by activating NAMPT-dependent NAD+ salvage synthesis pathway. In supraspinatus muscle atrophy due to chronic disuse, a combination of NAMPT injection and repair surgery was more effective than repair in reversing muscle atrophy. Although the predominant composition of EDL muscle is fast-twitch (type II) fibre type that differ from supraspinatus muscle, its mitochondrial function and NAD+ levels are also susceptible to disuse. Similar to the supraspinatus muscle, NAMPT-elevated NAD+ biosynthesis was also efficient in preventing EDL disuse atrophy by reversing mitochondrial dysfunction. CONCLUSIONS: NAMPT-elevated NAD+ biosynthesis can prevent disuse atrophy of skeletal muscles that predominantly composed with either slow-twitch (type I) or fast-twitch (type II) fibres by reversing mitochondrial dysfunction.


Subject(s)
Muscular Disorders, Atrophic , NAD , Animals , Rabbits , NAD/metabolism , Nicotinamide Phosphoribosyltransferase/metabolism , Muscular Atrophy/metabolism , Muscle, Skeletal/metabolism , Mitochondria/metabolism , Muscular Disorders, Atrophic/drug therapy , Muscular Disorders, Atrophic/metabolism
11.
J Environ Manage ; 332: 117354, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36724597

ABSTRACT

As electric vehicles (EVs) are developing at a rapid pace, the foreseeable "scrap tide" of EV batteries poses a severe challenge to ecological protection. This article investigates a dual-recycle channel closed-loop supply chain and provides regulatory solutions to retired EV batteries' recycling. Specifically, we construct four supervision scenarios: S1 no policy intervention, S2 reward-penalty scheme, S3 deposit-refund scheme, and S4 dual scheme combining S2 and S3. Based on the Stackelberg game and empirical data, all scenarios' recycling performance is evaluated and compared with a view to "society, economy, and environment". The results revealed: (1) Compared with S1, the recycling rate and carbon reduction rate in S2∼S4 increase by 2.6049%/0.0092%, 4.0379%/0.0285%, and 6.6660%/0.0379%, respectively; (2) The difference between S2 and S3 in recycling performance depends on regulatory intensities, yet the latter places greater burdens on consumers and firms. The S4 presents optimal environmental performance but at the expense of socioeconomic development; (3) As regulatory intensity increases, social welfare rises driven by environmental benefits, then falls due to overburdened supply chain profits, consumer surplus, and policy expenditures; (4) Carbon trading prices and EVs' potential market sizes affect regulatory schemes' operations. Our results contribute to policy-making and managerial practices for EV battery recycling.


Subject(s)
Policy Making , Recycling , Recycling/methods , Electric Power Supplies , Electricity , Carbon
12.
Health Care Manag Sci ; 26(2): 330-343, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36749449

ABSTRACT

Cook et al. (Oper Res 61(3):666-676, 2013) propose a DEA-based model for the performance evaluation of non-homogeneous decision making units (DMUs) based on constant returns to scale (CRS), extended by Li et al. (Health Care Manag Sci 22(2):215-228, 2019) to variable returns to scale (VRS). This paper locates these models into more general DDF models to deal with nonhomogeneous DMUs and applies these to Hong Kong hospitals. The production process of each hospital is divided into subunits which have the same inputs and outputs and hospital performance is measured using the subunits. The paper provides CRS and VRS versions of DDF models and compares them with Cook et al. (Oper Res 61(3):666-676, 2013) and Li et al. (Health Care Manag Sci 22(2):215-228, 2019). A kernel-based method is used to estimate the distributions as well as a DEA-based efficiency analysis adapted by Simar and Zelenyuk to test the distributions. Both DDF CRS and VRS versions produce results similar to Cook et al. (Oper Res 61(3):666-676, 2013) and Li et al. (Health Care Manag Sci 22(2):215-228, 2019) respectively. However, the statistical tests find differences for the different technologies assumed as would be expected. For hospital managers, the more generalised DDF models expand their range of options in terms of directional improvements and priorities as well as dealing with non-homogeneity.


Subject(s)
Efficiency, Organizational , Hospitals , Humans , Hong Kong
13.
Small ; 19(31): e2206723, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36592427

ABSTRACT

Metal-organic frameworks (MOFs) are regarded as one promising class of precatalysts for electrocatalytic oxygen evolution reaction (OER), yet most of them suffer from poor conductivity and lack of coordinatively unsaturated metal sites, which hinders the fast electrochemical reconstruction and thus a poor OER activity. To address this issue, a unique heterocomposite has been constructed by in situ inserting carbon dots (CDs) into cobalt-based zeolitic imidazolate framework (Co-ZIF) nanosheet arrays (Co-ZIF/CDs/CC) in the presence of carbon cloth (CC) via one-pot coprecipitation for alkaline OER. Benefiting from the synergism between CDs and Co-ZIF subunits such as superior conductivity, strong charge interaction as well as abundant metal sites exposure, the Co-ZIF/CDs/CC exhibits an enhanced promotion effect for OER and contributes to the deep phase transformation from CDs-coupled Co-ZIF to CDs-coupled active CoOOH. As expected, the achieved Co-ZIF/CDs/CC only requires an overpotential of 226 mV to deliver 10 mA cm-2 in 1.0 M KOH, which is lower than that of Co-ZIF/CC and superior to most previously reported CC-supported MOF precatalysts. Moreover, it can also maintain a large current density of 100 mA cm-2 for 24 h with negligible activity decay.

14.
Adv Sci (Weinh) ; 10(4): e2205347, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36479607

ABSTRACT

Vacancy engineering is deemed as one of the powerful protocols to tune the catalytic activity of electrocatalysts. Herein, Se-vacancy with charge polarization is created in the NiSe2 structure (NiSe2 -VSe ) via a sequential phase conversion strategy. By a combined analysis of the Rietveld method, transient photovoltage spectra (TPV), in situ Raman and density functional theory (DFT) calculation, it is unequivocally discovered that the presence of charge-polarized Se-vacancy is beneficial for stabilizing the structure, decreasing the electron transfer kinetics, as well as optimizing the free adsorption energy of reaction intermediate during two-electron oxygen reduction reaction (2e- ORR). Benefiting from these merits, the as-prepared NiSe2 -VSe delivered the highest selectivity of 96% toward H2 O2 in alkaline media, together with a selectivity higher than 90% over the wide potential range from 0.25 to 0.55 V, ranking it in the top level among the previously reported transition metal-based electrocatalysts. Most notably, it also displayed admirable stability with only a slight selectivity decay after 5000 cycles of accelerated degradation test (ADT).

15.
Int J Med Robot ; 19(2): e2489, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36471636

ABSTRACT

BACKGROUND: Computer-assisted Surgery system (CAS) is an effective medical imaging simulation tool, which is widely used in preoperative planning of surgery. The objective of this study is to investigate the clinical application of CAS in pediatric mediastinal tumor resection. METHODS: This retrospective study investigated 74 children who underwent mediastinal tumor resection between June 2008 and June 2022 at the pediatric surgical center of the Affiliated Hospital of Qingdao University and Qingdao Women and Children's Hospital. Preoperative chest computed tomography imaging was performed on all children. A total of 44 children (the CAS-assisted group) underwent clinical image 3D reconstruction and preoperative simulation using Hisense CAS. The control group consisted of 30 children who underwent a conventional procedure without CAS. The demographic, preoperative, and complication data were analyzed and compared between the two groups. t-test, Mann-Whitney U test, X2 test, or Fisher's exact test were used accordingly in this study during analysis. RESULTS: The median operative duration was 119.00 min in the CAS-assisted group and 140.50 min in the control group. The median intraoperative blood loss of the CAS-assisted group and the control group was 14.00 and 31.00 ml respectively. Relative to the control groups, the CAS-assisted group experienced shorter operative duration time (p = 0.041), and less intraoperative blood loss (p < 0.001). The difference in postoperative drain indwelling between the CAS-assisted group (median:4.00 days) and the control group (median:7.00 days) reached a statistical significance (p = 0.001). And the duration of hospitalization after the operation for the CAS-assisted group (median:7.00 days) was shorter than that for the control group (median:9.00 days) (p = 0.001). No significant difference could be found in the rate of blood transfusion (p = 0.258) and the incidence of postoperative complications (p = 0.719) between the two groups. CONCLUSION: Hisense CAS could effectively assist surgeons to clearly determine the anatomical site of tumors and provide accurate preoperative simulation for surgeons, so as to assist surgeons to specify effective surgical plans for patients.


Subject(s)
Mediastinal Neoplasms , Surgery, Computer-Assisted , Humans , Female , Child , Retrospective Studies , Mediastinal Neoplasms/diagnostic imaging , Mediastinal Neoplasms/surgery , Blood Loss, Surgical , Surgery, Computer-Assisted/methods , Hepatectomy/methods
16.
iScience ; 25(12): 105479, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36338436

ABSTRACT

The repetitive applications of vaccine boosters have been brought up in face of continuous emergence of SARS-CoV-2 variants with neutralization escape mutations, but their protective efficacy and potential adverse effects remain largely unknown. Here, we compared the humoral and cellular immune responses of an extended course of recombinant receptor binding domain (RBD) vaccine boosters with those from conventional immunization strategy in a Balb/c mice model. Multiple vaccine boosters after the conventional vaccination course significantly decreased RBD-specific antibody titers and serum neutralizing efficacy against the Delta and Omicron variants, and profoundly impaired CD4+ and CD8+T cell activation and increased PD-1 and LAG-3 expressions in these T cells. Mechanistically, we confirmed that extended vaccination with RBD boosters overturned the protective immune memories by promoting adaptive immune tolerance. Our findings demonstrate potential risks with the continuous use of SARS-CoV-2 vaccine boosters, providing immediate implications for the global COVID-19 vaccination enhancement strategies.

17.
Front Med (Lausanne) ; 9: 952697, 2022.
Article in English | MEDLINE | ID: mdl-36341247

ABSTRACT

Currently, neutralizing antibody and vaccine strategies have been developed by targeting the SARS-CoV-2 strain identified during the early phase of the pandemic. Early studies showed that the ability of SARS-CoV-2 RBD or NTD antibodies to elicit infection enhancement in vivo is still controversial. There are growing concerns that the plasma and neutralizing antibodies from convalescent patients or people receiving vaccines mediate ADE of SARS-CoV-2 variants infections in immune cells. Here, we constructed engineered double-mutant variants containing an RBD mutation and D614G in the spike (S) protein and natural epidemic variants to gain insights into the correlation between the mutations in S proteins and the ADE activities and tested whether convalescent plasma and TOP10 neutralizing antibodies in our laboratory mediated the ADE effects of these SARS-CoV-2 variants. We found that one out of 29 convalescent plasma samples caused the ADE effect of pandemic variant B.1.1.7 and that the ADE effect of wild-type SARS-CoV-2 was not detected for any of these plasma samples. Only one antibody, 55A8, from the same batch of convalescent patients mediated the ADE effects of multiple SARS-CoV-2 variants in vitro, including six double-mutant variants and four epidemic variants, suggesting that ADE activities may be closely related to the antibody itself and the SARS-CoV-2 variants' S proteins. Moreover, the ADE activity of 55A8 depended on FcγRII on immune cells, and the introduction of LALA mutations at the Fc end of 55A8 eliminated the ADE effects in vitro, indicating that 55A8LALA may be a clinical drug used to prevent SARS-CoV-2 variants. Altogether, ADE may occur in rare convalescent patients or vaccinees with ADE-active antibodies who are then exposed to a SARS-CoV-2 variant. These data suggested that potential neutralizing antibodies may need to undergo ADE screening tests for SARS-CoV-2 variants, which should aid in the future design of effective antibody-based therapies.

18.
Front Oncol ; 12: 962250, 2022.
Article in English | MEDLINE | ID: mdl-36185180

ABSTRACT

Corneal perforation is a rare and serious complication of ocular graft-versus-host disease (oGVHD) patients. This study was to retrospectively report seven corneal perforation patients after allogeneic hematopoietic stem cell transplantation (HSCT). Demographic, hematologic, and ophthalmological data of patients were clarified in detail. Nine eyes of seven corneal perforation patients were clarified (Cases 3 and 6 were bilateral and the others are unilateral). All the cases had other affected GVHD organs, especially skin involvement. The duration between HSCT and corneal perforation was usually long with 21 (17-145) months as median interval, whereas the duration between oGVHD diagnosis and corneal perforation was relatively shorter with 4 (2-81) months as median interval. Most patients presented to ophthalmology department with poor visual acuity, BUT and Schirmer's test. Eyelid marginal hyperemia and irregularity were observed in most corneal perforation eyes. Keratoplasty or conjunctival flap covering (CFC) surgeries was performed after corneal perforation. After a long-term follow-up for most patients (median 21 months, range: 2-86 months), only two eyes of two patients (22.22%) had a final BCVA of 20/100 or better. Patients involved in both cutaneous GVHD and blepharitis indicate the aggressive development of oGVHD. Early diagnosis, long-term follow-up, and effective multi-disciplinary treatments for oGVHD patients are essential. Corticosteroids and immunosuppressor remain essential, whereas the use of topical corticosteroids should be carefully considered in corneal ulceration patients. In addition, appropriate surgeries should be performed to control oGVHD development in time.

19.
J Environ Manage ; 318: 115547, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35767921

ABSTRACT

Global warming and climate change are gaining traction in recent years. As a major cause of global warming, carbon emissions were centered to China's climate change policy initiatives. Nevertheless, the existing policy discourse has yet reached a consensus on the optimal modeling method for carbon emissions prediction that is well-informed of both policy goals and the time-series pattern of carbon emissions. This paper fills the gap by promoting a novel data-driven decision model for carbon emissions prediction that is based on the extended belief rule base (EBRB) inference model. The new decision model consists of three components: 1) an indicator integration method, which aims to generate a few group indicators from a large number of statistical indicators; 2) a new EBRB construction method, which aims to consider the management policy goals for constructing EBRB; 3) a new ER-based inference method, which aims to predict carbon emissions based on time series change of relevant factors. The effectiveness of the proposed decision model has been tested against carbon emissions management data from 30 provinces in China. Experimental results demonstrate that the model will offer powerful reference value in the policy decision-making process, which will help to meet policy requirements for carbon emissions.


Subject(s)
Carbon Dioxide , Carbon , Carbon/analysis , Carbon Dioxide/analysis , China , Climate Change , Global Warming
20.
Appl Soft Comput ; 124: 109055, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35637858

ABSTRACT

The Coronavirus Disease 2019 (COVID-19) has popularized since late December 2019. In present, it is still highly transmissible and has severe impact on the public health and global economy. Due to the lack of specific drug and the appearance of different variants, the selection of the antiviral therapy to treat the patients with mild symptom is of vital importance. Hence, in this paper, we propose a novel behavioral Three-Way Decision (3WD) model and apply it to the medicine selection decision. First, a new relative utility function is constructed by considering the risk-aversion behavior and regret-aversion behavior of human beings. Second, based on the relative utility function, some new rules are defined to calculate the thresholds and conditional probabilities in 3WD and some corresponding theorems are explored and proved. Next, a new information fusion mechanism in the framework of evidential reasoning algorithm is developed. Then, the decision results are obtained based on the Bayesian decision procedure and the principle of maximum utility. Finally, an example with large-scale data set and an example about medicine selection for COVID-19 are provided to show the implementation process and effectiveness of the proposed method. Comparative analysis and sensitivity analysis are also performed to illustrate the superiority and the robustness of the current proposal.

SELECTION OF CITATIONS
SEARCH DETAIL
...