Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Nature ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38588697

ABSTRACT

Broad-spectrum RAS inhibition holds the potential to benefit roughly a quarter of human cancer patients whose tumors are driven by RAS mutations1,2. RMC-7977 is a highly selective inhibitor of the active GTP-bound forms of KRAS, HRAS, and NRAS, with affinity for both mutant and wild type (WT) variants (RAS(ON) multi-selective)3. As >90% of human pancreatic ductal adenocarcinoma (PDAC) cases are driven by activating mutations in KRAS4, we assessed the therapeutic potential of the RAS(ON) multi-selective inhibitor RMC-7977 in a comprehensive range of PDAC models. We observed broad and pronounced anti-tumor activity across models following direct RAS inhibition at exposures that were well-tolerated in vivo. Pharmacological analyses revealed divergent responses to RMC-7977 in tumor versus normal tissues. Treated tumors exhibited waves of apoptosis along with sustained proliferative arrest whereas normal tissues underwent only transient decreases in proliferation, with no evidence of apoptosis. In the autochthonous KPC model, RMC-7977 treatment resulted in a profound extension of survival followed by on-treatment relapse. Analysis of relapsed tumors identified Myc copy number gain as a prevalent candidate resistance mechanism, which could be overcome by combinatorial TEAD inhibition in vitro. Together, these data establish a strong preclinical rationale for the use of broad-spectrum RAS-GTP inhibition in the setting of PDAC and identify a promising candidate combination therapeutic regimen to overcome monotherapy resistance.

2.
Cancer Discov ; : OF1-OF24, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38593348

ABSTRACT

RAS-driven cancers comprise up to 30% of human cancers. RMC-6236 is a RAS(ON) multi-selective noncovalent inhibitor of the active, GTP-bound state of both mutant and wild-type variants of canonical RAS isoforms with broad therapeutic potential for the aforementioned unmet medical need. RMC-6236 exhibited potent anticancer activity across RAS-addicted cell lines, particularly those harboring mutations at codon 12 of KRAS. Notably, oral administration of RMC-6236 was tolerated in vivo and drove profound tumor regressions across multiple tumor types in a mouse clinical trial with KRASG12X xenograft models. Translational PK/efficacy and PK/PD modeling predicted that daily doses of 100 mg and 300 mg would achieve tumor control and objective responses, respectively, in patients with RAS-driven tumors. Consistent with this, we describe here objective responses in two patients (at 300 mg daily) with advanced KRASG12X lung and pancreatic adenocarcinoma, respectively, demonstrating the initial activity of RMC-6236 in an ongoing phase I/Ib clinical trial (NCT05379985). SIGNIFICANCE: The discovery of RMC-6236 enables the first-ever therapeutic evaluation of targeted and concurrent inhibition of canonical mutant and wild-type RAS-GTP in RAS-driven cancers. We demonstrate that broad-spectrum RAS-GTP inhibition is tolerable at exposures that induce profound tumor regressions in preclinical models of, and in patients with, such tumors.

3.
Nature ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589574

ABSTRACT

RAS oncogenes (collectively NRAS, HRAS and especially KRAS) are among the most frequently mutated genes in cancer, with common driver mutations occurring at codons 12, 13 and 611. Small molecule inhibitors of the KRAS(G12C) oncoprotein have demonstrated clinical efficacy in patients with multiple cancer types and have led to regulatory approvals for the treatment of non-small cell lung cancer2,3. Nevertheless, KRASG12C mutations account for only around 15% of KRAS-mutated cancers4,5, and there are no approved KRAS inhibitors for the majority of patients with tumours containing other common KRAS mutations. Here we describe RMC-7977, a reversible, tri-complex RAS inhibitor with broad-spectrum activity for the active state of both mutant and wild-type KRAS, NRAS and HRAS variants (a RAS(ON) multi-selective inhibitor). Preclinically, RMC-7977 demonstrated potent activity against RAS-addicted tumours carrying various RAS genotypes, particularly against cancer models with KRAS codon 12 mutations (KRASG12X). Treatment with RMC-7977 led to tumour regression and was well tolerated in diverse RAS-addicted preclinical cancer models. Additionally, RMC-7977 inhibited the growth of KRASG12C cancer models that are resistant to KRAS(G12C) inhibitors owing to restoration of RAS pathway signalling. Thus, RAS(ON) multi-selective inhibitors can target multiple oncogenic and wild-type RAS isoforms and have the potential to treat a wide range of RAS-addicted cancers with high unmet clinical need. A related RAS(ON) multi-selective inhibitor, RMC-6236, is currently under clinical evaluation in patients with KRAS-mutant solid tumours (ClinicalTrials.gov identifier: NCT05379985).

4.
Br J Pharmacol ; 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38486310

ABSTRACT

BACKGROUND AND PURPOSE: RO7502175 is an afucosylated antibody designed to eliminate C-C motif chemokine receptor 8 (CCR8)+ Treg cells in the tumour microenvironment through enhanced antibody-dependent cellular cytotoxicity (ADCC). EXPERIMENTAL APPROACH: We report findings from preclinical studies characterizing pharmacology, pharmacokinetics (PK)/pharmacodynamics (PD) and safety profile of RO7502175 and discuss the translational PK/PD approach used to inform first-in-human (FiH) dosing strategy and clinical development in solid tumour indications. KEY RESULTS: RO7502175 demonstrated selective ADCC against human CCR8+ Treg cells from dissociated tumours in vitro. In cynomolgus monkeys, RO7502175 exhibited a biphasic concentration-time profile consistent with immunoglobulin G1 (IgG1) antibodies, reduced CCR8+ Treg cells in the blood, induced minimal and transient cytokine secretion, and was well tolerated with a no-observed-adverse-effect level (NOAEL) of 100 mg·kg-1 . Moreover, RO7502175 caused minimal cytokine release from peripheral blood mononuclear cells (PBMCs) in vitro. A quantitative model was developed to capture surrogate anti-murine CCR8 antibody PK/PD and tumour dynamics in mice and RO7502175 PK/PD in cynomolgus monkeys. Subsequently, the model was used to project RO7502175 human PK and receptor occupancy (RO) in patients. Because traditional approaches resulted in a low FiH dose for this molecule, even with its superior preclinical safety profile, an integrated approach based on the totality of preclinical data and modelling insights was used for starting dose selection. CONCLUSION AND IMPLICATIONS: This work demonstrates a translational research strategy for collecting and utilizing relevant nonclinical data, developing a mechanistic PK/PD model and using a comprehensive approach to inform clinical study design for RO7502175.

5.
bioRxiv ; 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38105998

ABSTRACT

Broad-spectrum RAS inhibition holds the potential to benefit roughly a quarter of human cancer patients whose tumors are driven by RAS mutations. However, the impact of inhibiting RAS functions in normal tissues is not known. RMC-7977 is a highly selective inhibitor of the active (GTP-bound) forms of KRAS, HRAS, and NRAS, with affinity for both mutant and wild type (WT) variants. As >90% of human pancreatic ductal adenocarcinoma (PDAC) cases are driven by activating mutations in KRAS, we assessed the therapeutic potential of RMC-7977 in a comprehensive range of PDAC models, including human and murine cell lines, human patient-derived organoids, human PDAC explants, subcutaneous and orthotopic cell-line or patient derived xenografts, syngeneic allografts, and genetically engineered mouse models. We observed broad and pronounced anti-tumor activity across these models following direct RAS inhibition at doses and concentrations that were well-tolerated in vivo. Pharmacological analyses revealed divergent responses to RMC-7977 in tumor versus normal tissues. Treated tumors exhibited waves of apoptosis along with sustained proliferative arrest whereas normal tissues underwent only transient decreases in proliferation, with no evidence of apoptosis. Together, these data establish a strong preclinical rationale for the use of broad-spectrum RAS inhibition in the setting of PDAC.

6.
Zhongguo Zhong Yao Za Zhi ; 48(7): 1711-1723, 2023 Apr.
Article in Chinese | MEDLINE | ID: mdl-37282945

ABSTRACT

Type 2 diabetes mellitus(T2DM), a common chronic metabolic disease, is often accompanied by internal heat syndrome. Heat-clearing prescriptions are widely used to treat different heat syndromes of T2DM from the aspects of clearing stagnant heat, excess heat, damp heat, phlegm heat, and heat toxin, demonstrating remarkable effects. The mechanism of blood sugar-lowering agents has always been a hotspot of research. Recently, the basic studies of heat-clearing prescriptions from different perspectives have been increasing year by year. To clarify the mechanisms of heat-clearing prescriptions and find specific mechanisms, we systematically reviewed the basic studies of heat-clearing prescriptions commonly used for the treatment of T2DM in the past decade, intending to provide a reference for related research.


Subject(s)
Diabetes Mellitus, Type 2 , Drugs, Chinese Herbal , Humans , Diabetes Mellitus, Type 2/drug therapy , Drugs, Chinese Herbal/therapeutic use , Hot Temperature , Medicine, Chinese Traditional , Prescriptions , Syndrome
7.
J Nat Prod ; 86(5): 1179-1188, 2023 05 26.
Article in English | MEDLINE | ID: mdl-37115657

ABSTRACT

Apigenin (APG) is a well-known dietary flavonoid with multiple bioactivities, but its poor aqueous solubility may result in low oral bioavailability and thus compromised therapeutic effects. In the present study, APG was complexed with oxymatrine (OMT), a natural quinolizidine alkaloid, for enhanced anti-inflammatory activity, and the related mechanisms in the interaction of APG with OMT were investigated. Fourier transform-infrared spectroscopy, fluorescence spectroscopy, Raman spectroscopy, and proton nuclear magnetic resonance spectroscopy characterizations demonstrated the occurrence of an APG-OMT complex formed at a molar ratio of 1:2. Then, molecular dynamics simulations and quantum chemical calculations were utilized to elucidate that hydrogen bonding, van der Waals forces, and hydrophobic effects were the main forces acting in the formation of the APG-OMT complex. Pharmacokinetic studies in rats demonstrated that the oral bioavailability of APG in the APG-OMT complex was significantly higher than that of APG alone. Finally, bioactivity evaluation in the lipopolysaccharide-induced acute inflammatory injury mouse models showed that the APG-OMT complex exhibited more potent anti-inflammatory effects than APG alone. This study confirmed that APG and OMT exerted enhanced anti-inflammatory effects through self-complexation, which may provide a novel strategy for improving the bioavailability and bioactivity of natural product mixtures.


Subject(s)
Alkaloids , Apigenin , Mice , Rats , Animals , Apigenin/pharmacology , Apigenin/chemistry , Alkaloids/pharmacokinetics , Matrines , Anti-Inflammatory Agents/pharmacology , Quinolizines/pharmacokinetics
8.
Front Med (Lausanne) ; 9: 983992, 2022.
Article in English | MEDLINE | ID: mdl-36507537

ABSTRACT

The Giant pandas (Ailuropoda melanoleuca) are mammals belonging to the bear family, order Carnivora, and their characteristic hair color and distribution has been in the spotlight. In recent years, the gradual prevalence of skin diseases in giant pandas and even the discovery of albino individuals have made the study of the substrate of their skin hair distribution more and more urgent. In this study, by comparing the skin histology and transcriptomes for hairs of different color of giant pandas, we found that the melanin contents of hair follicles at the bases of black and white hairs differed, but the hair follicles at the base of white hairs also contained some amount of melanin. The transcriptome sequencing results showed that there were great differences in the expression of the transcriptome of the skin under different hair color blocks, in which the number of differentially expressed genes in the white skin was much smaller than that in the black skin. Transcriptomes for skin tissue samples for different hair colors revealed several enriched Kyoto encyclopedia of genes (KEGG) pathways that include tumor, cell adhesion and melanocyte growth-related signaling pathways. This study provides a theoretical basis for subsequent studies on hair color distribution and skin diseases in giant pandas.

9.
Front Vet Sci ; 9: 1002488, 2022.
Article in English | MEDLINE | ID: mdl-36387398

ABSTRACT

Objectives: The main objectives of this study were to investigate the efficacy of the nucleotide analog GS-441524 in combination with the 3C-like protease inhibitor GC376 for the treatment of naturally aquired feline infectious peritonitis (FIP) and to test whether their combination shortens the dosing period and improves the cure rate. Methods: In total, 46 FIP-affected cats were enrolled in this experiment, including 36 with wet FIP (29 with abdominal effusion, six with thoracic effusion, and one with thoracic+abdominal effusion), and 10 with dry FIP. The cats were aged from 3 to 96 months. Thoracic+abdominal effusion, lymph-node puncture fluid and perirenal puncture fluid was collected from the affected cats for qPCR testing, and all 46 cats were positive for feline coronavirus (FCoV). The cats divided into different dose groups, all treated for 4 weeks: group 1 (GS-441524, 5 mg/kg.sc.q.24 h; GC376, 20 mg/kg.sc.q.12 h), group 2 (GS-441524, 2.5 mg/kg.sc.q.24 h; GC376, 20 mg/kg.sc.q.12 h), group 3 (GS-441524, 2.5 mg/kg.sc.q.24 h; GC376, 10 mg/kg.sc.q.12 h), and group 4 (GS-441524, 5 mg/kg.sc.q.24 h; GC376, 10 mg/kg.sc.q.12 h). Results: After the 4-week combination treatment, 45 of the 46 (97.8%) cats survived, and 43 of those became clinically normal. Two cats required longer (7 to 12 weeks) treatment to achieve full recovery. As of writing (10 months after completion of the trial), all 45 cats were alive and no relapse was observed. Conclusions and relevance: GS-441524 combined with GC376 can be safely and effectively used to treat FIP and reduces the treatment period to 4 weeks, with an excellent cure rate.

10.
Front Vet Sci ; 9: 985733, 2022.
Article in English | MEDLINE | ID: mdl-36187810

ABSTRACT

Giant pandas are the flagship species in world conservation. Due to bamboo being the primary food source for giant pandas, dental wear is common owing to the extreme toughness of the bamboo fiber. Even though research on tooth enamel wear in humans and domestic animals is well-established, research on tooth enamel wear in giant pandas is scarce. The purpose of this study is to evaluate tooth enamel wear resistance in giant pandas to provide a basis for a better understanding of their evolutionary process. From microscopic and macroscopic perspectives, the abrasion resistance of dental enamel in giant pandas is compared with that of herbivorous cattle and carnivorous dogs in this study. This involves the use of micro-scratch and frictional wear tests. The results show that the boundary between the enamel prism and the enamel prism stroma is well-defined in panda and canine teeth, while bovine tooth enamel appears denser. Under constant load, the tribological properties of giant panda enamel are similar to those of canines and significantly different from those of bovines. Test results show that the depth of micro scratches in giant panda and canine enamel was greater than in cattle, with greater elastic recovery occurring in dogs. Scratch morphology indicates that the enamel substantive damage critical value is greater in pandas than in both dogs and cattle. The analysis suggests that giant panda enamel consists of a neatly arranged special structure that may disperse extrusion stress and absorb impact energy through a series of inelastic deformation mechanisms to cope with the wear caused by eating bamboo. In this study, the excellent wear resistance of giant panda's tooth enamel is verified by wear tests. A possible theoretical explanation of how the special structure of giant panda tooth enamel may improve its wear resistance is provided. This provides a direction for subsequent theoretical and experimental studies on giant panda tooth enamel and its biomaterials.

11.
Article in English | MEDLINE | ID: mdl-36078811

ABSTRACT

Dengue fever (DF) is a mosquito-borne disease prevalent in the tropics (e.g., sub-Saharan Africa, Asia, and Central and South America) and a common cause of febrile illness in travelers. The high incidence of imported DF in Taiwan has led to a domestic outbreak. This study explored the risk factors associated with individuals given diagnoses of imported DF at international airports in Taiwan. The results may serve as a reference for DF prevention. In this retrospective study, data from the symptom notification system database of the Taiwan Centers for Disease Control (TCDC) were used. These data concerned travelers who returned to Taiwan from DF-endemic areas with suspected DF symptoms. The epidemiological characteristics of the cases were analyzed, and 28 variables related to DF infection were included in the multivariate logistic regression analysis. In 2018-2019, there were 8656 cases (451 positive and 8205 negative cases). The results revealed DF symptoms and a 16-30-day stay in endemic areas to be independent risk factors and the presence of three respiratory symptoms and <10 days of short-term travel to be protective factors. These results may enable the accurate assessment of symptoms in travelers with DF as well as the risk factors associated with imported DF, lowering the risk of indigenous DF outbreaks caused by imported DF.


Subject(s)
Airports , Dengue , Animals , Dengue/prevention & control , Humans , Retrospective Studies , Risk Factors , Taiwan/epidemiology , Travel
12.
Nat Immunol ; 23(4): 568-580, 2022 04.
Article in English | MEDLINE | ID: mdl-35314846

ABSTRACT

Tumor-associated macrophages are composed of distinct populations arising from monocytes or tissue macrophages, with a poorly understood link to disease pathogenesis. Here, we demonstrate that mouse monocyte migration was supported by glutaminyl-peptide cyclotransferase-like (QPCTL), an intracellular enzyme that mediates N-terminal modification of several substrates, including the monocyte chemoattractants CCL2 and CCL7, protecting them from proteolytic inactivation. Knockout of Qpctl disrupted monocyte homeostasis, attenuated tumor growth and reshaped myeloid cell infiltration, with loss of monocyte-derived populations with immunosuppressive and pro-angiogenic profiles. Antibody targeting of the receptor CSF1R, which more broadly eliminates tumor-associated macrophages, reversed tumor growth inhibition in Qpctl-/- mice and prevented lymphocyte infiltration. Modulation of QPCTL synergized with anti-PD-L1 to expand CD8+ T cells and limit tumor growth. QPCTL inhibition constitutes an effective approach for myeloid cell-targeted cancer immunotherapy.


Subject(s)
Aminoacyltransferases , CD8-Positive T-Lymphocytes , Chemokines , Neoplasms , Aminoacyltransferases/genetics , Aminoacyltransferases/metabolism , Animals , CD8-Positive T-Lymphocytes/pathology , Chemokines/metabolism , Immunotherapy , Leukemic Infiltration , Mice , Mice, Knockout , Monocytes , Neoplasms/immunology
13.
Int J Pharm ; 615: 121475, 2022 Mar 05.
Article in English | MEDLINE | ID: mdl-35041914

ABSTRACT

Co-amorphous supersaturated drug delivery systems are emerging as an alternative strategy to improve the water solubility of BCS II drugs. Typically, the supersaturation and stability of co-amorphous systems largely depend on the type of employed co-former. This study aims to assess the potential for active metabolites of drugs as co-former in drug-drug co-amorphous formulations. Toltrazuril (Tol) was chosen as the model drug, to which ponazuril (Pon) was added as co-former. Considering the importance of intermolecular interactions in co-amorphous systems, we performed highlighted investigations including molecular dynamics simulation and quantum mechanics calculations. The results indicated that Tol and Pon molecules were connected by N-H···O = C hydrogen bonds in the form of a complementary pairing of amide groups. Further, the solubility/dissolution and solid-state stability of the co-amorphous system were investigated. We found that co-amorphous Tol-Pon was stable for at least one month at 40 °C/75% RH, while amorphous materials underwent recrystallization within 10 days. Moreover, both drugs in the co-amorphous system exhibited enhanced "spring parachute effect" during the dissolution process. This could be attributed to the noticeably increased solid-state stabilization as well as inhibition of Pon on the crystallization of Tol from a supersaturated state. In general, our study provides some useful information and molecular insights to guide the development of drug-active metabolite-based co-amorphous formulations.


Subject(s)
Pharmaceutical Preparations , Drug Stability , Solubility , Triazines
14.
Article in English | MEDLINE | ID: mdl-36619196

ABSTRACT

Objective: This study was aimed to explore the mechanism of Sishen Wan (SSW) in treating ulcerative colitis (UC) in a rat model of spleen-kidney yang deficiency pattern by regulating gut microbiota and the content of butyric acid in short-chain fatty acid (SCFAs) and restoring regulatory T (Treg)/T helper type 17 (Th17) balance from the perspective of the correlation between gut microbiota and immune function. Methods: The UC rat model of spleen-kidney yang deficiency pattern was established by the method of combining disease and syndrome (intragastric administration of senna leaf, subcutaneous injection of hydrocortisone, and enema with 2,4-dinitrobenzenesulfonic acid (DNBS)/ethanol solution). After successful modeling, rats were randomly divided into six groups: the blank group, model group, low-, middle-, and high-dose Sishen Wan groups, and mesalazine group. Samples were taken after continuous administration for 3 weeks. The general conditions and body weight of the rats were observed and recorded, and the disease activity index (DAI) score was calculated. Colonic mucosal injury was observed, and a colonic mucosal damage index (CMDI) score was calculated. Histopathological changes in colon tissues were determined by hematoxylin and eosin (H&E) staining, and the histopathological score (HS) was calculated. The serum levels of transforming growth factor-ß1 (TGF-ß1), interleukin (IL)-6, IL-10, and IL-17 were determined by enzyme-linked immunosorbent assay (ELISA) assays. The expression of TGF-ß1, signal transducer and activator of transcription 3 (STAT3), and peroxisome proliferator-activated receptor γ (PPARγ) was determined by Western blot analysis. The proportion of Th17 and Treg cells in colon tissue was determined by flow cytometry. The relative abundance of gut microbiota was determined by 16S rDNA sequencing, and the concentration of butyric acid of SCFAs was determined by gas chromatography-mass spectrometry (GC-MS). Results: Administration of SSW significantly improved the pathological changes of colon tissue in UC rats and could attenuate the DAI and CMDI scores, and the HS. SSW significantly decreased the serum levels of IL-6 and IL-17 and increased the serum levels of TGF-ß1 and IL-10. In addition, SSW increased the expression of TGF-ß1 and PPARγ and decreased the expression of STAT3 in colon tissue in a dose-dependent manner. Furthermore, SSW significantly decreased the proportion of Th17 cells and increased the proportion of Treg cells in colon tissue. Additionally, SSW altered the gut microbiota, including an increase in the relative abundance of Firmicutes and a decrease in Bacteroidota at the phylum level and an increase in the relative abundance of Lactobacillus at the genus level. Moreover, SSW significantly increased the concentration of butyric acid. Conclusions: Combined, these data suggested that SSW increased the relative abundance of firmicutes and the level of butyric acid and restored the balance of Treg/Th17 immune axis and gut homeostasis, thus delaying the progress of UC.

15.
Cryobiology ; 98: 164-171, 2021 02.
Article in English | MEDLINE | ID: mdl-33248049

ABSTRACT

The therapeutic effects of cryotherapy on skin and subcutaneous tumors in dogs were retrospectively studied in 20 dogs with 37 tumor lesions, of which 30 were benign and seven were malignant. Our results showed that during follow-up, 94.5% of lesions were completely exfoliated, without relapse or metastasis (mean time = 245.7 days). To investigate the effects of cryotherapy, we compared histopathological observations and microstructural changes in healthy tissues and tumor tissues, before and after cryotherapy. After cryotherapy, both normal skin and tumor tissue exhibited edema and hyperemia, with inflammatory cell infiltration. The cell nuclei exhibited pyknosis, disintegration and necrosis, and tight junctions were decreased in size. Cell morphology was varied, along with fragmented cell nuclear envelopes, crenulated nuclei and indistinct and necrotic intracellular organelles. Vacuoles were apparent in the cytoplasm and intercellular desmosomes were absent. These observations suggested that cryosurgery inhibited skin and subcutaneous tumors via cold-induced injury to cells, and cellular microenvironment changes induced by apoptosis. The results suggested that cryosurgery prevented skin and subcutaneous tumors via cold-induced injury to cells, and cellular microenvironment changes induced by apoptosis. We believe these data will provide general cryotherapy guidance to scientists and veterinary surgeons.


Subject(s)
Cryosurgery , Neoplasms , Animals , Cryopreservation/methods , Cryotherapy , Dogs , Retrospective Studies , Tumor Microenvironment
16.
J Med Chem ; 63(5): 2013-2027, 2020 03 12.
Article in English | MEDLINE | ID: mdl-31059256

ABSTRACT

Direct pharmacological inhibition of RAS has remained elusive, and efforts to target CRAF have been challenging due to the complex nature of RAF signaling, downstream of activated RAS, and the poor overall kinase selectivity of putative RAF inhibitors. Herein, we describe 15 (LXH254, Aversa, R.; et al. Int. Patent WO2014151616A1, 2014), a selective B/C RAF inhibitor, which was developed by focusing on drug-like properties and selectivity. Our previous tool compound, 3 (RAF709; Nishiguchi, G. A.; et al. J. Med. Chem. 2017, 60, 4969), was potent, selective, efficacious, and well tolerated in preclinical models, but the high human intrinsic clearance precluded further development and prompted further investigation of close analogues. A structure-based approach led to a pyridine series with an alcohol side chain that could interact with the DFG loop and significantly improved cell potency. Further mitigation of human intrinsic clearance and time-dependent inhibition led to the discovery of 15. Due to its excellent properties, it was progressed through toxicology studies and is being tested in phase 1 clinical trials.


Subject(s)
Antineoplastic Agents/chemistry , Drug Discovery/methods , Mutation/genetics , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/genetics , Animals , Antineoplastic Agents/pharmacology , Drug Design , Drug Discovery/trends , Humans , Molecular Docking Simulation/methods , Molecular Docking Simulation/trends , Mutation/drug effects , Protein Kinase Inhibitors/pharmacology , Xenograft Model Antitumor Assays/methods
17.
PLoS One ; 14(12): e0225840, 2019.
Article in English | MEDLINE | ID: mdl-31805101

ABSTRACT

BACKGROUND: Dengue fever is endemic in tropical and subtropical areas, especially Southeast Asia. International air travel facilitates the spread of dengue across and within borders. To date, no predictive factors have been established for assessing risk of dengue among febrile travelers. METHODS: Since 2006, Taiwan has operated a program of infrared thermometer-based non-contact active surveillance at Taoyuan International Airport (TPE). All inbound passengers from dengue-endemic countries who are febrile (tympanic temperature ≥38°C) undergo routine laboratory testing for dengue. We analyzed clinical and epidemiological characteristics of all tested passengers entering Taiwan via TPE in 2011 to identify the predictive factors of dengue infection. RESULTS: In 2011, of the 3,719 febrile passengers from dengue-endemic countries, 74 (2.0%) had laboratory-confirmed dengue infection. Multivariable logistic regression analysis revealed that those who were aged ≥60 years (adjusted odds ratio [aOR], 8.7; 95% confidence interval [CI], 2.6-29.6) and had self-reported fever (aOR, 2.5; 95% CI, 1.5-4.1), skin rashes (aOR, 11.0; 95% CI, 3.4-35.1), or a tympanic temperature ≥39°C (aOR, 2.9; 95% CI, 1.7-4.9) were significantly more likely to have dengue (all p values < 0.05). Compared with travelers who stayed in dengue-endemic countries for ≤7 days, those who traveled 8-14, 15-21, 22-28, and ≥29 days were also more likely to be infected (aORs of 10.2, 14.9, 39.0 and 12.0, respectively). CONCLUSION: These clinical and epidemiological features can facilitate timely recognition and diagnosis of imported dengue in febrile inbound passengers and therefore help prevent domestic transmission of dengue virus.


Subject(s)
Airports , Dengue/epidemiology , Infrared Rays , Internationality , Population Surveillance , Thermometers , Travel , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Multivariate Analysis , Young Adult
18.
Cancer Res ; 78(6): 1537-1548, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29343524

ABSTRACT

Resistance to the RAF inhibitor vemurafenib arises commonly in melanomas driven by the activated BRAF oncogene. Here, we report antitumor properties of RAF709, a novel ATP-competitive kinase inhibitor with high potency and selectivity against RAF kinases. RAF709 exhibited a mode of RAF inhibition distinct from RAF monomer inhibitors such as vemurafenib, showing equal activity against both RAF monomers and dimers. As a result, RAF709 inhibited MAPK signaling activity in tumor models harboring either BRAFV600 alterations or mutant N- and KRAS-driven signaling, with minimal paradoxical activation of wild-type RAF. In cell lines and murine xenograft models, RAF709 demonstrated selective antitumor activity in tumor cells harboring BRAF or RAS mutations compared with cells with wild-type BRAF and RAS genes. RAF709 demonstrated a direct pharmacokinetic/pharmacodynamic relationship in in vivo tumor models harboring KRAS mutation. Furthermore, RAF709 elicited regression of primary human tumor-derived xenograft models with BRAF, NRAS, or KRAS mutations with excellent tolerability. Our results support further development of inhibitors like RAF709, which represents a next-generation RAF inhibitor with unique biochemical and cellular properties that enables antitumor activities in RAS-mutant tumors.Significance: In an effort to develop RAF inhibitors with the appropriate pharmacological properties to treat RAS mutant tumors, RAF709, a compound with potency, selectivity, and in vivo properties, was developed that will allow preclinical therapeutic hypothesis testing, but also provide an excellent probe to further unravel the complexities of RAF kinase signaling. Cancer Res; 78(6); 1537-48. ©2018 AACR.


Subject(s)
2,2'-Dipyridyl/analogs & derivatives , Antineoplastic Agents/pharmacology , Benzamides/pharmacology , Proto-Oncogene Proteins B-raf/genetics , raf Kinases/antagonists & inhibitors , ras Proteins/genetics , 2,2'-Dipyridyl/pharmacology , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/drug effects , Female , Humans , MAP Kinase Kinase Kinases/antagonists & inhibitors , Mice, Nude , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Multimerization , Xenograft Model Antitumor Assays , raf Kinases/metabolism
19.
J Med Chem ; 60(12): 4869-4881, 2017 06 22.
Article in English | MEDLINE | ID: mdl-28557458

ABSTRACT

RAS oncogenes have been implicated in >30% of human cancers, all representing high unmet medical need. The exquisite dependency on CRAF kinase in KRAS mutant tumors has been established in genetically engineered mouse models and human tumor cells. To date, many small molecule approaches are under investigation to target CRAF, yet kinase-selective and cellular potent inhibitors remain challenging to identify. Herein, we describe 14 (RAF709) [ Aversa , Biaryl amide compounds as kinase inhibitors and their preparation . WO 2014151616, 2014 ], a selective B/C RAF inhibitor, which was developed through a hypothesis-driven approach focusing on drug-like properties. A key challenge encountered in the medicinal chemistry campaign was maintaining a balance between good solubility and potent cellular activity (suppression of pMEK and proliferation) in KRAS mutant tumor cell lines. We investigated the small molecule crystal structure of lead molecule 7 and hypothesized that disruption of the crystal packing would improve solubility, which led to a change from N-methylpyridone to a tetrahydropyranyl oxy-pyridine derivative. 14 proved to be soluble, kinase selective, and efficacious in a KRAS mutant xenograft model.


Subject(s)
2,2'-Dipyridyl/analogs & derivatives , Antineoplastic Agents/pharmacology , Benzamides/pharmacology , raf Kinases/antagonists & inhibitors , ras Proteins/genetics , 2,2'-Dipyridyl/chemistry , 2,2'-Dipyridyl/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Benzamides/chemistry , Crystallography, X-Ray , Dogs , Drug Design , Drug Discovery , Drug Stability , Humans , Inhibitory Concentration 50 , Mice , Molecular Targeted Therapy , Neoplasms/drug therapy , Neoplasms/genetics , Proto-Oncogene Proteins B-raf/chemistry , Proto-Oncogene Proteins p21(ras)/genetics , Rats , Structure-Activity Relationship , Xenograft Model Antitumor Assays
20.
J Med Chem ; 58(21): 8373-86, 2015 Nov 12.
Article in English | MEDLINE | ID: mdl-26505898

ABSTRACT

Pan proviral insertion site of Moloney murine leukemia (PIM) 1, 2, and 3 kinase inhibitors have recently begun to be tested in humans to assess whether pan PIM kinase inhibition may provide benefit to cancer patients. Herein, the synthesis, in vitro activity, in vivo activity in an acute myeloid leukemia xenograft model, and preclinical profile of the potent and selective pan PIM kinase inhibitor compound 8 (PIM447) are described. Starting from the reported aminopiperidyl pan PIM kinase inhibitor compound 3, a strategy to improve the microsomal stability was pursued resulting in the identification of potent aminocyclohexyl pan PIM inhibitors with high metabolic stability. From this aminocyclohexyl series, compound 8 entered the clinic in 2012 in multiple myeloma patients and is currently in several phase 1 trials of cancer patients with hematological malignancies.


Subject(s)
Leukemia, Myeloid, Acute/drug therapy , Picolinic Acids/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Amides/chemical synthesis , Amides/chemistry , Amides/therapeutic use , Animals , Cell Line, Tumor , Halogenation , Humans , Leukemia, Myeloid, Acute/metabolism , Mice , Models, Molecular , Picolinic Acids/chemical synthesis , Picolinic Acids/chemistry , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-pim-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...