Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 205
Filter
2.
Cardiovasc Res ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38646676

ABSTRACT

BACKGROUND: In patients with diabetic microvascular complications, decreased perfusion or vascular occlusion, caused by reduced vascular diameter, is a common characteristic that will lead to insufficient blood supply. Yet, the regulatory mechanism and effective treatment approach remain elusive. METHODS AND RESULTS: Our initial findings revealed a notable decrease in the expression of human AQP1 in both diabetic human retina samples (49 healthy vs. 54 diabetic samples) and high-glucose-treated human retinal microvascular endothelial cells. Subsequently, our investigations unveiled a reduction in vascular diameter and compromised perfusion within zebrafish embryos subjected to high glucose treatment. Further analysis indicated a significant downregulation of two aquaporins, aqp1a.1 and aqp8a.1, which are highly enriched in ECs and are notably responsive to hyperglycemic conditions. Intriguingly, the loss of function of aqp1a.1 and/or aqp8a.1 resulted in a reduction of intersegmental vessel diameters, effectively mirroring the phenotype observed in the hyperglycemic zebrafish model.The overexpression of aqp1a.1/aqp8a.1 in zebrafish ECs led to notable enlargement of microvascular diameters. Moreover, the reduced vessel diameters resulting from high-glucose treatment were effectively rescued by the overexpression of these aquaporins. Additionally, both aqp1a.1 and apq8a.1 were localized in the intracellular vacuoles in cultured ECs as well as the ECs of sprouting ISVs, and the loss of Aqps caused the reduction of those vacuoles, which was required for lumenization. Notably, while the loss of AQP1 did not impact EC differentiation from human stem cells, it significantly inhibited vascular formation in differentiated ECs. CONCLUSION: EC-enriched aquaporins regulate the diameter of blood vessels through an intracellular vacuole-mediated process under hyperglycemic conditions. These findings collectively suggest that aquaporins expressed in ECs hold significant promise as potential targets for gene therapy aimed at addressing vascular perfusion defects associated with diabetes.

3.
Oncol Lett ; 27(6): 259, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38646492

ABSTRACT

Lung cancer is the most common cancer in the world due to its high incidence and recurrence. Genetic instability is one of the main factors leading to its occurrence, development and poor prognosis. Decreased xeroderma pigmentosum group C (XPC) expression notably enhances the stem cell properties of lung cancer cells and increases their proliferation and migration. Additionally, patients with lung cancer and low XPC expression had a poor prognosis. The purpose of the present study was to analyze the effect of XPC and IFN-γ on the clinical prognosis of patients with non-small cell lung cancer (NSCLC). Lung adenocarcinoma specimens were collected from a total of 140 patients with NSCLC. Additionally, from these 140 patients, 48 paracarcinoma tissue specimens were also collected, which were later used to construct tissue microarrays. The expression of XPC and IFN-γ in cancer tissues and in paraneoplastic tissues was detected using immunohistochemistry. The prognosis and overall survival of patients were determined through telephone follow-up. The results showed a positive correlation between expression of XPC and IFN-γ in NSCLC. Additionally, high expression of both markers was associated with a favorable prognosis in patients with NSCLC. The aforementioned findings suggest that the expression of XPC and IFN-γ has prognostic value in clinical practice and is expected to become a marker for clinical application.

4.
Angew Chem Int Ed Engl ; : e202400989, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38623921

ABSTRACT

Foldamer is a scaled-down version of coil spring, which can absorb and release energy by conformational change. Here, polymer networks with high-density of molecular springs were developed by employing anion-coordination-based foldamers as the monomer. The coiling of the foldamer is controlled by oligourea ligands coordinating to chloride ions; subsequently, the folding and unfolding of foldamer conformations endow the polymer network with excellent energy dissipation and toughness. The mechanical performance of the corresponding polymer network shows a dramatic increase from P-L2UCl (non-folding), P-L4UCl (a full turn) to P-L6UCl (1.5 turns), in terms of strength (2.62 MPa; 14.26 Mpa; 22.93 Mpa), elongation at break (70%; 325%; 352%), Young's modulus (2.69 MPa; 63.61 Mpa; 141.50 Mpa), and toughness (1.12 MJ/m3; 21.39 MJ/m3; 49.62 MJ/m3), respectively, which are also better than those without anion centers and the non-foldamer based counterparts. Moreover, P-L6UCl shows enhanced strength and toughness than most of the molecular-spring based polymer networks.Moreover, P-L6UCl shows enhanced strength and toughness than most of the molecular-spring based polymer networks. Thus, an effective strategy for designing high-performance anion-coordination-based materials is presented in this study.

5.
Int J Mol Sci ; 25(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38473861

ABSTRACT

Acute ammonia exposure has detrimental effects on shrimp, but the underlying mechanisms remain to be fully explored. In the present study, we investigated the impact of acute ammonia exposure on the gut microbiota of the white shrimp Litopenaeus vannamei and its association with shrimp mortality. Exposure to a lethal concentration of ammonia for 48 h resulted in increased mortality in L. vannamei, with severe damage to the hepatopancreas. Ammonia exposure led to a significant decrease in gut microbial diversity, along with the loss of beneficial bacterial taxa and the proliferation of pathogenic Vibrio strains. A phenotypic analysis revealed a transition from the dominance of aerobic to facultative anaerobic strains due to ammonia exposure. A functional analysis revealed that ammonia exposure led to an enrichment of genes related to biofilm formation, host colonization, and virulence pathogenicity. A species-level analysis and experiments suggest the key role of a Vibrio harveyi strain in causing shrimp disease and specificity under distinct environments. These findings provide new information on the mechanism of shrimp disease under environmental changes.


Subject(s)
Gastrointestinal Microbiome , Penaeidae , Animals , Ammonia , Dysbiosis , Penaeidae/genetics , Hepatopancreas
6.
Int J Biol Macromol ; 266(Pt 1): 131107, 2024 May.
Article in English | MEDLINE | ID: mdl-38527677

ABSTRACT

Curcumin (CUR) is a natural polyphenol that holds promise for treating ulcerative colitis (UC), yet oral administration of CUR exhibits limited bioavailability and existing formulations for oral delivery of CUR often suffer from unsatisfactory loading capacity. This study presents hydroxyethyl starch-curcumin microspheres (HC-MSs) with excellent CUR loading capacity (54.52 %), and the HC-MSs can further encapsulate anti-inflammatory drugs dexamethasone (DEX) to obtain a combination formulation (DHC-MSs) with high DEX loading capacity (19.91 %), for combination therapy of UC. The microspheres were successfully engineered, retaining the anti-oxidative and anti-inflammatory activities of parental CUR and demonstrating excellent biocompatibility and controlled release properties, notably triggered by α-amylase, facilitating targeted drug delivery to inflamed sites. In a mouse UC model induced by dextran sulfate sodium, the microspheres effectively accumulated in inflamed colons and both HC-MSs and DHC-MSs exhibited superior therapeutic efficacy in alleviating UC symptoms compared to free DEX. Moreover, mechanistic exploration uncovered the multifaceted therapeutic mechanisms of these formulations, encompassing anti-inflammatory actions, mitigation of spleen enlargement, and modulation of gut microbiota composition. These findings underscore the potential of HC-MSs and DHC-MSs as promising formulations for UC, with implications for advancing treatment modalities for various inflammatory bowel disorders.


Subject(s)
Anti-Inflammatory Agents , Colitis, Ulcerative , Curcumin , Gastrointestinal Microbiome , Hydroxyethyl Starch Derivatives , Microspheres , Oxidative Stress , Curcumin/pharmacology , Curcumin/chemistry , Animals , Colitis, Ulcerative/drug therapy , Gastrointestinal Microbiome/drug effects , Oxidative Stress/drug effects , Mice , Hydroxyethyl Starch Derivatives/chemistry , Hydroxyethyl Starch Derivatives/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Colon/drug effects , Colon/pathology , Colon/metabolism , Colon/microbiology , Inflammation/drug therapy , Disease Models, Animal , Drug Carriers/chemistry , Male
7.
World J Psychiatry ; 14(2): 276-286, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38464765

ABSTRACT

BACKGROUND: Major depression disorder (MDD) constitutes a significant mental health concern. Epidemiological surveys indicate that the lifetime prevalence of depression in adolescents is much higher than that in adults, with a corresponding increased risk of suicide. In studying brain dysfunction associated with MDD in adole-scents, research on brain white matter (WM) is sparse. Some researchers even mistakenly regard the signals generated by the WM as noise points. In fact, studies have shown that WM exhibits similar blood oxygen level-dependent signal fluctuations. The alterations in WM signals and their relationship with disease severity in adolescents with MDD remain unclear. AIM: To explore potential abnormalities in WM functional signals in adolescents with MDD. METHODS: This study involved 48 adolescent patients with MDD and 31 healthy controls (HC). All participants were assessed using the Patient Health Questionnaire-9 Scale and the mini international neuropsychiatric interview (MINI) suicide inventory. In addition, a Siemens Skyra 3.0T magnetic resonance scanner was used to obtain the subjects' image data. The DPABI software was utilized to calculate the WM signal of the fractional amplitude of low frequency fluctuations (fALFF) and regional homogeneity, followed by a two-sample t-test between the MDD and HC groups. Independent component analysis (ICA) was also used to evaluate the WM functional signal. Pearson's correlation was performed to assess the relationship between statistical test results and clinical scales. RESULTS: Compared to HC, individuals with MDD demonstrated a decrease in the fALFF of WM in the corpus callosum body, left posterior limb of the internal capsule, right superior corona radiata, and bilateral posterior corona radiata [P < 0.001, family-wise error (FWE) voxel correction]. The regional homogeneity of WM increased in the right posterior limb of internal capsule and left superior corona radiata, and decreased in the left superior longitudinal fasciculus (P < 0.001, FWE voxel correction). The ICA results of WM overlapped with those of regional homo-geneity. The fALFF of WM signal in the left posterior limb of the internal capsule was negatively correlated with the MINI suicide scale (P = 0.026, r = -0.32), and the right posterior corona radiata was also negatively correlated with the MINI suicide scale (P = 0.047, r = -0.288). CONCLUSION: Adolescents with MDD involves changes in WM functional signals, and these differences in brain regions may increase the risk of suicide.

8.
Anal Chem ; 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38324761

ABSTRACT

Versatile, informative, sensitive, and specific nucleic acid detection plays a crucial role in point-of-care pathogen testing, genotyping, and disease monitoring. In this study, we present a novel one-pot Cas12b-based method coupled with the "Green-Yellow-Red" strategy for multiplex detection. By integrating RT-LAMP amplification and Cas12b cleavage in a single tube, the entire detection process can be completed within 1 h. Our proposed method exhibits high specificity, enabling the discrimination of single-base mutations with detection sensitivity approaching single molecule levels. Additionally, the fluorescent results can be directly observed by the naked eye or automatically analyzed using our custom-designed software Result Analyzer. To realize point-of-care detection, we developed a portable cartridge capable of both heating and fluorescence excitation. In a clinical evaluation involving 20 potentially SARS-CoV-2-infected samples, our method achieved a 100% positive detection rate when compared to standard RT-PCR. Furthermore, the identification of SARS-CoV-2 variants using our method yielded results that were consistent with the sequencing results. Notably, our proposed method demonstrates excellent transferability, allowing for the simultaneous detection of various pathogens and the identification of mutations as low as 0.5% amidst a high background interference. These findings highlight the tremendous potential of our developed method for molecular diagnostics.

9.
Adv Mater ; : e2401711, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38381000

ABSTRACT

Constructing an artificial solid electrolyte interphase (ASEI) on Li metal anodes (LMAs) is a potential strategy for addressing the dendrite issues. However, the mechanical fatigue of the ASEI caused by stress accumulation under the repeated deformation from the Li plating/stripping is not taken seriously. Herein, this work introduces a mechanically interlocked [an]daisy chain network (DC MIN) into the ASEI to stabilize the Li metal/ASEI interface by combining the functions of energy dissipation and fast Li-ion transport. The DC MIN featured by large-range molecular motions is cross-linked via efficient thiol-ene click chemistry; thus, the DC MIN has flexibility and excellent mechanical properties. As an ASEI, the crown ether units in DC MIN not only interact with the dialkylammonium of a flexible chain, forming the energy dissipation behavior but also coordinate with Li ion to support the fast Li-ion transport in DC MIN. Therefore, a stable 2800 h-symmetrical cycling (1 mA cm-2 ) and an excellent 5 C-rate (full cell with LiFePO4 ) performance are achieved by DC MIN-based ASEI. Furthermore, the 1-Ah pouch cell (LiNi0.88 Co0.09 Mn0.03 O2 cathode) with DC MIN-coated LMA exhibits improved capacity retention (88%) relative to the Control. The molecular design of DC MIN provides new insights into the optimization of an ASEI for high-energy LMAs.

10.
Adv Healthc Mater ; 13(9): e2303379, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38211342

ABSTRACT

Hydrogel dressings capable of infection monitoring and precise treatment administration show promise for advanced wound care. Existing methods involve embedd ingorganic dyes or flexible electronics into preformed hydrogels, which raise safety issues and adaptability challenges. In this study, an injectable hydrogel based smart wound dressing is developed by integrating food-derived anthocyanidin as a visual pH probe for infection monitoring and poly(L-lactic acid) microcapsules as ultrasound-responsive delivery systems for antibiotics into a poly(ethylene glycol) hydrogel. This straightforwardly prepared hydrogel dressing maintains its favorable properties for wound repair, including porous morphology and excellent biocompatibility. In vitro experiments demonstrated that the hydrogel enabled visual assessment of pH within the range of 5 âˆ¼ 9.Meanwhile, the release of antibiotics could be triggered and controlled by ultrasound. In vivo evaluations using infected wounds and diabetic wounds revealed that the wound dressing effectively detected wound infection by monitoring pH levels and achieved antibacterial effects through ultrasound-triggered drug release. This led to significantly enhanced wound healing, as validated by histological analysis and the measurement of inflammatory cytokine levels. This injectable hydrogel-based smart wound dressing holds great potential for use in clinical settings to inform timely and precise clinical intervention and in community to improve wound care management.


Subject(s)
Bandages , Hydrogels , Hydrogels/chemistry , Capsules , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Biocompatible Materials , Hydrogen-Ion Concentration
12.
J Cardiothorac Surg ; 19(1): 35, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38297385

ABSTRACT

BACKGROUND: With the implementation of lung cancer screening programs, an increasing number of pulmonary nodules have been detected.Video-assisted thoracoscopic surgery (VATS) could provide adequate tissue specimens for pathological analysis, and has few postoperative complications.However, locating the nodules intraoperatively by palpation can be difficult for thoracic surgeons. The preoperative pulmonary nodule localization technique is a very effective method.We compared the safety and effectiveness of two methods for the preoperative localization of pulmonary ground glass nodules. METHODS: From October 2020 to April 2021, 133 patients who underwent CT-guided single pulmonary nodule localization were retrospectively reviewed. All patients underwent video-assisted thoracoscopic surgery (VATS) after successful localization. Statistical analysis was used to evaluate the localization accuracy, safety, information related to surgery and postoperative pathology information. The aim of this study was to evaluate the clinical effects of the two localization needles. RESULTS: The mean maximal transverse nodule diameters in the four-hook needle and hook wire groups were 8.97 ± 3.85 mm and 9.00 ± 3.19 mm, respectively (P = 0.967). The localization times in the four-hook needle and hook wire groups were 20.58 ± 2.65 min and 21.43 ± 3.06 min, respectively (P = 0.09). The dislodgement rate was significantly higher in the hook wire group than in the four-hook needle group (7.46% vs. 0, P = 0.024). The mean patient pain scores based on the visual analog scale in the four-hook needle and hook wire groups were 2.87 ± 0.67 and 6.10 ± 2.39, respectively (P = 0.000). All ground glass nodules (GGNs) were successfully resected by VATS. CONCLUSIONS: Preoperative pulmonary nodule localization with both a four-hook needle and hook wire is safe, convenient and effective.


Subject(s)
Lung Neoplasms , Multiple Pulmonary Nodules , Solitary Pulmonary Nodule , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/surgery , Lung Neoplasms/pathology , Retrospective Studies , Early Detection of Cancer , Multiple Pulmonary Nodules/diagnostic imaging , Multiple Pulmonary Nodules/surgery , Multiple Pulmonary Nodules/pathology , Solitary Pulmonary Nodule/diagnostic imaging , Solitary Pulmonary Nodule/surgery , Solitary Pulmonary Nodule/pathology , Thoracic Surgery, Video-Assisted/methods
13.
Nat Chem Biol ; 20(3): 344-352, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38052959

ABSTRACT

Compact Cas9 nucleases hold great promise for therapeutic applications. Although several compact Cas9 nucleases have been developed, many genomic loci still could not be edited due to a lack of protospacer adjacent motifs (PAMs). We previously developed a compact SlugCas9 recognizing an NNGG PAM. Here we demonstrate that SlugCas9 displays comparable activity to SpCas9. We developed a simple phage-assisted evolution to engineer SlugCas9 for unique PAM requirements. Interestingly, we generated a SlugCas9 variant (SlugCas9-NNG) that could recognize an NNG PAM, expanding the targeting scope. We further developed a SlugCas9-NNG-based adenine base editor and demonstrated that it could be delivered by a single adeno-associated virus to disrupt PCSK9 splice donor and splice acceptor. These genome editors greatly enhance our ability for in vivo genome editing.


Subject(s)
Bacteriophages , CRISPR-Cas Systems , CRISPR-Cas Systems/genetics , Proprotein Convertase 9 , Adenine , Endonucleases/genetics
14.
Circulation ; 149(4): 317-329, 2024 01 23.
Article in English | MEDLINE | ID: mdl-37965733

ABSTRACT

BACKGROUND: Pathogenic variants in SCN5A can result in long QT syndrome type 3, a life-threatening genetic disease. Adenine base editors can convert targeted A T base pairs to G C base pairs, offering a promising tool to correct pathogenic variants. METHODS: We generated a long QT syndrome type 3 mouse model by introducing the T1307M pathogenic variant into the Scn5a gene. The adenine base editor was split into 2 smaller parts and delivered into the heart by adeno-associated virus serotype 9 (AAV9-ABEmax) to correct the T1307M pathogenic variant. RESULTS: Both homozygous and heterozygous T1307M mice showed significant QT prolongation. Carbachol administration induced Torsades de Pointes or ventricular tachycardia for homozygous T1307M mice (20%) but not for heterozygous or wild-type mice. A single intraperitoneal injection of AAV9-ABEmax at postnatal day 14 resulted in up to 99.20% Scn5a transcripts corrected in T1307M mice. Scn5a mRNA correction rate >60% eliminated QT prolongation; Scn5a mRNA correction rate <60% alleviated QT prolongation. Partial Scn5a correction resulted in cardiomyocytes heterogeneity, which did not induce severe arrhythmias. We did not detect off-target DNA or RNA editing events in ABEmax-treated mouse hearts. CONCLUSIONS: These findings show that in vivo AAV9-ABEmax editing can correct the variant Scn5a allele, effectively ameliorating arrhythmia phenotypes. Our results offer a proof of concept for the treatment of hereditary arrhythmias.


Subject(s)
Cardiac Conduction System Disease , Gene Editing , Long QT Syndrome , Mice , Animals , Long QT Syndrome/genetics , Long QT Syndrome/therapy , Long QT Syndrome/diagnosis , Arrhythmias, Cardiac , Myocytes, Cardiac , Adenine , RNA, Messenger , NAV1.5 Voltage-Gated Sodium Channel/genetics , Mutation
15.
Macromol Biosci ; 24(4): e2300465, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38111343

ABSTRACT

Combination therapy through colon-targeted oral delivery of multiple drugs presents a promising approach for effectively treating ulcerative colitis (UC). However, the codelivery of drugs with diverse physicochemical properties in a single formulation remains a formidable challenge. Here, microcapsules are designed based on hydroxyethyl starch-curcumin (HES─CUR) conjugates to enable the simultaneous delivery of hydrophobic dexamethasone acetate (DA) and hydrophilic cefazolin sodium (CS), yielding multiple drug-loaded microcapsules (CS/DA-loaded HES─CUR microcapsules, CDHC-MCs) tailored for colon-targeted therapy of UC. Thorough characterization confirms the successful synthesis and exceptional biocompatibility of CDHC-MCs. Biodistribution studies demonstrate that the microcapsules exhibit an impressive inflammatory targeting effect, accumulating preferentially in inflamed colons. In vivo experiments employing a dextran-sulfate-sodium-induced UC mouse model reveal that CDHC-MCs not only arrest UC progression but also facilitate the restoration of colon length and alleviate inflammation-related splenomegaly. These findings highlight the potential of colon-targeted delivery of multiple drugs within a single formulation as a promising strategy to enhance UC treatment, and the CDHC-MCs developed in this study hold great potential in developing novel oral formulations for advanced UC therapy.


Subject(s)
Colitis, Ulcerative , Curcumin , Mice , Animals , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Curcumin/chemistry , Tissue Distribution , Capsules/metabolism , Colon/metabolism , Starch/pharmacology , Dextran Sulfate/pharmacology , Disease Models, Animal
16.
Microb Pathog ; 186: 106503, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38142905

ABSTRACT

Porcine epidemic diarrhea (PED), caused by porcine epidemic diarrhea virus (PEDV), is an acute and highly contagious enteric disease with a high mortality rate in suckling piglets. Identification of proteins associated with PEDV infection may provide insights into the pathogenesis of this viral disease. In this study, we employed tandem mass tag (TMT) quantitative protein analysis to investigate proteomic changes in PK15 cells following PEDV infection, and differential protein expression profiles were obtained at 0 h, 24 h, and 48 h post-infection. Overall, a total of 6330 proteins were identified. Applying criteria for fold change >1.5 < 0.67 and p-values <0.05 resulted in the identification of 59 up-regulated proteins and 103 down-regulated proteins that exhibited significant alterations in the H24 group compared to the H0 group. The H48 group demonstrated significant upregulation of 110 proteins and downregulation of 144 proteins compared to the H0 group; additionally, there were also 10 upregulated and 30 downregulated proteins in the H48 group when compared to the H24 group. These differentially expressed proteins (DEPs) were involved in immune response regulation, signal transduction, lipid transport and metabolism processes as well as cell apoptosis pathways. Based on these DEPs, we propose that PEDV may disrupt signal transduction pathways along with lipid transport and metabolism processes leading to maximal viral replication, it may also trigger inflammatory cascades accordingly. These findings could provide valuable information for elucidating specific pathogenesis related to PEDV infection while contributing towards developing new antiviral strategies.


Subject(s)
Porcine epidemic diarrhea virus , Swine Diseases , Animals , Swine , Porcine epidemic diarrhea virus/physiology , Proteomics/methods , Proteins/metabolism , Signal Transduction , Lipids
17.
Virol J ; 20(1): 303, 2023 12 19.
Article in English | MEDLINE | ID: mdl-38115115

ABSTRACT

BACKGROUND: Pseudorabies virus (PRV) causes substantial losses in the swine industry worldwide. Attenuated PRV strains with deletions of immunomodulatory genes glycoprotein E (gE), glycoprotein I (gI) and thymidine kinase (TK) are candidate vaccines. However, the effects of gE/gI/TK deletions on PRV-host interactions are not well understood. METHODS: To characterize the impact of gE/gI/TK deletions on host cells, we analyzed and compared the transcriptomes of PK15 cells infected with wild-type PRV (SD2017), PRV with gE/gI/TK deletions (SD2017gE/gI/TK) using RNA-sequencing. RESULTS: The attenuated SD2017gE/gI/TK strain showed increased expression of inflammatory cytokines and pathways related to immunity compared to wild-type PRV. Cell cycle regulation and metabolic pathways were also perturbed. CONCLUSIONS: Deletion of immunomodulatory genes altered PRV interactions with host cells and immune responses. This study provides insights into PRV vaccine design.


Subject(s)
Herpesvirus 1, Suid , Pseudorabies , Swine Diseases , Swine , Animals , Herpesvirus 1, Suid/genetics , Thymidine Kinase/genetics , Viral Envelope Proteins/genetics , Glycoproteins/genetics , Gene Expression Profiling
18.
BMC Sports Sci Med Rehabil ; 15(1): 174, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38115083

ABSTRACT

OBJECTIVE: To systematically review the effects of intermittent hypoxic training on the aerobic capacity of exercisers. METHODS: PubMed, Embase, The Cochrane Library, and Web of Science databases were electronically searched to collect studies on the effects of intermittent hypoxic training on the aerobic capacity of exercisers from January 1, 2000, to January 12, 2023. Two reviewers independently screened the literature, extracted data, and assessed the risk of bias of the included studies. Then, meta-analysis was performed by using Stata SE 16.0 software. RESULTS: A total of 19 articles from 27 studies were included. The results of the meta-analysis showed that compared with the control group, the intermittent hypoxic training group had significantly increased maximal oxygen uptake [weighted mean difference = 3.20 (95%CI: 1.33 ~ 5.08)] and hemoglobin [weighted mean difference = 0.25 (95%CI: 0.04 ~ 0.45)]. CONCLUSION: Intermittent hypoxic training can significantly improve the aerobic capacity of exercisers. Due to the limited quantity and quality of the included studies, more high-quality studies are needed to verify the above conclusion.

19.
J Med Chem ; 66(21): 14583-14596, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37909153

ABSTRACT

Carbon monoxide has shown promise as a therapeutic agent against cancers. Reactive oxygen species (ROS)-activated CO prodrugs are highly demanded for targeted cancer treatment but remain sporadic. In addition, little attention is on how the release rate affects CO's biological effects. Herein, we describe a new type of ROS-activated metal-free CO prodrug, which releases CO with tunable release rates in response to multiple ROS and exhibits very pronounced tumor suppression effects in a mouse 4t1 breast tumor model. Importantly, for the first time, we observe both in vitro and in vivo that CO release rate has a direct impact on its antiproliferative potency and a correlation between release rate and antiproliferative activity is observed. In aggregates, our results not only deliver ROS-sensitive CO prodrugs for cancer treatment but also represent a promising starting point for further in-depth studies of how CO release kinetics affect anticancer activity.


Subject(s)
Neoplasms , Prodrugs , Mice , Animals , Prodrugs/pharmacology , Prodrugs/therapeutic use , Carbon Monoxide , Reactive Oxygen Species , Cell Line, Tumor , Neoplasms/drug therapy
20.
Biosensors (Basel) ; 13(10)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37887103

ABSTRACT

Bloodstream infection is a major health problem worldwide, with extremely high mortality. Detecting infection in the early stage is challenging due to the extremely low concentration of bacteria in the blood. Digital PCR provides unparalleled sensitivity and can achieve absolute quantification, but it is time-consuming. Moreover, the presence of unavoidable background signals in negative controls poses a significant challenge for single-molecule detection. Here, we propose a novel strategy called "Ultrafast flexible thin tube-based droplet digital PCR (utPCR)" that can shorten the digital PCR process from 2 h to only 5 min, with primer annealing/extension time reduced from minutes to only 5 s. Importantly, the ultrafast PCR eliminates nonspecific amplification and thus enables single-molecule detection. The utPCR enabled the sensitive detection and digital quantification of E. coli O157 in the high background of a 106-fold excess of E. coli K12 cells. Moreover, this method also displayed the potential to detect rare pathogens in blood samples, and the limit of detection (LOD) could be as low as 10 CFU per mL of blood without false positive results. Considered ultrafast (<5 min) and highly sensitive (single-molecule detection), the utPCR holds excellent prospects in the next generation of molecular diagnosis.


Subject(s)
Escherichia coli K12 , Escherichia coli O157 , Sepsis , Humans , Polymerase Chain Reaction/methods , Limit of Detection , Escherichia coli K12/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...