Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 143
Filter
1.
Ann Surg ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38881456

ABSTRACT

OBJECTIVE: This study evaluated the efficacy of various local management strategies for diabetic foot ulcers (DFUs). BACKGROUND: Several surgical and non-surgical local interventional approaches are available for the treatment of DFUs. The comparative effectiveness of different treatments is unknown, and it remains unclear which approach is the optimal choice for DFUs treatment due to limited direct comparisons. METHODS: We did a systematic review and meta-analysis to select the optimal approach to DFUs local management. We searched Medline, Embase, Web of Science, and ClinicalTrials.gov from inception to September 1, 2023, to identify relevant randomized controlled trials (RCTs). We analysed data by pairwise meta-analyses with a random-effects model. A network meta-analysis using the surface under the cumulative ranking curve (SUCRA) was performed to evaluate the comparative efficacy of different interventional approaches in the early (within 12 wk) and late stages (over 12 wk). RESULTS: 141 RCTs involving 14076 patients and exploring 14 interventional strategies were eligible for inclusion. Most studies (102/141) had at least one risk-of-bias dimension. Good consistency was observed during the analysis. Local pairwise comparisons demonstrated obvious differences in the early-stage healing rate and early- and late-stage healing times, while no significant difference in the late-stage healing rate or adverse events were noted. SUCRAs identified the standard of care (SOC) + decellularized dressing (DD), off-loading (OL), and autogenous graft (AG) as the three most effective interventions within 12 weeks for both healing rate (97%, mean rank: 1.4; 90%, mean rank: 2.3; 80.8%, mean rank: 3.5, respectively) and healing time (96.7%, mean rank: 1.4; 83.0%, mean rank: 3.0; 76.8%, mean rank: 3.8, respectively). After 12 weeks, local drug therapy (LDT) (89.5%, mean rank: 2.4) and OL (82.4%, mean rank: 3.3) ranked the highest for healing rate, and OL (100.0%, mean rank: 1.0) for healing time. With respect to adverse events, moderate and high risks were detected in the SOC + DD (53.7%, mean rank: 7.0) and OL (24.4%, mean rank: 10.8) groups, respectively. CONCLUSION: The findings suggest that OL provided considerable benefits for DFU healing in both the early and late stages, but the high risk of adverse events warrants caution. SOC+DD may be the preferred option in the early stages, with an acceptable risk of adverse events.

2.
Molecules ; 29(6)2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38542965

ABSTRACT

In Asian regions, areca nuts are tropical fruits that are extensively consumed. The areca nut contains a lot of polyphenols and its safety is unknown. In this research, we investigated the effects of lipopolysaccharides (LPS) and areca nut polyphenols (ANP) on normal RAW264.7 cells. The results showed that LPS stimulated adverse effects in normal cells by affecting cytokine production. The GO analysis results mainly affected DNA repair, cell division, and enzyme activities. In the KEGG analysis results, the NOD-like receptor signaling pathway, which is related to NF-κB, MAPK, and the pro-inflammatory cytokines, is the most significant. In the protein-protein interaction network (PPI) results, significant sub-networks in all three groups were shown to be related to cytokine-cytokine receptor interaction. Collectively, our findings showed a comprehensive understanding of LPS-induced toxicity and the protective effects of ANP by RNA sequencing.


Subject(s)
Areca , Lipopolysaccharides , Animals , Mice , Lipopolysaccharides/adverse effects , Plant Extracts/pharmacology , Nuts , Cytokines , RAW 264.7 Cells , Polyphenols/pharmacology
3.
Food Chem X ; 21: 101150, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38312485

ABSTRACT

Fermented-chopped pepper is a widely consumed condiment in China due to its attractive flavor. Chopped pepper seed (CPS) is the byproduct generated during the production of chopped pepper and is generally discarded as waste. In this study, the volatile organic compounds (VOCs) and nutritional value of three varieties of CPS were investigated. Results indicated that the nutritional compositions of the three CPS varieties exhibited significant differences. All CPS samples contained 17 amino acids and were rich in fatty acids, with unsaturated fatty acids being predominant and accounting for 79 % of the total fatty acids. A total of 53 VOCs were identified by gas chromatography-ion mobility spectrometry, which could be classified into 9 groups, with aldehydes, esters, and alcohols comprising the three largest groups. The three varieties of CPS had remarkably varied aromas whereas there are five key VOCs (i.e., 2-pentylfuran, methional, ethyl 3-methylbutanoate, dimethyl disulfide, and nonanal) in all CPS samples. Network correlation analysis revealed that VOCs are closely correlated with amino and fatty acids. Thus, this study provides a useful basis for understanding the nutritional values and flavor characteristics of different CPS varieties, which could be used as an ingredient and might have great potential in the food industry.

4.
IEEE Trans Cybern ; 54(1): 13-24, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37021890

ABSTRACT

Accuracy and speed are the most important indexes for evaluating many object tracking algorithms. However, when constructing a deep fully convolutional neural network (CNN), the use of deep network feature tracking will cause tracking drift due to the effects of convolution padding, receptive field (RF), and overall network step size. The speed of the tracker will also decrease. This article proposes a fully convolutional siamese network object tracking algorithm that combines the attention mechanism with the feature pyramid network (FPN), and uses heterogeneous convolution kernels to reduce the amount of calculations (FLOPs) and parameters. The tracker first uses a new fully CNN to extract image features, and introduces a channel attention mechanism in the feature extraction process to improve the representation ability of convolutional features. Then use the FPN to fuse the convolutional features of high and low layers, learn the similarity of the fused features, and train the fully CNNs. Finally, the heterogeneous convolutional kernel is used to replace the standard convolution kernel to improve the speed of the algorithm, thereby making up for the efficiency loss caused by the feature pyramid model. In this article, the tracker is experimentally verified and analyzed on the VOT-2017, VOT-2018, OTB-2013, and OTB-2015 datasets. The results show that our tracker has achieved better results than the state-of-the-art trackers.

5.
Food Chem X ; 19: 100811, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37780291

ABSTRACT

In this study, the solid-state fermentation (SSF) of dark tea was carried out using Bacillus subtilis LK-1, which was isolated from Fu brick tea (FBT). The effects of SSF with B. subtilis on volatile organic compounds (VOCs), non-volatile metabolites, and antioxidant activities of dark tea was investigated. A total of 45 VOCs were identified, primarily consisting of ketones (18), hydrocarbons (8), aldehydes (7), and alcohols (6). Following fermentation, the content of key odor active substances such as linalool, ß-ionone, and 3,5-octadiene-2-one significantly increased, resulting in an enhanced floral and fruity aroma of dark tea. Furthermore, new flavor substances like geranyl isovalerate and decanal were produced during SSF, enriching the aroma profile of dark tea. Non-ester catechins demonstrated a drastic increase, while ester catechins remarkably decreased after SSF. Furthermore, SSF led to a slight decrease in the total polyphenols content and antioxidant activity of dark tea. There is a close relationship between VOCs and the main non-volatile metabolites during SSF. Overall, this study highlighted the great impact of SSF with B. subtilis on the metabolites of dark tea and provided valuable insights into the role of bacteria in shaping the metabolite profile of FBT.

6.
Foods ; 12(10)2023 May 15.
Article in English | MEDLINE | ID: mdl-37238809

ABSTRACT

Yellow glutinous rice wine is a traditional Chinese beverage created by soaking, boiling, and fermenting glutinous rice. The majority of current studies on the flavor of yellow glutinous rice wine are based on instrumental analysis, with sensory analysis being overlooked. In this study, 36 volatile chemicals in the fermentation process of yellow wine were annotated by GC-MS and then an OPLS-DA model was built to screen out 13 distinctive substances (VIP > 1, p < 0.01). The relative odor activity value (ROAV) was calculated using the threshold values of these chemicals and 10 substances, including alcohols, esters, and aldehydes, were found as key contributors to the overall flavor of yellow wine. Following that, consumers quantified the sensory descriptors of yellow wine using rate-all-that-apply (RATA), and correspondence analysis revealed three groups of characteristic flavors and odors. Alcohols and esters were found to be key producers of flowery and fruity scents in yellow wine, according to correlation analysis. We discovered two alcohols that are rarely found in yellow wine: [R,R]-2,3-butanediol and 1-phenylethanol. The former was found to be favorably connected with wine scent and pungent odor, and its specific effect on flavor should be researched further.

7.
Nutrients ; 15(10)2023 May 21.
Article in English | MEDLINE | ID: mdl-37242285

ABSTRACT

The areca nut is often consumed as a chewing food in the Asian region. Our previous study revealed that the areca nut is rich in polyphenols with high antioxidant activity. In this study, we further assessed the effects and molecular mechanisms of the areca nut and its major ingredients on a Western diet-induced mice dyslipidemia model. Male C57BL/6N mice were divided into five groups and fed with a normal diet (ND), Western diet (WD), WD with areca nut extracts (ANE), areca nut polyphenols (ANP), and arecoline (ARE) for 12 weeks. The results revealed that ANP significantly reduced WD-induced body weight, liver weight, epididymal fat, and liver total lipid. Serum biomarkers showed that ANP ameliorated WD-enhanced total cholesterol and non-high-density lipoprotein (non-HDL). Moreover, analysis of cellular signaling pathways revealed that sterol regulatory element-binding protein 2 (SREBP2) and enzyme 3-hydroxy-3-methylglutaryld coenzyme A reductase (HMGCR) were significantly downregulated by ANP. The results of gut microbiota analysis revealed that ANP increased the abundance of beneficial bacterium Akkermansias and decreased the abundance of the pathogenic bacterium Ruminococcus while ARE shown the opposite result to ANP. In summary, our data indicated that areca nut polyphenol ameliorated WD-induced dyslipidemia by increasing the abundance of beneficial bacteria in the gut microbiota and reducing the expressions of SREBP2 and HMGCR while areca nut ARE inhibited this improvement potential.


Subject(s)
Areca , Non-alcoholic Fatty Liver Disease , Male , Mice , Animals , Areca/chemistry , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , Nuts , Diet, Western/adverse effects , Mice, Inbred C57BL , Arecoline/pharmacology , Plant Extracts/pharmacology
8.
Nutrients ; 15(7)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37049564

ABSTRACT

To explore the mechanism by which Akkermansia muciniphila cell-free supernatant improves glucose and lipid metabolisms in Caenorhabditis elegans, the present study used different dilution concentrations of Akkermansia muciniphila cell-free supernatant as an intervention for with Caenorhabditis elegans under a high-glucose diet. The changes in lifespan, exercise ability, level of free radicals, and characteristic indexes of glucose and lipid metabolisms were studied. Furthermore, the expression of key genes of glucose and lipid metabolisms was detected by qRT-PCR. The results showed that A. muciniphila cell-free supernatant significantly improved the movement ability, prolonged the lifespan, reduced the level of ROS, and alleviated oxidative damage in Caenorhabditis elegans. A. muciniphila cell-free supernatant supported resistance to increases in glucose and triglyceride induced by a high-glucose diet and downregulated the expression of key genes of glucose metabolism, such as gsy-1, pygl-1, pfk-1.1, and pyk-1, while upregulating the expression of key genes of lipid metabolism, such as acs-2, cpt-4, sbp-1, and tph-1, as well as down-regulating the expression of the fat-7 gene to inhibit fatty acid biosynthesis. These findings indicated that A. muciniphila cell-free supernatant, as a postbiotic, has the potential to prevent obesity and improve glucose metabolism disorders and other diseases.


Subject(s)
Glucose , Lipid Metabolism , Animals , Glucose/metabolism , Caenorhabditis elegans/metabolism , Verrucomicrobia , Lipids
9.
Foods ; 12(8)2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37107423

ABSTRACT

The probiotic role of lactic acid bacteria (LAB) in regulating intestinal microbiota to promote human health has been widely reported. However, the types and quantities of probiotics used in practice are still limited. Therefore, isolating and screening LAB with potential probiotic functions from various habitats has become a hot topic. In this study, 104 strains of LAB were isolated from and identified in traditionally fermented vegetables, fresh milk, healthy infant feces, and other environments. The antibacterial properties-resistance to acid, bile salts, and digestive enzymes-and adhesion ability of the strains were determined, and the biological safety of LAB with better performance was studied. Three LAB with good comprehensive performance were obtained. These bacteria had broad-spectrum antibacterial properties and good acid resistance and adhesion ability. They exhibited some tolerance to pig bile salt, pepsin, and trypsin and showed no hemolysis. They were sensitive to the selected antibiotics, which met the required characteristics and safety evaluation criteria for probiotics. An in vitro fermentation experiment and milk fermentation performance test of Lactobacillus rhamnosus (L. rhamnosus) M3 (1) were carried out to study its effect on the intestinal flora and fermentation performance in patients with inflammatory bowel disease (IBD). Studies have shown that this strain can effectively inhibit the growth of harmful microorganisms and produce a classic, pleasant flavor. It has probiotic potential and is expected to be used as a microecological agent to regulate intestinal flora and promote intestinal health. It can also be used as an auxiliary starter to enhance the probiotic value of fermented milk.

10.
Toxicol Res (Camb) ; 11(5): 831-840, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36337239

ABSTRACT

Background: Vascular smooth muscle cells (VSMCs) senescence is a crucial factor relevant to accelerate cardiovascular diseases. Resveratrol (RES) has been reported that could obstruct vascular senescence. However, the detailed molecular mechanisms of RES in VSMCs senescence are still indistinct and deserve further investigations. Methods and Results: In this study, VSMCs were treated with 100 nM angiotensin II (Ang II) for 3 days and then followed with a range of different concentrations of RES (0.5, 5, 15, 25, 35, 50 µM), and 25 µM of RES was chose for following experiments. We found that the E2F1 and SOD2 expressions were reduced in Ang II-induced VSMCs. RES treatment impeded Ang II-induced oxidative stress and mitochondrial dysfunction through elevating E2F1 and SOD2 expression, thereby alleviating VSMCs senescence. Additionally, E2F1 knockdown reversed the protective effects of RES on VSMCs senescence caused by Ang II administration. Ch-IP assay and dual luciferase reporter gene assay validated that E2F1 could bind to the promoter region of SOD2. Furthermore, E2F1 or SOD2 overexpression blocked Ang II-induced on VSMCs senescence. Conclusion: In conclusion, RES mitigated Ang II-induced VSMCs senescence by suppressing oxidative stress and mitochondrial dysfunction through activating E2F1/SOD2 axis. Our study disclosed that RES might be a potential drug and the axis of its regulatory mechanism might be therapeutic targets for postponing vascular senescence.

11.
Foods ; 11(22)2022 Nov 12.
Article in English | MEDLINE | ID: mdl-36429198

ABSTRACT

Chewing areca nuts is a popular hobby in the Asian region, and areca nuts are rich in polyphenols, although some alkaloids are included. In this study, we explored the antioxidant activity of areca nut polyphenols (ANP) in lipopolysaccharides (LPS)-stimulated RAW264.7 cells. The results revealed that ANP reduced the level of reactive oxygen species (ROS) in LPS-stimulated RAW264.7 cells and enhanced the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1). RNA-seq analysis showed that ANP down-regulated the transcription of genes related to the cancer pathway at 160 µg/mL, and the inflammatory pathway as well as viral infection pathway at 320 µg/mL. The cellular signaling analysis further revealed that the expressions of these genes were regulated by the mitogen-activated protein kinase (MAPK) pathway, and ANP downregulated the activation of the MAPK signaling pathway stimulated by LPS. Collectively, our findings showed that ANP inhibited the MAPK pathway and activated the Nrf2/HO-1 antioxidant pathways to reduce ROS generation induced by LPS.

12.
Curr Res Food Sci ; 5: 1788-1807, 2022.
Article in English | MEDLINE | ID: mdl-36268133

ABSTRACT

Although aroma is one of the most essential factors determining the quality of Fu brick tea (FBT), the aroma profiles of FBTs from different manufacturing areas are rarely investigated. The aroma profiles of FBTs manufactured in five typical provinces of China were comprehensively analyzed on the basis of headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS), headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS), sensory evaluation, odor activity value (OAV), and relative odor activity value (ROAV). HS-GC-IMS and HS-SPME-GC-MS identified 63 and 93 volatile organic compounds (VOCs), respectively. Multivariate statistical analysis indicated that the FBTs from different production regions had remarkably varied aromas. HS-SPME-GC-MS revealed that 27 VOCs (OAV >1) contributed to the overall aroma of the samples, of which 15 key differential compounds can effectively distinguish the aroma profiles of different FBTs. FBT from Shaanxi manifested a strong floral and fruity aroma; that from Hunan had a floral, grassy, and pine-woody aroma; that from Guizhou presented a grassy and herbal aroma; that from Guangxi exhibited a sweet, floral, and minty aroma; and that from Zhejiang possessed various fruit flavors and floral fragrance. OAV analysis identified the biomarkers responsible for the variation in the aroma characteristics of diverse FBTs. These biomarkers included linalool, 6-methyl-5-hepten-2-one, α-ionone, hexanal, and ethyl hexanoate. Sensory evaluation demonstrated that the infusion color and aroma of FBT samples from different provinces also greatly varied. Network correlation analysis revealed that Aspergillus and Eurotium were the crucial microorganisms for the metabolism and formation of VOCs. These findings provide new insight into the VOCs and fragrance features of FBTs produced in different regions of China.

13.
Molecules ; 27(19)2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36234692

ABSTRACT

Pasteurized Akkermansia muciniphila (p-AKK) is related to lipid metabolism and helps control obesity. The main goal of this study was to investigate the role and mechanism of p-AKK in lipid metabolism using Caenorhabditis elegans. The results showed that p-AKK increased the healthy lifespan of nematodes and helped maintain exercise ability in aging, suggesting a potential increase in energy expenditure. The overall fat deposition and triglyceride level were significantly decreased and the p-AKK anti-oxidative stress helped to regulate fatty acid composition. Additionally, the transcriptome results showed that p-AKK increased the expression of lipo-hydrolase and fatty acid ß-oxidation-related genes, including lipl-4, nhr-49, acs-2 and acdh-8, while it decreased the expression of fat synthesis-related genes, including fat-7, elo-2 and men-1. These results partially explain the mechanisms underlying the fact that p-AKK decreases fat accumulation of C. elegans via nhr-49/acs-2-mediated signaling involved in fatty acid ß-oxidation and synthesis.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Akkermansia , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Fatty Acids/metabolism , Hormones/metabolism , Humans , Hydrolases/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Signal Transduction , Triglycerides/metabolism
14.
Sci Rep ; 12(1): 16399, 2022 09 30.
Article in English | MEDLINE | ID: mdl-36180511

ABSTRACT

Malignant brain tumors consist of malignancies originated primarily within the brain and the metastatic lesions disseminated from other organs. In spite of intensive studies, malignant brain tumors remain to be a medical challenge. Patient-derived organoid (PDO) can recapitulate the biological features of the primary tumor it was derived from and has emerged as a promising drug-screening model for precision therapy. Here we show a proof-of-concept based on early clinical study entailing the organoids derived from the surgically resected tumors of 26 patients with advanced malignant brain tumors enrolled during December 2020 to October 2021. The tumors included nine glioma patients, one malignant meningioma, one primary lymphoma patient, and 15 brain metastases. The primary tumor sites of the metastases included five from the lungs, three from the breasts, two from the ovaries, two from the colon, one from the testis, one of melanoma origin, and one of chondrosarcoma. Out of the 26 tissues, 13 (50%) organoids were successfully generated with a culture time of about 2 weeks. Among these patients, three were further pursued to have the organoids derived from their tumor tissues tested for the sensitivity to different therapeutic drugs in parallel to their clinical care. Our results showed that the therapeutic effects observed by the organoid models were consistent to the responses of these patients to their treatments. Our study suggests that PDO can recapitulate patient responses in the clinic with high potential of implementation in personalized medicine of malignant brain tumors.


Subject(s)
Brain Neoplasms , Organoids , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Humans , Male , Precision Medicine/methods
15.
Front Oncol ; 12: 851795, 2022.
Article in English | MEDLINE | ID: mdl-35992877

ABSTRACT

The cGAS-STING axis is one of the key mechanisms guarding cells from pathogen invasion in the cytoplasmic compartment. Sensing of foreign DNA in the cytosol by the cGAS-STING axis triggers a stress cascade, culminating at stimulation of the protein kinase TBK1 and subsequently activation of inflammatory response. In cancer cells, aberrant metabolism of the genomic DNA induced by the hostile milieu of tumor microenvironment or stresses brought about by cancer therapeutics are the major causes of the presence of nuclear DNA in the cytosol, which subsequently triggers a stress response. However, how the advanced tumors perceive and tolerate the potentially detrimental effects of cytosolic DNA remains unclear. Here we show that growth limitation by serum starvation activated the cGAS-STING pathway in breast cancer cells, and inhibition of cGAS-STING resulted in cell death through an autophagy-dependent mechanism. These results suggest that, instead of being subject to growth inhibition, tumors exploit the cGAS-STING axis and turn it to a survival advantage in the stressful microenvironment, providing a new therapeutic opportunity against advanced cancer. Concomitant inhibition of the cGAS-STING axis and growth factor signaling mediated by the epidermal growth factor receptor (EGFR) synergistically suppressed the development of tumor organoids derived from primary tumor tissues of triple-negative breast cancer (TNBC). The current study unveils an unexpected function of the cGAS-STING axis in promoting cancer cell survival and the potential of developing the stress-responding pathway as a therapeutic target, meanwhile highlights the substantial concerns of enhancing the pathway's activity as a means of anti-cancer treatment.

16.
World J Surg Oncol ; 20(1): 273, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36045445

ABSTRACT

BACKGROUND: Previous studies have found that lncRNA polymorphisms are associated with the prognosis of gastric cancer (GC), but the specific roles of many lncRNA polymorphism sites in gastric cancer are still unclear. Our study aims to deeply explore the relationship between genetic polymorphism of lncRNA and the prognosis of GC. METHODS: The genotypes of candidate SNP locus were detected by Sequenom Mass ARRAY SNP. We deeply analyzed the association of lncRNA polymorphisms with GC prognosis by univariate and multivariate Cox regression, stratified analysis, conjoint analysis, and log-rank test. RESULTS: We found that mutations at rs2579878 and rs10036719 loci reduced the risk of poor prognosis of GC. Stratified analysis showed that rs2795025, rs10036719, and rs12516079 polymorphisms were all associated with tumor prognosis. In addition, conjoint analyses showed that the interaction between these two polymorphic sites (rs2795025 and rs12516079) could increase the risk of poor prognosis. Multivariate analysis also found that the AG/AA genotype of rs10036719 and AG genotype of rs12516079 were independent prognostic factors. Moreover, the high expression of both CCDC26 and LINC02122 were shown to be associated with the poor survival status of GC patients. CONCLUSIONS: We find that the genetic polymorphism of lncRNA plays a role in the development of GC and is closely related to the survival time of patients. It could serve as a predictor of the prognosis of GC.


Subject(s)
RNA, Long Noncoding , Stomach Neoplasms , Genetic Predisposition to Disease , Humans , Polymorphism, Single Nucleotide , Prognosis , RNA, Long Noncoding/genetics , Stomach Neoplasms/pathology
17.
Front Nutr ; 9: 900138, 2022.
Article in English | MEDLINE | ID: mdl-35656159

ABSTRACT

In this study, the fungal community structure, metabolites, antioxidant ability, and taste characteristics of five Fu brick tea (FBT) from different regions of China were determined and compared. A total of 69 operational taxonomic units (OTUs) were identified and assigned into 5 phyla and 27 genera, with Eurotium as the predominant genus in all samples. Hunan (HN) sample had the strongest fungal diversity and richness, followed by Guangxi (GX) sample, and Zhejiang (ZJ) sample had the lowest. GX sample had higher amounts of gallic acid (GA), total catechins, gallocatechin (GC), and epicatechin gallate (ECG) as well as antioxidant activity than the other samples. The levels of total phenolics, total flavonoids, epigallocatechin (EGC), catechin, epicatechin (EC), thearubigins (TRs), and theaflavins (TFs) were the highest in the ZJ sample. Guizhou (GZ) and Shaanxi (SX) samples contained the highest contents of epigallocatechin gallate (EGCG) and gallocatechin gallate (GCG), respectively. Total phenolics, GA, EC, CG, and TFs were positively associated with most of fungal genera. Total phenolic content (TPC), total flavonoid content (TFC), and most of catechins contributed to the antioxidant activities of FBT. HN sample had the strongest sourness and sweetness, ZJ sample had the strongest saltiness, SX sample had the strongest umami, and GZ sample had the strongest astringency, which was ascribed to the varied metabolites. This work reveals that FBT in different regions vary greatly in fungal community, metabolites, antioxidant activity, and taste characteristics, and provides new insight into the quality characteristics formation of FBT in different regions.

18.
Int J Mol Sci ; 23(10)2022 May 19.
Article in English | MEDLINE | ID: mdl-35628489

ABSTRACT

Invasion is the most prominent lethal feature of malignant cancer. However, how cell proliferation, another important feature of tumor development, is integrated with tumor invasion and the subsequent cell dissemination from primary tumors is not well understood. Proliferating cell nuclear antigen (PCNA) is essential for DNA replication in cancer cells. Loss of phosphorylation at tyrosine 211 (Y211) in PCNA (pY211-PCNA) mitigates PCNA function in proliferation, triggers replication fork arrest/collapse, which in turn sets off an anti-tumor inflammatory response, and suppresses distant metastasis. Here, we show that pY211-PCNA is important in stromal activation in tumor tissues. Loss of the phosphorylation resulted in reduced expression of mesenchymal proteins as well as tumor progenitor markers, and of the ability of invasion. Spontaneous mammary tumors that developed in mice lacking Y211 phosphorylation contained fewer tumor-initiating cells compared to tumors in wild-type mice. Our study demonstrates a novel function of PCNA as an essential factor for maintaining cancer stemness through Y211 phosphorylation.


Subject(s)
Neoplasm Invasiveness , Neoplasms , Neoplastic Stem Cells , Proliferating Cell Nuclear Antigen , Animals , Cell Proliferation , DNA Replication , Mice , Phosphorylation , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism
19.
Comput Struct Biotechnol J ; 20: 241-251, 2022.
Article in English | MEDLINE | ID: mdl-35024096

ABSTRACT

Programmed cell death protein 1 (PD-1)/ programmed cell death protein ligand 1 (PD-L1) is the key immune checkpoint governing evasion of advanced cancer from immune surveillance. Immuno-oncology (IO) therapy targeting PD-1/PD-L1 with traditional antibodies is a promising approach to multiple cancer types but to which the response rate remains moderate in breast cancer, calling for the need of exploring alternative IO targeting approaches. A miRNA-gene network was integrated by a bioinformatics approach and corroborated with The Cancer Genome Atlas (TCGA) to screen miRNAs regulating immune checkpoint genes and associated with patient survival. Here we show the identification of a novel microRNA miR-4759 which repressed RNA expression of the PD-L1 gene. miR-4759 targeted the PD-L1 gene through two binding motifs in the 3' untranslated region (3'-UTR) of PD-L1. Reconstitution of miR-4759 inhibited PD-L1 expression and sensitized breast cancer cells to killing by immune cells. Treatment with miR-4759 suppressed tumor growth of orthotopic xenografts and promoted tumor infiltration of CD8+ T lymphocytes in immunocompetent mice. In contrast, miR-4759 had no effect to tumor growth in immunodeficient mice. In patients with breast cancer, expression of miR-4759 was preferentially downregulated in tumors compared to normal tissues and was associated with poor overall survival. Together, our results demonstrated miR-4759 as a novel non-coding RNA which promotes anti-tumor immunity of breast cancer.

20.
Food Chem ; 378: 131999, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35081481

ABSTRACT

Eurotium cristatum is the predominant fungus and key contributor to the characteristics of post-fermented Fu brick tea (FBT) during manufacturing. In this study, the influence of solid-state fermentation (SSF) with E. cristatum on the chemical profile dynamic changes of dark tea was investigated. Results indicated that total phenolics, flavonoids, theaflavins, thearubigins, and galloyl catechins consistently decreased, degalloyl catechins and gallic acid increased in the initial stage of fermentation and decreased after long-term fermentation, and theabrownins continually increased. UPLC-QQQ-MS/MS-based widely targeted metabolomic analysis revealed that the metabolites of dark tea processed by SSF with E. cristatum were drastically different from the raw material. A total of 574 differential metabolites covering 11 subclasses were detected in the whole SSF of dark tea, and the most drastic changes occurred in the middle stage. Phenolic acids and flavonoids were the two major classes of differential metabolites. A series of reactions such as degradation, glycosylation, deglycosylation, methylation, and oxidative polymerization occurred during SSF. Overall, SSF with E. cristatum greatly influenced the metabolites of dark tea, which provided valuable insights that E. cristatum is critical in forming the chemical constituents of FBT.


Subject(s)
Tandem Mass Spectrometry , Tea , Aspergillus , Fermentation
SELECTION OF CITATIONS
SEARCH DETAIL
...