Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Neuropsychiatr Dis Treat ; 20: 1049-1064, 2024.
Article in English | MEDLINE | ID: mdl-38770535

ABSTRACT

Purpose: Anxious depression (AD) is a common, distinct depression subtype. This exploratory subgroup analysis aimed to explore the effects of acupuncture as an add-on therapy of selective serotonin reuptake inhibitors (SSRIs) for patients with AD or non-anxious depression (NAD). Patients and Methods: Four hundred and sixty-five patients with moderate-to-severe depression from the AcuSDep pragmatic trial were included in analysis. Patients were randomly assigned to receive MA+SSRIs, EA+SSRIs, or SSRIs alone (1:1:1) for six weeks. AD was defined by using dimensional criteria. The measurement instruments included 17-items Hamilton Depression Scale (HAMD-17), Self-Rating Depression Scale (SDS), Clinical Global Impression (CGI), Rating Scale for Side Effects (SERS), and WHO Quality of Life-BREF (WHOQOL-BREF). Comparison between AD and NAD subgroups and comparisons between groups within either AD or NAD subgroups were conducted. Results: Eighty percent of the patients met the criteria for AD. The AD subgroup had poorer clinical manifestations and treatment outcomes compared to those of the NAD subgroup. For AD patients, the HAMD response rate, remission rate, early onset rate, and the score changes on each scale at most measurement points on the two acupuncture groups were significantly better than the SSRIs group. For NAD patients, the HAMD early onset rates of the two acupuncture groups were significantly better than the SSRIs group. Conclusion: For AD subtype patients, either MA or EA add-on SSRIs showed comprehensive improvements, with small-to-medium effect sizes. For NAD subtype patients, both the add-on acupuncture could accelerate the response to SSRIs treatment. The study contributed to the existing literature by providing insights into the potential benefits of acupuncture in combination with SSRIs, especially for patients with AD subtypes. Due to its limited nature as a post hoc subgroup analysis, prospectively designed, high-quality trials are warranted. Clinical Trials Registration: ChiCTR-TRC-08000297.

2.
Sci Total Environ ; 916: 170275, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38262532

ABSTRACT

The remediation of arsenic-contaminated groundwater by sulfidated nanoscale zero-valent iron (S-nZVI) has raised considerable attention. However, the role of trivalent arsenic (As(III)) oxidation by S-nZVI in oxic conditions (S-nZVI/O2) remains controversial, and the comprehensive effect of citric acid (CA) prevalent in groundwater on As(III) removal by S-nZVI remains unclear. Herein, the mechanisms of reactive oxygen species (ROS) generation and multiple effects of CA on As(III) removal by S-nZVI/O2 were systematically explored. Results indicated that the removal efficiency of As(III) by S-nZVI/O2 (97.81 %) was prominently higher than that by S-nZVI (66.71 %), resulting from the significant production of ROS (mainly H2O2 and OH) under oxic conditions, which played a crucial role in promoting the As(III) oxidation. Additionally, CA had multiple effects on As(III) removal by S-nZVI/O2 system: (i) CA impeded the diffusion of As(III) towards S-nZVI and increased the secondary risk of immobilized As(III) re-releasing into the environment due to the Fe dissolution from S-nZVI; (ii) CA could significantly enhance the yields of OH from 25.29 to 133.00 µM via accelerating the redox cycle of Fe(II)/Fe(III) and increasing the oriented conversion rate of H2O2 to OH; (iii) CA could also enrich the types of ROS (such as O2- and 1O2) in favor of further As(III) oxidation. This study contributed novel findings regarding the control of As(III) contaminated groundwater using S-nZVI technologies.

3.
J Nanobiotechnology ; 21(1): 408, 2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37926815

ABSTRACT

Marine resources in unique marine environments provide abundant, cost-effective natural biomaterials with distinct structures, compositions, and biological activities compared to terrestrial species. These marine-derived raw materials, including polysaccharides, natural protein components, fatty acids, and marine minerals, etc., have shown great potential in preparing, stabilizing, or modifying multifunctional nano-/micro-systems and are widely applied in drug delivery, theragnostic, tissue engineering, etc. This review provides a comprehensive summary of the most current marine biomaterial-based nano-/micro-systems developed over the past three years, primarily focusing on therapeutic delivery studies and highlighting their potential to cure a variety of diseases. Specifically, we first provided a detailed introduction to the physicochemical characteristics and biological activities of natural marine biocomponents in their raw state. Furthermore, the assembly processes, potential functionalities of each building block, and a thorough evaluation of the pharmacokinetics and pharmacodynamics of advanced marine biomaterial-based systems and their effects on molecular pathophysiological processes were fully elucidated. Finally, a list of unresolved issues and pivotal challenges of marine-derived biomaterials applications, such as standardized distinction of raw materials, long-term biosafety in vivo, the feasibility of scale-up, etc., was presented. This review is expected to serve as a roadmap for fundamental research and facilitate the rational design of marine biomaterials for diverse emerging applications.


Subject(s)
Biocompatible Materials , Polysaccharides , Biocompatible Materials/pharmacology , Biocompatible Materials/chemistry , Polysaccharides/chemistry , Tissue Engineering , Drug Delivery Systems
4.
Org Lett ; 25(27): 5033-5037, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37393577

ABSTRACT

The ruthenium-catalyzed asymmetric reductive amination of aryl-trifluoromethyl ketones affording high value primary α-(trifluoromethyl)arylmethylamines using cheap NH4OAc as the nitrogen source and H2 as the reductant is reported. This user-friendly and simple catalytic method tolerates various aromatic functions with electron-withdrawing or -donating substituents at the para- or meta-positions and as well challenging heteroaromatic functions, yielding primary α-(trifluoromethyl)arylmethylamines with excellent chemoselectivities, enantioselectivities, and useful yields (80-97% ee, 51-92% isolated yields). Finally, scalable and concise synthesis of key drug intermediates using this methodology is presented.


Subject(s)
Ketones , Amination , Catalysis , Ethylamines/chemistry
5.
Int J Surg ; 109(9): 2721-2731, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37247014

ABSTRACT

BACKGROUND: Post-traumatic related limb osteomyelitis (PTRLO) is a complex bone infection. Currently, there are no available microbial data on a national scale that can guide appropriate antibiotic selection, and explore the dynamic changes in dominant pathogens over time. This study aimed to conduct a comprehensive epidemiological analysis of PTRLO in China. METHODS: The study was approved by the Institutional Research Board (IRB), and 3526 PTRLO patients were identified from 212 394 traumatic limb fracture patients at 21 hospitals between 1 January 2008 and 31 December 2017. A retrospective analysis was conducted to investigate the epidemiology of PTRLO, including changes in infection rate (IR), pathogens, infection risk factors and antibiotic resistance and sensitivity. RESULTS: The IR of PTRLO increased gradually from 0.93 to 2.16% (Z=14.392, P <0.001). Monomicrobial infection (82.6%) was significantly higher than polymicrobial infection (17.4%) ( P <0.001). The IR of Gram-positive (GP) and Gram-negative (GN) pathogens showed a significant increase from the lowest 0.41% to the highest 1.15% (GP) or 1.62% (GN), respectively. However, the longitudinal trend of GP vs. GN's composition did not show any significance (Z=±1.1918, P >0.05). The most prevalent GP strains were Methicillin-sensitive Staphylococcus aureus (MSSA) (17.03%), Methicillin-resistant Staphylococcus aureus (MRSA) (10.46%), E. faecalis (5.19%) and S. epidermidis (4.87%). In contrast, the dominant strains GN strains were Pseudomonas Aeruginosa (10.92%), E. cloacae (10.34%), E. coli (9.47%), Acinetobacter Baumannii (7.92%) and Klebsiella Pneumoniae (3.33%). In general, the high-risk factors for polymicrobial infection include opened-fracture (odds ratio, 2.223), hypoproteinemia (odds ratio, 2.328), and multiple fractures (odds ratio, 1.465). It is important to note that the antibiotics resistance and sensitivity analysis of the pathogens may be influenced by complications or comorbidities. CONCLUSIONS: This study provides the latest data of PTRLO in China and offers trustworthy guidelines for clinical practice. (China Clinical Trials.gov number, ChiCTR1800017597).


Subject(s)
Coinfection , Fractures, Open , Methicillin-Resistant Staphylococcus aureus , Osteomyelitis , Humans , Retrospective Studies , Escherichia coli , Coinfection/drug therapy , Microbial Sensitivity Tests , Anti-Bacterial Agents/therapeutic use , China/epidemiology , Osteomyelitis/epidemiology , Osteomyelitis/etiology , Osteomyelitis/drug therapy
6.
ACS Nano ; 17(6): 5340-5353, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36913671

ABSTRACT

Cancer immunotherapy, such as the Toll-like receptor (TLR) agonist including CpG oligodeoxynucleotide, has shown potency in clinical settings. However, it is still confronted with multiple challenges, which include the limited efficacy and severe adverse events caused by the rapid clearance and systemic diffusion of CpG. Here we report an improved CpG-based immunotherapy approach composed of a synthetic extracellular matrix (ECM)-anchored DNA/peptide hybrid nanoagonist (EaCpG) via (1) a tailor designed DNA template that encodes tetramer CpG and additional short DNA moieties, (2) generation of elongated multimeric CpG through rolling circle amplification (RCA), (3) self-assembly of densely packaged CpG particles composed of tandem CpG building blocks and magnesium pyrophosphate, and (4) incorporation of multiple copies of ECM binding peptide through hybridization to short DNA moieties. The structurally well-defined EaCpG shows dramatically increased intratumoral retention and marginal systemic dissemination through peritumoral administration, leading to potent antitumor immune response and subsequent tumor elimination, with minimal treatment-related toxicity. Combined with conventional standard-of-care therapies, peritumor administration of EaCpG generates systemic immune responses that lead to a curative abscopal effect on distant untreated tumors in multiple cancer models, which is superior to the unmodified CpG. Taken together, EaCpG provides a facile and generalizable strategy to simultaneously potentiate the potency and safety of CpG for combinational cancer immunotherapies.


Subject(s)
Neoplasms , Humans , Animals , Mice , Neoplasms/drug therapy , Oligodeoxyribonucleotides/pharmacology , Adjuvants, Immunologic , Immunotherapy , DNA , Toll-Like Receptors , Toll-Like Receptor 9/agonists , Mice, Inbred C57BL
7.
J Virol ; 97(2): e0144422, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36688651

ABSTRACT

P1 is the first protein translated from the genomes of most viruses in the family Potyviridae, and it contains a C-terminal serine-protease domain that cis-cleaves the junction between P1 and HCPro in most cases. Intriguingly, P1 is the most divergent among all mature viral factors, and its roles during viral infection are still far from understood. In this study, we found that telosma mosaic virus (TelMV, genus Potyvirus) in passion fruit, unlike TelMV isolates present in other hosts, has two stretches at the P1 N terminus, named N1 and N2, with N1 harboring a Zn finger motif. Further analysis revealed that at least 14 different potyviruses, mostly belonging to the bean common mosaic virus subgroup, encode a domain equivalent to N1. Using the newly developed TelMV infectious cDNA clones from passion fruit, we demonstrated that N1, but not N2, is crucial for viral infection in both Nicotiana benthamiana and passion fruit. The regulatory effects of N1 domain on P1 cis cleavage, as well as the accumulation and RNA silencing suppression (RSS) activity of its cognate HCPro, were comprehensively investigated. We found that N1 deletion decreases HCPro abundance at the posttranslational level, likely by impairing P1 cis cleavage, thus reducing HCPro-mediated RSS activity. Remarkably, disruption of the Zn finger motif in N1 did not impair P1 cis cleavage and HCPro accumulation but severely debilitated TelMV fitness. Therefore, our results suggest that the Zn finger motif in P1s plays a critical role in viral infection that is independent of P1 protease activity and self-release, as well as HCPro accumulation and silencing suppression. IMPORTANCE Viruses belonging to the family Potyviridae represent the largest group of plant-infecting RNA viruses, including a variety of agriculturally and economically important viral pathogens. Like all picorna-like viruses, potyvirids employ polyprotein processing as the gene expression strategy. P1, the first protein translated from most potyvirid genomes, is the most variable viral factor and has attracted great scientific interest. Here, we defined a Zn finger motif-encompassing domain (N1) at the N terminus of P1 among diverse potyviruses phylogenetically related to bean common mosaic virus. Using TelMV as a model virus, we demonstrated that the N1 domain is key for viral infection, as it is involved both in regulating the abundance of its cognate HCPro and in an as-yet-undefined key function unrelated to protease processing and RNA silencing suppression. These results advance our knowledge of the hypervariable potyvirid P1s and highlight the importance for infection of a previously unstudied Zn finger domain at the P1 N terminus.


Subject(s)
Host Specificity , Peptide Hydrolases , Potyviridae , Viral Proteins , Zinc Fingers , Host Specificity/genetics , Peptide Hydrolases/genetics , Peptide Hydrolases/metabolism , Potyviridae/genetics , Potyviridae/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism , Zinc Fingers/genetics
8.
Rice (N Y) ; 15(1): 60, 2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36441396

ABSTRACT

BACKGROUND: Grain length (GL) that is directly associated with appearance quality is a key target of selection in rice breeding. Although abundant quantitative trait locus (QTL) associated with GL have been identified, it was still relatively weak to identify QTL for GL from japonica genetic background, as the shortage of japonica germplasms with long grains. We performed QTLs analysis for GL using a recombinant inbred lines (RILs) population derived from the cross between japonica variety GY8 (short grains) and LX1 (long grains) in four environments. RESULTS: A total of 197 RILs were genotyped with 285 polymorphic SNP markers. Three QTLs qGL5.3, qGL6.1 and qGL11 were detected to control GL by individual environmental analyses and multi-environment joint analysis. Of these, a major-effect and stable QTL qGL6.1 was identified to be a novel QTL, and its LX1 allele had a positive effect on GL. For fine-mapping qGL6.1, a BC1F2 population consisting of 2,487 individuals was developed from a backcross between GY8 and R176, one line with long grain. Eight key informative recombinants were identified by nine kompetitive allele specific PCR (KASP) markers. By analyzing key recombinants, the qGL6.1 locus was narrowed down to a 40.41 kb genomic interval on chromosome 6. One candidate gene LOC_Os06g43304.1 encoding cytochrome P450 (CYP71D55) was finally selected based on the difference in the transcriptional expression and variations in its upstream and downstream region. CONCLUSIONS: Three QTLs qGL5.3, qGL6.1 and qGL11 were identified to control grain length in rice. One novel QTL qGL6.1 was fine mapped within 40.41 kb region, and LOC_Os06g43304.1 encoding cytochrome P450 (CYP71D55) may be its candidate gene. We propose that the further cloning of the qGL6.1 will facilitate improving appearance quality in japonica varieties.

9.
ACS Appl Mater Interfaces ; 14(25): 28570-28580, 2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35726862

ABSTRACT

Due to the strong and tunable photothermal effect, metallic nanoparticles are of enormous interest in light-activated biomedical applications, such as photoacoustic imaging (PAI) and photothermal therapy (PTT). However, the photothermal conversion efficiency (PCE) of existing metallic photothermal agents is still unsatisfactory. Herein, we develop an efficient photothermal theranostic agent based on a gold nanostar@polyaniline core-shell nanocomposite with high PCE for PAI-guided PTT at a low dosage. After optimizing the relative composition of polyaniline (PANI) and gold nanostars (AuNSs), this nanocomposite eventually empowers an outstanding PCE of up to 78.6%, which is much better than AuNSs or PANI alone and most of the existing photothermal theranostic agents. Besides, the nanocomposite can act as a targeted probe for tumors by hyaluronic acid (HA) modification without compromising the photothermal performance. The obtained nanoprobes named AuNSPHs exhibit promising biocompatibility and great performance of PAI-guided PTT to treat triple-negative breast cancer both in vitro and in vivo. More importantly, a single injection of AuNSPHs significantly suppresses tumor growth with a low dosage of Au (0.095 mg/kg), which is attributed to the high PCE of AuNSPHs. Taking advantage of the exhilarating photothermal conversion ability, this theranostic agent can safely potentiate the antitumor therapeutic efficacy of laser-induced ablation and holds great potential for future medical applications.


Subject(s)
Nanoparticles , Neoplasms , Photoacoustic Techniques , Aniline Compounds , Gold/pharmacology , Humans , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Photoacoustic Techniques/methods , Phototherapy , Precision Medicine , Theranostic Nanomedicine/methods
10.
Angew Chem Int Ed Engl ; 61(25): e202202552, 2022 06 20.
Article in English | MEDLINE | ID: mdl-35332974

ABSTRACT

An unprecedented highly enantioselective Ru-catalyzed direct asymmetric reductive amination of α-keto amides with ammonium salts has been disclosed, efficiently offering valuable enantioenriched N-unprotected unnatural α-amino acid derivatives bearing a broad range of aryl or alkyl α-substituents. This protocol features easily accessible substrates, good functional-group tolerance and excellent enantiocontrol, making it a good complementary approach to the known methods. Moreover, this method is also applicable to the preparation of N-unprotected unnatural α-amino acid derivatives containing an additional stereogenic center at the ß-position through a dynamic kinetic resolution (DKR) process. Convenient transformations of the obtained products into chiral N-unprotected unnatural α-amino acids, drug intermediates, peptides, and organocatalysts/ligands further showcase the utility of this method.


Subject(s)
Ruthenium , Amination , Amino Acids/chemistry , Catalysis , Stereoisomerism
11.
Sci Total Environ ; 819: 153126, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35041961

ABSTRACT

Volatile organic compounds (VOCs) emitted from indoor materials and products are one of the main factors affecting air quality and human health. Compared with building materials and wooden furniture, leather furniture has a more complex internal structure and uneven emission surfaces. The market share of leather furniture is relatively high, while investigation on this kind of furniture is relatively rare. In this study, we develop a region traversal method to measure the three key parameters of VOC emissions from typical two-layer leather furniture, i.e., the initial emittable concentration, the diffusion coefficient, and the partition coefficient. A series of experiments examining VOC emissions from a leather sofa under different conditions, were carried out in a 1 m3 chamber. This method locks the upper and lower limits of an optimal solution through loop calculation in parameter intervals, and demonstrates high accuracy, efficiency and robustness. The good agreement (R2 > 0.95) between model predictions and experimental data confirms the reliability of this method. In addition, the influence of temperature and air exchange rate on the key parameters is explored. Results indicate that, increasing the temperature leads to an increase in Dm and a decrease in K, and that air exchange rate does not affect the key parameters, which is consistent with physical principles. The region traversal method is further applied to analyze the emission scenarios for other furniture, which is very helpful for indoor air quality pre-evaluation.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Volatile Organic Compounds , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Environmental Monitoring/methods , Humans , Interior Design and Furnishings , Reproducibility of Results , Volatile Organic Compounds/analysis
12.
Environ Int ; 160: 107064, 2022 02.
Article in English | MEDLINE | ID: mdl-34968991

ABSTRACT

The emissions of volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs) from indoor materials pose an adverse effect on people's health. In this study, a new analytical model was developed to simulate the emission behaviors for both VOCs and SVOCs under ventilated conditions. Based on this model, we further introduced a hybrid optimization method to accurately determine the key parameters in the model: the initial emittable concentration, the diffusion coefficient, the material/air partition coefficient, and the chamber surface/air partition coefficient (for SVOCs). Experiments for VOC emissions from solid wood furniture were performed to determine the key parameters. We also evaluated the hybrid optimization method with the data of flame retardant emissions from polyisocyanurate rigid foam and VOC emissions from a panel furniture in the literature. The correlation coefficients are high during the fitting process (R2 = 0.92-0.99), demonstrating effectiveness of this method. In addition, we observed that chemical properties could transfer from SVOC-type to VOC-type with the increase of temperature. The transition temperatures from SVOC-type to VOC-type for the emissions of tris(2-chloroethyl) phosphate (TCEP) and tris(1-chloro-2-propyl) phosphate (TCIPP) were determined to be about 45 ℃ and 35 ℃, respectively. The present study provides a unified modelling and methodology analysis for both VOCs and SVOCs, which should be very useful for source/sink characterization and control.


Subject(s)
Air Pollution, Indoor , Flame Retardants , Volatile Organic Compounds , Air Pollution, Indoor/analysis , Flame Retardants/analysis , Humans , Interior Design and Furnishings , Temperature , Volatile Organic Compounds/analysis
13.
J Nanobiotechnology ; 19(1): 228, 2021 Jul 31.
Article in English | MEDLINE | ID: mdl-34332597

ABSTRACT

BACKGROUND: One of the greatest challenges for tissue-engineered bone is the low survival rate of locally grafted cells. The cell homing technology can effectively increase the number of these grafted cells, therefore, enhancing the repair of bone defects. Here we explore the effect of fucosylation modification on the directional homing of bone marrow mesenchymal stem cells (BMSCs) and their ability to repair bone defects. RESULTS: Glycosylated BMSCs expressed high levels of the Sialyl Lewis-X (sLeX) antigen, which enabled the cells to efficiently bind to E- and P-selectins and to home to bone defect sites in vivo. Micro-CT and histological staining results confirmed that mice injected with FuT7-BMSCs showed an improved repair of bone defects compared to unmodified BMSCs. CONCLUSIONS: The glycosylation modification of BMSCs has significantly enhanced their directional homing ability to bone defect sites, therefore, promoting bone repair. Our results suggest that glycosylation-modified BMSCs can be used as the source of the cells for the tissue-engineered bone and provide a new approach for the treatment of bone defects.


Subject(s)
Bone Marrow , Bone Regeneration , Mesenchymal Stem Cells/metabolism , Tissue Engineering , Animals , Glycosylation , Male , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/pathology , Mice , Osteogenesis , Tissue Scaffolds , X-Ray Microtomography
14.
J Diabetes Res ; 2021: 8862217, 2021.
Article in English | MEDLINE | ID: mdl-34368367

ABSTRACT

BACKGROUND: This study evaluated the effectiveness of the multidisciplinary team (including a specialist, a dietitian, a physical exercise trainer, a surgeon for bariatric surgery, an acupuncturist, and several health educators) for obesity management and the body composition change and improvements in metabolic biomarkers during a 2-year follow-up. MATERIALS AND METHODS: A total of 119 patients participated in the multidisciplinary team for obesity. Patients were followed up at 3 months, 6 months, 1 year, 18 months, and 2 years after their first visit. Individuals were divided into the high-protein diet (HPD) and standard-protein diet (SPD) group according to their results on a diet questionnaire that they filled out during follow-up. RESULTS: After 1.2 years, the mean body weight of the participants dropped from 89.7 kg to 80.9 kg (p < 0.001). The body adiposity index was reduced from 33.9 to 32.0 (p < 0.001), while the fat-free mass index from 17.0 to 15.2 (p = 0.043). Fasting glucose and HbA1c were also lower after treatment (p = 0.002 and 0.038 for FPG and HbA1c, respectively). Fasting insulin and HOMA-IR were reduced (p = 0.002 and <0.001 for fasting insulin and HOMA-IR, respectively). HDL-c increased along with weight loss (1.06 mmol/L vs. 1.19 mmol/L, p < 0.001), and transaminase levels significantly dropped (p = 0.001 and 0.021 for ALT and AST, respectively). During treatment, mean protein intake was 29.9% in the HPD group and 19.5% in the SPD group (p < 0.001). Weight loss, reduction of visceral fat area, maintenance of lean body mass, body adiposity index, and fat-free mass index showed no statistical significance between the HPD and SPD groups, as well as glucose metabolic variables. CONCLUSIONS: A multidisciplinary team for obesity management could significantly reduce body weight and improve metabolic indicators, including HDL-c, transaminase, and insulin resistance. A high-protein diet does not produce better weight control or body composition compared with a standard calorie-restricted diet.


Subject(s)
Body Composition , Obesity/therapy , Patient Care Team , Adiposity , Adult , Body Weight , Caloric Restriction , Cholesterol, HDL/blood , Diet, High-Protein , Female , Follow-Up Studies , Humans , Insulin Resistance , Male , Middle Aged , Obesity/metabolism
15.
Adv Healthc Mater ; 10(11): e2001732, 2021 06.
Article in English | MEDLINE | ID: mdl-33870656

ABSTRACT

Noninfectious arthritis (NIA) comprises a class of chronic and progressive inflammatory disorders that require early-stage management to prevent disease progression. The most common forms include osteoarthritis, rheumatoid arthritis, ankylosing spondylitis, and gouty arthritis. Current treatments involve nonsteroidal anti-inflammatory drugs, disease-modifying antirheumatic drugs and glucocorticoids to alleviate clinical symptoms, although regular use of these can result in a high risk of chronic kidney disease and heart failure, as well as severe adverse gastrointestinal effects. Nanomedicine offers unique opportunities to address these challenges and improve therapeutic efficacy due to its ability to deliver therapeutics locally in a sustained manner, thus extending the half-life, improving bioavailability, and reducing the side effects of these agents. This review includes a comprehensive analysis of the mechanisms of various treatment options for NIA and highlights recent progress and emerging strategies in treating NIA with nanomedicine platforms, particularly related to long-term biosafety and nonspecific targeting in designing nanomedicine delivery systems.


Subject(s)
Antirheumatic Agents , Arthritis, Rheumatoid , Osteoarthritis , Anti-Inflammatory Agents/therapeutic use , Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid/drug therapy , Humans , Nanomedicine
16.
Genes Genomics ; 43(5): 533-541, 2021 05.
Article in English | MEDLINE | ID: mdl-33725279

ABSTRACT

BACKGROUND: Egg hatching in Meloidogyne incognita is a highly regulated developmental event and is strictly correlated with temperature. It has been demonstrated that exposure of M. incognita eggs to low temperature seriously affects their embryonic development. On the other hand, clear evidence has shown that M. incognita is able to overwinter at subzero soil temperatures in certain open fields. Therefore, subtle physiological and genetic adaptations may occur in M. incognita to minimize freezing injuries. OBJECTIVE: A growing body of evidence indicates that cold acclimation plays a large role in an individual organism's ability to cope with freezing-induced cellular damage. Given the decreasing temperatures in late autumn or early winter, we hypothesize that natural cold acclimation occurring during these periods may assist M. incognita in overwintering. METHODS: Transcriptomic analysis and functional enrichment analyses were used to identify and annotate differentially expressed genes (DEGs) in acclimated eggs. The expression of DEGs involved in signal transduction and protein assembly was subsequently validated by reverse transcription quantitative PCR (RT-qPCR). RESULTS: Relatively long-term preacclimation at 4 °C significantly accelerated the hatching of M. incognita eggs that were subjected to freezing at - 1 °C. Using a transcriptomic approach, we further identified 686 and 460 up- and downregulated transcripts, respectively, in pre-cold-acclimated eggs. Additionally, we used Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology annotations for functional enrichment analyses of the differentially expressed genes (DEGs). CONCLUSION: The phenomenon in which M. incognita safely overwinters at subzero soil temperatures in certain areas may be attributed to the natural cold acclimation occurring in late autumn. Here, the identification of DEGs between acclimated and nonacclimated eggs will provide us with promising directions for future studies on the mechanisms of M. incognita freezing tolerance.


Subject(s)
Acclimatization , Cold-Shock Response , Transcriptome , Tylenchoidea/genetics , Animals , Helminth Proteins/genetics , Helminth Proteins/metabolism , Ovum/metabolism , Tylenchoidea/embryology , Tylenchoidea/metabolism
17.
Arthroplasty ; 3(1): 1, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-35236459

ABSTRACT

BACKGROUND: Osteoarthritis (OA), as a common disease, seriously affects the quality of life of the victims, but its pathogenesis remains unclear. It has been confirmed that hypoxia-induced factor (HIF)-mediated hypoxia response plays an important role in the development and progression of OA. As a member of the N-myc downstream regulatory gene families, NDRG3 has been reported to independently regulate the hypoxic response of tumour cells, but the relationship between NDRG3 and OA development has not been reported so far. METHODS: In this study, seven OA patients were admitted to Guizhou Provincial People's Hospital from January 2017 to December 2018. The OA group included 5 patients clinically diagnosed with hip/knee OA, which required arthroplasty. The normal group included 2 patients with no previous history of OA and rheumatoid arthritis, which required amputation due to trauma or tumour. The articular cartilage samples were collected to detect the expression of HIF-1α, HIF-2α and NDRG3 using immunohistochemical (IHC), haematoxylin and eosin (HE) and toluidine blue (TB) staining. RESULTS: HE and TB staining indicated that the cartilage surface of the normal group was smooth and intact, with a columnar arrangement of hyaline chondrocytes, while the cartilage surface of the OA group was discontinuous, with cartilage missing and fibrous soft tissue growing into the defect site. HIF-1α staining was positive in both groups. Moreover, HIF-2α and NDRG3 staining was weakly positive in the normal group, but were uniformly and strongly positive in the OA group. The positively stained areas and integral optical density for NDRG3 were significantly greater in OA group than in the normal group (p < 0.05). CONCLUSIONS: NDRG3 might be closely related to the development and progression of OA. However, the relationship between NDRG3 and OA, which is independent of the HIF pathway, warrants further research.

19.
Biomed Res Int ; 2020: 3056395, 2020.
Article in English | MEDLINE | ID: mdl-33294437

ABSTRACT

We aimed to design an individualized intra-articular stabilization device based on 3D printing technology and investigate the clinical effects of this device for treating traumatic instability of the ulnohumeral joint. This study enrolled nine patients with traumatic instability of the ulnohumeral joint (age: 47.2 ± 1.80 years) who received treatment between March 2018 and March 2019 in our hospital. All patients underwent a thin-layer computed tomography (CT) scan of the elbow before surgery. The original injury and repair models of the elbow were printed using 3D printing technology based on CT data. An individualized intra-articular stabilization device was designed with a 2.0 mm Kirschner wire based on the repair model. Nine patients agreed to receive surgical treatment for elbow disease and placement of the intra-articular stabilization device. The nine patients underwent open reduction through a posterior median approach, and the intra-articular stabilization device was placed in the elbow. Operation time, intraoperative blood loss, and postoperative complications were recorded and followed up. The device was removed at two postoperative months, and the Mayo score was used to evaluate elbow function. Four months after removing the intra-articular stabilization device, elbow joint function was evaluated again using the Mayo score. The mean operation time was 100.1 ± 8.2 min, and the mean intraoperative blood loss was 35.5 ± 7.1 ml. No complications occurred after operation. Two months after surgery, eight patients received an excellent Mayo score, and one patient received a good Mayo score. Four months after removal of the intra-articular stabilization device, eight patients received an excellent Mayo score, and one patient received a good Mayo score. The individualized intra-articular stabilization device can increase ulnohumeral stability and achieve rapid functional recovery of the elbow.


Subject(s)
Elbow Joint/physiopathology , Humerus/physiopathology , Joint Instability/physiopathology , Printing, Three-Dimensional/instrumentation , Ulna/physiopathology , Wounds and Injuries/physiopathology , Adult , Elbow Joint/diagnostic imaging , Female , Humans , Humerus/diagnostic imaging , Joint Instability/complications , Male , Middle Aged , Prosthesis Design , Ulna/diagnostic imaging , Wounds and Injuries/complications
20.
J Biomed Nanotechnol ; 16(6): 789-809, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-33187577

ABSTRACT

Biomaterial implants and medical devices have been utilized extensively in medical treatment with the development of modern medicine, especially in orthopaedics and stomatology. Along with their applications, biomaterial-associated infections (BAIs) have grown to be one of the main postoperative complications. Antimicrobial coating strategies have been reported to effectively inhibit bacterial adhesion and proliferation on implant surface, extending their lifespan. In this review, the most topical antimicrobial coating designs have been chosen from literature studies. Their antimicrobial mechanisms and antimicrobial activity assessments in literature studies have been presented and compared. Based on their active ingredients, antimicrobial coatings are categories into (i) inorganic agents, including Ag, Cu, ZnO, MoS2 and nitride compound; (ii) organic agents including antibiotic, antimicrobial peptides, polymer, essential oils etc. The review has provided various and detailed options of antimicrobial coating designs for consulting according to their specific application. It is noted that the research of antimicrobial coatings is mostly in vitro and in vivo animal models study. It is thus in need for more preclinical or clinical studies, especially finding the direct connection between the utilization of antimicrobial coated implants and the reduction in BAIs incidence. Furthermore, future antimicrobial coating designs shall respect also biocompatibility, functionality, and durability apart from their antimicrobial activity.


Subject(s)
Anti-Infective Agents , Coated Materials, Biocompatible , Animals , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Bacterial Adhesion , Prostheses and Implants
SELECTION OF CITATIONS
SEARCH DETAIL
...