Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
1.
Opt Lett ; 49(11): 3046-3049, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824324

ABSTRACT

Solid-state indirect time-of-flight (iToF) cameras are crucial to numerous short-to-medium-range applications, owing to their advantages in terms of system integrability and long-term reliability. However, due to the low light intensity, the sensing range of iToF cameras is generally limited to a few meters, which hinders their wide applications. Further increasing the sensing range requires not only higher-power laser diodes but also well-designed driver circuits, which are based on prior knowledge of the laser diodes' equivalent circuits (ECs). However, experimental studies on ECs of a mounted, high-power vertical-cavity surface-emitting laser (VCSEL) array that comprehensively incorporates all parasitic components, especially parasitic stemming from printed circuit boards (PCBs), remain absent. In this Letter, an 850 nm VCSEL array with a 15.3 W peak power and a 581 MHz bandwidth is fabricated, and more importantly, its EC is experimentally established. Leveraging the accurate EC, a compact iToF camera with a sensing range up to 11.50 m is designed. In addition, a modified precision model is proposed to better evaluate the iToF camera's performance.

2.
Nanomaterials (Basel) ; 14(11)2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38869594

ABSTRACT

Polarization-insensitive semiconductor optical amplifiers (SOAs) in all-optical networks can improve the signal-light quality and transmission rate. Herein, to reduce the gain sensitivity to polarization, a multi-quantum-well SOA in the 1550 nm band is designed, simulated, and developed. The active region mainly comprises the quaternary compound InGaAlAs, as differences in the potential barriers and wells of the components cause lattice mismatch. Consequently, a strained quantum well is generated, providing the SOA with gain insensitivity to the polarization state of light. In simulations, the SOA with ridge widths of 4 µm, 5 µm, and 6 µm is investigated. A 3 dB gain bandwidth of >140 nm is achieved with a 4 µm ridge width, whereas a 6 µm ridge width provides more output power and gain. The saturated output power is 150 mW (21.76 dB gain) at an input power of 0 dBm but increases to 233 mW (13.67 dB gain) at an input power of 10 dBm. The polarization sensitivity is <3 dBm at -20 dBm. This design, which achieves low polarization sensitivity, a wide gain bandwidth, and high gain, will be applicable in a wide range of fields following further optimization.

3.
Sensors (Basel) ; 24(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38894078

ABSTRACT

The paper presents a wide-bandwidth, low-polarization semiconductor optical amplifier (SOA) based on strained quantum wells. By enhancing the material gain of quantum wells for TM modes, we have extended the gain bandwidth of the SOA while reducing its polarization sensitivity. Through a combination of tilted waveguide design and cavity surface optical thin film design, we have effectively reduced the cavity surface reflectance of the SOA, thus decreasing device transmission losses and noise figure. At a wavelength of 1550 nm and a drive current of 1.4 A, the output power can reach 188 mW, with a small signal gain of 36.4 dB and a 3 dB gain bandwidth of 128 nm. The linewidth broadening is only 1.032 times. The polarization-dependent gain of the SOA is below 1.4 dB, and the noise figure is below 5.5 dB. The device employs only I-line lithography technology, offering simple fabrication processes and low costs yet delivering outstanding and stable performance. The designed SOA achieves wide gain bandwidth, high gain, low polarization sensitivity, low linewidth broadening, and low noise, promising significant applications in the wide-bandwidth optical communication field across the S + C + L bands.

4.
Nanomaterials (Basel) ; 14(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38727381

ABSTRACT

Broad-area lasers (BALs) have found applications in a variety of crucial fields on account of their high output power and high energy transfer efficiency. However, they suffer from poor spatial beam quality due to multi-mode behavior along the waveguide transverse direction. In this paper, we propose a novel metasurface waveguide structure acting as a transverse mode selective back-reflector for BALs. In order to effectively inverse design such a structure, a digital adjoint algorithm is introduced to adapt the considerably large design area and the high degree of freedom. As a proof of the concept, a device structure with a design area of 40 × 20 µm2 is investigated. The simulation results exhibit high fundamental mode reflection (above 90%), while higher-order transverse mode reflections are suppressed below 0.2%. This is, to our knowledge, the largest device structure designed based on the inverse method. We exploited such a device and the method and further investigated the device's robustness and feasibility of the inverse method. The results are elaborately discussed.

5.
Cell Death Dis ; 15(5): 343, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760361

ABSTRACT

The corticospinal tract (CST) is the principal neural pathway responsible for conducting voluntary movement in the vertebrate nervous system. Netrin-1 is a well-known guidance molecule for midline crossing of commissural axons during embryonic development. Families with inherited Netrin-1 mutations display congenital mirror movements (CMM), which are associated with malformations of pyramidal decussation in most cases. Here, we investigated the role of Netrin-1 in CST formation by generating conditional knockout (CKO) mice using a Gfap-driven Cre line. A large proportion of CST axons spread laterally in the ventral medulla oblongata, failed to decussate and descended in the ipsilateral spinal white matter of Ntn1Gfap CKO mice. Netrin-1 mRNA was expressed in the ventral ventricular zone (VZ) and midline, while Netrin-1 protein was transported by radial glial cells to the ventral medulla, through which CST axons pass. The level of transported Netrin-1 protein was significantly reduced in Ntn1Gfap CKO mice. In addition, Ntn1Gfap CKO mice displayed increased symmetric movements. Our findings indicate that VZ-derived Netrin-1 deletion leads to an abnormal trajectory of the CST in the spinal cord due to the failure of CST midline crossing and provides novel evidence supporting the idea that the Netrin-1 signalling pathway is involved in the pathogenesis of CMM.


Subject(s)
Mice, Knockout , Netrin-1 , Pyramidal Tracts , Animals , Netrin-1/metabolism , Netrin-1/genetics , Mice , Pyramidal Tracts/metabolism , Pyramidal Tracts/pathology , Axons/metabolism , Axons/pathology
6.
Phytother Res ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38690720

ABSTRACT

Exercise has been demonstrated to induce an elevated production of free radicals, leading to the onset of oxidative stress. Numerous studies highlight the positive impacts of aerobic exercise, primarily attributed to the increase in overall antioxidant capacity. The evidence suggests that engaging in aerobic exercise contributes to a reduction in the likelihood of advanced cancer and mortality. Oxidative stress occurs when there is an imbalance between the generation of free radicals and the collective antioxidant defense system, encompassing both enzymatic and nonenzymatic antioxidants. Typically, oxidative stress triggers the formation of reactive oxygen or nitrogen species, instigating or advancing various issues in cancers and other diseases. The pro-oxidant-antioxidant balance serves as a direct measure of this imbalance in oxidative stress. Polyphenols contain a variety of bioactive compounds, including flavonoids, flavanols, and phenolic acids, conferring antioxidant properties. Previous research highlights the potential of polyphenols as antioxidants, with documented effects on reducing cancer risk by influencing processes such as proliferation, angiogenesis, and metastasis. This is primarily attributed to their recognized antioxidant capabilities. Considering the extensive array of signaling pathways associated with exercise and polyphenols, this overview will specifically focus on oxidative stress, the antioxidant efficacy of polyphenols and exercise, and their intricate interplay in cancer treatment.

7.
Genes (Basel) ; 15(4)2024 04 03.
Article in English | MEDLINE | ID: mdl-38674388

ABSTRACT

The selection and breeding of good meat rabbit breeds are fundamental to their industrial development, and genomic selection (GS) can employ genomic information to make up for the shortcomings of traditional phenotype-based breeding methods. For the practical implementation of GS in meat rabbit breeding, it is necessary to assess different marker densities and GS models. Here, we obtained low-coverage whole-genome sequencing (lcWGS) data from 1515 meat rabbits (including parent herd and half-sibling offspring). The specific objectives were (1) to derive a baseline for heritability estimates and genomic predictions based on randomly selected marker densities and (2) to assess the accuracy of genomic predictions for single- and multiple-trait linear mixed models. We found that a marker density of 50 K can be used as a baseline for heritability estimation and genomic prediction. For GS, the multi-trait genomic best linear unbiased prediction (GBLUP) model results in more accurate predictions for virtually all traits compared to the single-trait model, with improvements greater than 15% for all of them, which may be attributed to the use of information on genetically related traits. In addition, we discovered a positive correlation between the performance of the multi-trait GBLUP and the genetic correlation between the traits. We anticipate that this approach will provide solutions for GS, as well as optimize breeding programs, in meat rabbits.


Subject(s)
Genomics , Meat , Animals , Rabbits/genetics , Genomics/methods , Selection, Genetic , Phenotype , Breeding/methods , Models, Genetic , Quantitative Trait, Heritable , Genetic Markers , Whole Genome Sequencing/methods , Quantitative Trait Loci , Genome/genetics
8.
BMC Psychiatry ; 24(1): 270, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605327

ABSTRACT

BACKGROUND: Adolescents with type 1 diabetes mellitus suffer from diabetes distress and poor health-related quality of life (HRQOL) since living with the condition that differentiates them from their peers. The present study investigated the effects of peer support and stress on diabetes distress and HRQOL and whether positive coping mediated the effects. METHODS: We used a prospective study design. A total of 201 adolescents with type 1 diabetes mellitus from 20 cities in 4 provinces were recruited.Participants complete two separate surveys at approximately 18-month intervals. The scales employed at both Time 1 and Time 2 included the Diabetes-Specific Peer Support Measure, Diabetes Stress Questionnaire for Youths, Simplified Coping Style Questionnaire, 5-item Problem Areas in Diabetes Scale, and the Diabetes Quality of Life for Youth scale. RESULTS: Baseline peer stress directly predicted diabetes distress and HRQOL at 18 months, even controlling for age, gender, and peer support. However, the direct effect of baseline peer support on 18-month diabetes distress and HRQOL was insignificant. Baseline peer support indirectly affected diabetes distress and HRQOL at 18 months through positive coping, indicating that positive coping plays a mediating role. CONCLUSION: The findings suggest that peer social relationships, especially peer stress, and positive coping are promising intervention targets for adolescents facing challenges in psychosocial adaptation.


Subject(s)
Diabetes Mellitus, Type 1 , Psychological Distress , Humans , Adolescent , Diabetes Mellitus, Type 1/psychology , Quality of Life/psychology , Longitudinal Studies , Adaptation, Psychological , Prospective Studies , Interpersonal Relations , Stress, Psychological/psychology
9.
Nanomaterials (Basel) ; 14(7)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38607106

ABSTRACT

Semiconductor lasers, characterized by their high efficiency, small size, low weight, rich wavelength options, and direct electrical drive, have found widespread application in many fields, including military defense, medical aesthetics, industrial processing, and aerospace. The mode characteristics of lasers directly affect their output performance, including output power, beam quality, and spectral linewidth. Therefore, semiconductor lasers with high output power and beam quality are at the forefront of international research in semiconductor laser science. The novel parity-time (PT) symmetry mode-control method provides the ability to selectively modulate longitudinal modes to improve the spectral characteristics of lasers. Recently, it has gathered much attention for transverse modulation, enabling the output of fundamental transverse modes and improving the beam quality of lasers. This study begins with the basic principles of PT symmetry and provides a detailed introduction to the technical solutions and recent developments in single-mode semiconductor lasers based on PT symmetry. We categorize the different modulation methods, analyze their structures, and highlight their performance characteristics. Finally, this paper summarizes the research progress in PT-symmetric lasers and provides prospects for future development.

10.
BMC Psychiatry ; 24(1): 263, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594663

ABSTRACT

BACKGROUND: Highly resilient adolescents with type 1 diabetes have been proved to achieve within-target glycemic outcomes and experience high quality of life. The ecological resilience model for adolescents with type 1 diabetes was developed in this study. It aims to increase our understanding of how resilience is both positively and negatively affected by internal and environmental ecological factors. METHODS: This cross-sectional study surveyed 460 adolescents with type 1 diabetes from 36 cities in 11 provinces, China. Participants completed self-report questionnaires on resilience, family functioning, peer support, peer stress, coping style, and demographics. Standard glycated hemoglobin tests were performed on the adolescents. Structural equation modeling was applied to analyze the data. RESULTS: The ecological resilience model for adolescents with type 1 diabetes was a good model with a high level of variance in resilience (62%). Family functioning was the most important predictor of resilience, followed by peer support, positive coping, and peer stress. Moreover, positive coping was the mediator of the relationship between family functioning and resilience. Positive coping and peer stress co-mediated the association between peer support and resilience. CONCLUSIONS: Family functioning, peer relationships, and positive coping are interrelated, which may jointly influence resilience. The findings provide a theoretical basis for developing resilience-promotion interventions for adolescents with type 1 diabetes, which may lead to health improvements during a vulnerable developmental period.


Subject(s)
Diabetes Mellitus, Type 1 , Resilience, Psychological , Humans , Adolescent , Cross-Sectional Studies , Quality of Life , Surveys and Questionnaires , Adaptation, Psychological
11.
Oncol Lett ; 27(6): 259, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38646492

ABSTRACT

Lung cancer is the most common cancer in the world due to its high incidence and recurrence. Genetic instability is one of the main factors leading to its occurrence, development and poor prognosis. Decreased xeroderma pigmentosum group C (XPC) expression notably enhances the stem cell properties of lung cancer cells and increases their proliferation and migration. Additionally, patients with lung cancer and low XPC expression had a poor prognosis. The purpose of the present study was to analyze the effect of XPC and IFN-γ on the clinical prognosis of patients with non-small cell lung cancer (NSCLC). Lung adenocarcinoma specimens were collected from a total of 140 patients with NSCLC. Additionally, from these 140 patients, 48 paracarcinoma tissue specimens were also collected, which were later used to construct tissue microarrays. The expression of XPC and IFN-γ in cancer tissues and in paraneoplastic tissues was detected using immunohistochemistry. The prognosis and overall survival of patients were determined through telephone follow-up. The results showed a positive correlation between expression of XPC and IFN-γ in NSCLC. Additionally, high expression of both markers was associated with a favorable prognosis in patients with NSCLC. The aforementioned findings suggest that the expression of XPC and IFN-γ has prognostic value in clinical practice and is expected to become a marker for clinical application.

12.
Sensors (Basel) ; 24(5)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38475153

ABSTRACT

LiDAR has high accuracy and resolution and is widely used in various fields. In particular, phase-modulated continuous-wave (PhMCW) LiDAR has merits such as low power, high precision, and no need for laser frequency modulation. However, with decreasing signal-to-noise ratio (SNR), the noise on the signal waveform becomes so severe that the current methods to extract the time-of-flight are no longer feasible. In this paper, a novel method that uses deep neural networks to measure the pulse width is proposed. The effects of distance resolution and SNR on the performance are explored. Recognition accuracy reaches 81.4% at a 0.1 m distance resolution and the SNR is as low as 2. We simulate a scene that contains a vehicle, a tree, a house, and a background located up to 6 m away. The reconstructed point cloud has good fidelity, the object contours are clear, and the features are restored. More precisely, the three distances are 4.73 cm, 6.00 cm, and 7.19 cm, respectively, showing that the performance of the proposed method is excellent. To the best of our knowledge, this is the first work that employs a neural network to directly process LiDAR signals and to extract their time-of-flight.

13.
Exp Ther Med ; 27(5): 199, 2024 May.
Article in English | MEDLINE | ID: mdl-38544554

ABSTRACT

Diffuse cystic lung diseases (DCLDs) are a group of heterogeneous lung diseases that are characterized by inflated spaces or cysts within the lung parenchyma. They also exhibit similar imaging characteristics and clinical manifestations compared with those of cystic lesions, such as pulmonary cavities, emphysema, bronchiectasis and honeycomb lung. The most common DCLDs encountered in the clinic include lymphangioleiomyomatosis, Birt-Hogg-Dubé syndrome, Langerhans cell histiocytosis and lymphocytic interstitial pneumonia. In particular, accurate diagnosis of DCLDs in terms of the different lesions found is important, because their clinical courses, prognoses and treatment strategies vary widely. However, because DCLDs usually have overlapping clinical presentations, diagnosis typically requires a combination of clinical considerations that take into account characteristics of the cyst, its distribution, organ of origin and background parenchymal findings. The present report documents the case of a 73-year-old man diagnosed with desquamative interstitial pneumonia (DIP). The patient was admitted to the hospital due to chest tightness, shortness of breath and intermittent fever. The patient had been a smoker for >60 years and had stopped smoking for 6 months before being admitted. A transbronchial lung biopsy, bronchoscopy and alveolar lavage cytopathogen culture were performed to confirm the diagnosis of desquamative interstitial pneumonia (DIP). The patient was treated with hormonal therapy and advised to abstain from smoking. The diagnosis of DIP in comparison with other DCLDs was summarized for the purpose of providing a clinical basis for the accurate clinical diagnosis of DIP and the development of evidence-based practice guidelines.

14.
Langmuir ; 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38329721

ABSTRACT

The coexistence of lead, zinc, and copper ions in wastewater constitutes an environmental challenge of pressing concern. This research delves into the preparation of innovative oxidation-doped conjugated microporous poly(aniline) frameworks, exploring their prospective efficacy in regulating lead ion adsorption from aqueous solutions. H2SO4-CMPTA demonstrates the capability to reach adsorption equilibrium within 15 min at a lead concentration of 50 ppm. Even at a lead concentration of 20 ppm, it still efficaciously attenuates these levels to sub-10 ppb, a value surpassing extant standard. H2SO4-CMPTA retains over 78.8% adsorption efficiency after six cycles. Analytical characterization coupled with computational calculations suggests that sulfate-coordinated nitrogen cationic structure plays a crucial role in adsorption. A deeper investigation reveals the cardinal role of electrostatic attraction and exclusive chelation adsorption underpinning the efficient capture of lead ions by doped sulfate ions. Intriguingly, in a mixed heavy metal solution containing lead, zinc, and copper ions, H2SO4-CMPTA exhibits an initial predilection toward zinc ions, yet an eventual ion-exchange adsorption gravitating toward lead ions was discerned, governed by the latter's superior binding energy. Our study elucidates a promising material as an efficacious tool for the remediation of aquatic environments tainted with lead contaminants.

15.
BMC Pediatr ; 24(1): 39, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38218818

ABSTRACT

BACKGROUND: Clonidine stimulation test has been widely used in the diagnosis of growth hormone deficiency in children with short stature with a high level of reliability. However, it may cause hypotension, which usually appears as headache, dizziness, bradycardia, and even syncope. It is well known that elevating the beds to make patients' feet above their cardiac level might relieve this discomfort. However, the real efficiency of this method remains to be proved while the best angle for the elevated bed is still unclear. METHODS: A total of 1200 children with short stature were enrolled in this retrospective cross-sectional study. Age, gender, weight, and basic systolic and diastolic blood pressure were collected. Blood pressure at 1, 2, 3, and 4 h after stimulation tests were recorded. The participants were divided into 3 groups based on the angles of the elevated foot of their beds named 0°, 20°, and 40° groups. RESULTS: At one hour after the commencement of the tests, participants lying on the elevated beds showed a higher mean increase on the change of pulse pressure. The difference in the angles of the elevated beds did not show statistical significance compared with those who did not elevate their beds (0.13 vs. 2.83, P = 0.001; 0.13 vs. 2.18, P = 0.005; 2.83 vs. 2.18, P = 0.369). When it came to 4 h after the tests began, participants whose beds were elevated at an angle around 20° had a significantly higher mean increase in the change of pulse pressure values compared with those whose beds were elevated at an angle around 40° (1.46 vs. -0.05, P = 0.042). CONCLUSION: Elevating the foot of the beds of the patients who are undergoing clonidine stimulation tests at an angle of 20°might be a good choice to alleviate the hypotension caused by the tests.


Subject(s)
Clonidine , Hypotension , Child , Humans , Clonidine/therapeutic use , Blood Pressure , Cross-Sectional Studies , Retrospective Studies , Reproducibility of Results
16.
Eur J Surg Oncol ; 50(2): 107930, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38159390

ABSTRACT

BACKGROUND: Gallbladder adenoma represents a precancerous lesion of gallbladder cancer. However, distinguishing it from cholesteryl polyps of the gallbladder before surgery is challenging. Thus, we aimed to comprehensively explore various risk factors contributing to the formation of gallbladder adenoma to facilitate an informed diagnosis and treatment by clinicians. METHODS: We conducted a retrospective analysis of patients who had undergone cholecystectomy at the Affiliated Hospital of Qingdao University between January 2015 and December 2022. Following postoperative pathological examination, patients were categorized into cholesterol polyp and adenoma groups. We analyzed their baseline characteristics, ultrasound imaging variables, and biochemical data using logistic, lasso, and stepwise regression. Subsequently, we constructed a preoperative prediction model based on the independent risk factors. RESULTS: Regression analysis of 520 gallbladder polyps and 288 gallbladder adenomas in the model group revealed that age, gallbladder wall thickness, polyp size, echogenicity, pedunculation, and adenosine deaminase (ADA) levels were independent predictors of gallbladder adenoma, all with P < 0.05. Using these indicators, we established a regression equation: Logistic (P) = -5.615 + 0.018 ∗ age - 4.64 ∗ gallbladder wall thickness + 1.811 ∗ polyp size + 2.855 ∗ polyp echo + 0.97∗ pedunculation + 0.092 ∗ ADA. The resulting area under the curve (AUC) value was 0.894 (95 % CI: 0.872-0.917, P < 0.01), with a sensitivity of 89.20 %, specificity of 79.40 %, and overall accuracy of 84.41 % for adenoma detection. CONCLUSION: Age, polyp size, gallbladder wall thickness, polyp echogenicity, pedunculation, and ADA levels emerge as independent risk factors for gallbladder adenoma.


Subject(s)
Adenoma , Gallbladder Diseases , Gallbladder Neoplasms , Polyps , Humans , Child, Preschool , Retrospective Studies , Gallbladder Neoplasms/diagnostic imaging , Gallbladder Neoplasms/surgery , Gallbladder Diseases/diagnostic imaging , Gallbladder Diseases/surgery , Ultrasonography/methods , Adenoma/diagnostic imaging , Adenoma/surgery , Polyps/diagnostic imaging , Polyps/surgery
17.
J Neuroinflammation ; 20(1): 290, 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38042775

ABSTRACT

Glial cell-mediated neuroinflammation and neuronal attrition are highly correlated with cognitive impairment in Alzheimer's disease. YKL-40 is a secreted astrocytic glycoprotein that serves as a diagnostic biomarker of Alzheimer's disease. High levels of YKL-40 are associated with either advanced Alzheimer's disease or the normal aging process. However, the functional role of YKL-40 in Alzheimer's disease development has not been firmly established. In a 5xFAD mouse model of Alzheimer's disease, we observed increased YKL-40 expression in the cerebrospinal fluid of 7-month-old mice and was correlated with activated astrocytes. In primary astrocytes, Aß1-42 upregulated YKL-40 in a dose-dependent manner and was correlated with PI3-K signaling pathway activation. Furthermore, primary neurons treated with YKL-40 and/or Aß1-42 resulted in significant synaptic degeneration, reduced dendritic complexity, and impaired electrical parameters. More importantly, astrocyte-specific knockout of YKL-40 over a period of 7 days in symptomatic 5xFAD mice could effectively reduce amyloid plaque deposition in multiple brain regions. This was also associated with attenuated glial activation, reduced neuronal attrition, and restored memory function. These biological phenotypes could be explained by enhanced uptake of Aß1-42 peptides, increased rate of Aß1-42 degradation and acidification of lysosomal compartment in YKL-40 knockout astrocytes. Our results provide new insights into the role of YKL-40 in Alzheimer's disease pathogenesis and demonstrate the potential of targeting this soluble biomarker to alleviate cognitive defects in symptomatic Alzheimer's disease patients.


Subject(s)
Alzheimer Disease , Animals , Humans , Infant , Mice , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Astrocytes/metabolism , Biomarkers/metabolism , Chitinase-3-Like Protein 1/metabolism , Disease Models, Animal , Mice, Transgenic
18.
Nanomaterials (Basel) ; 13(24)2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38133054

ABSTRACT

On-chip optical modulators, which are capable of converting electrical signals into optical signals, constitute the foundational components of photonic devices. Photonics modulators exhibiting high modulation efficiency and low insertion loss are highly sought after in numerous critical applications, such as optical phase steering, optical coherent imaging, and optical computing. This paper introduces a novel accumulation-type vertical modulator structure based on a silicon photonics platform. By incorporating a high-K dielectric layer of ZrO2, we have observed an increase in modulation efficiency while maintaining relatively low levels of modulation loss. Through meticulous study and optimization, the simulation results of the final device structure demonstrate a modulation efficiency of 0.16 V·cm, with a mere efficiency-loss product of 8.24 dB·V.

19.
Sensors (Basel) ; 23(17)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37687780

ABSTRACT

The 1550 nm band semiconductor optical amplifier (SOA) has great potential for applications such as optical communication. Its wide-gain bandwidth is helpful in expanding the bandwidth resources of optical communication, thereby increasing total capacity transmitted over the fiber. Its relatively low cost and ease of integration also make it a high-performance amplifier of choice for LiDAR applications. In recent years, with the rapid development of quantum-well (QW) material systems, SOAs have gradually overcome the shortcomings of polarization sensitivity and high noise. The research on quantum-dot (QD) materials has further improved the noise characteristics and transmission loss of SOAs. The design of special waveguide structures-such as plate-coupled optical waveguide amplifiers and tapered amplifiers-has also increased the saturation output power of SOAs. The maximum gain of the SOA has been reported to be more than 21 dB. The maximum saturation output power has been reported to be more than 34.7 dBm. The maximum 3 dB gain bandwidth has been reported to be more than 120 nm, the lowest noise figure has been reported to be less than 4 dB, and the lowest polarization-dependent gain has been reported to be 0.1 dB. This study focuses on the improvement and enhancement of the main performance parameters of high-power SOAs in the 1550 nm band and introduces the performance parameters, the research progress of high-power SOAs in the 1550 nm band, and the development and application status of SOAs. Finally, the development trends and prospects of high-power SOAs in the 1550 nm band are summarized.

20.
Atherosclerosis ; 379: 117183, 2023 08.
Article in English | MEDLINE | ID: mdl-37549548

ABSTRACT

BACKGROUND AND AIMS: The aberrant proliferation and migration of vascular smooth muscle cells (VSMCs) play an essential role in the pathogenesis of atherosclerosis (AS). Long noncoding RNAs (lncRNAs) have been reported as important regulators in a number of diseases. However, very little is known regarding the functional role of lncRNAs in governing proliferation and migration of VSMCs and AS development. METHODS: Both in vitro and in vivo assays were performed to investigate the role of lncRNA in the pathophysiology of AS. Our previous lncRNA arrays revealed that lncRNA RP4-639F20.1 was significantly decreased in atherosclerotic plaques. Lentivirus overexpressing RP4-639F20.1 and lncRNA RP4-639F20.1 silencing vectors (Si-lnc-RP4-639F20.1) were constructed and transfected in VSMCs. The in vitro functions of lncRNA were analyzed by CCK-8 assays, EdU assays, scratch wound assays, transwell assays, qRT-PCR and Western blot analyses. RNA fluorescence in situ hybridization, immunoprecipitation and mRNA microarrays were used to explore the underlying mechanism. Adeno-associated-virus-9 (AAV9) overexpressing RP4-639F20.1 was constructed and injected intravenously into ApoE-/- mice to explore the role of lncRNA in vivo. RESULTS: In vitro experiments showed that lncRNA RP4-639F20.1 interacted with THRAP3 and downregulated c-FOS expression. Both increase of lncRNA RP4-639F20.1 expression and knockdown of c-FOS inhibited the expression of MMP10 and VEGF-α in VSMCs and suppressed VSMCs proliferation and migration. In vivo experiments using ApoE-/- mice fed a high-fat diet demonstrated that lncRNA RP4-639F20.1 overexpression deterred atherosclerosis and decreased lipid levels in atherosclerotic lesions. Patients with coronary artery disease were found to have higher c-FOS levels than healthy individuals and c-FOS expression was positively correlated with the SYNTAX score of patients. CONCLUSIONS: Overall, these data indicated that lncRNA RP4-639F20.1/THRAP3/c-FOS pathway protects against the development of atherosclerosis by suppressing VSMCs proliferation and migration. LncRNA RP4-639F20.1 and c-FOS could represent potential therapeutic targets to ameliorate atherosclerosis-related diseases.


Subject(s)
Atherosclerosis , Proto-Oncogene Proteins c-fos , RNA, Long Noncoding , Transcription Factors , Animals , Mice , Atherosclerosis/genetics , Atherosclerosis/prevention & control , Atherosclerosis/metabolism , Cell Movement , Cell Proliferation , Cells, Cultured , In Situ Hybridization, Fluorescence , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Signal Transduction , Transcription Factors/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Mice, Knockout, ApoE
SELECTION OF CITATIONS
SEARCH DETAIL
...