Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
Sci Adv ; 10(27): eadk8958, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38959315

ABSTRACT

The luminal-to-basal transition in mammary epithelial cells (MECs) is accompanied by changes in epithelial cell lineage plasticity; however, the underlying mechanism remains elusive. Here, we report that deficiency of Frmd3 inhibits mammary gland lineage development and induces stemness of MECs, subsequently leading to the occurrence of triple-negative breast cancer. Loss of Frmd3 in PyMT mice results in a luminal-to-basal transition phenotype. Single-cell RNA sequencing of MECs indicated that knockout of Frmd3 inhibits the Notch signaling pathway. Mechanistically, FERM domain-containing protein 3 (FRMD3) promotes the degradation of Disheveled-2 by disrupting its interaction with deubiquitinase USP9x. FRMD3 also interrupts the interaction of Disheveled-2 with CK1, FOXK1/2, and NICD and decreases Disheveled-2 phosphorylation and nuclear localization, thereby impairing Notch-dependent luminal epithelial lineage plasticity in MECs. A low level of FRMD3 predicts poor outcomes for breast cancer patients. Together, we demonstrated that FRMD3 is a tumor suppressor that functions as an endogenous activator of the Notch signaling pathway, facilitating the basal-to-luminal transformation in MECs.


Subject(s)
Epithelial Cells , Receptors, Notch , Signal Transduction , Animals , Epithelial Cells/metabolism , Female , Receptors, Notch/metabolism , Humans , Mice , Cell Lineage , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/cytology , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Cell Differentiation , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/genetics
2.
Front Plant Sci ; 15: 1354359, 2024.
Article in English | MEDLINE | ID: mdl-38903436

ABSTRACT

Canopy height serves as an important dynamic indicator of crop growth in the decision-making process of field management. Compared with other commonly used canopy height measurement techniques, ultrasonic sensors are inexpensive and can be exposed in fields for long periods of time to obtain easy-to-process data. However, the acoustic wave characteristics and crop canopy structure affect the measurement accuracy. To improve the ultrasonic sensor measurement accuracy, a four-year (2018-2021) field experiment was conducted on maize and wheat, and a measurement platform was developed. A series of single-factor experiments were conducted to investigate the significant factors affecting measurements, including the observation angle (0-60°), observation height (0.5-2.5 m), observation period (8:00-18:00), platform moving speed with respect to the crop (0-2.0 m min-1), planting density (0.2-1 time of standard planting density), and growth stage (maize from three-leaf to harvest period and wheat from regreening to maturity period). The results indicated that both the observation angle and planting density significantly affected the results of ultrasonic measurements (p-value< 0.05), whereas the effects of other factors on measurement accuracy were negligible (p-value > 0.05). Moreover, a double-input factor calibration model was constructed to assess canopy height under different years by utilizing the normalized difference vegetation index and ultrasonic measurements. The model was developed by employing the least-squares method, and ultrasonic measurement accuracy was significantly improved when integrating the measured value of canopy heights and the normalized difference vegetation index (NDVI). The maize measurement accuracy had a root mean squared error (RMSE) ranging from 81.4 mm to 93.6 mm, while the wheat measurement accuracy had an RMSE from 37.1 mm to 47.2 mm. The research results effectively combine stable and low-cost commercial sensors with ground-based agricultural machinery platforms, enabling efficient and non-destructive acquisition of crop height information.

3.
Gene ; 927: 148694, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38878987

ABSTRACT

OBJECTIVE: In this study, we performed RNA sequencing (RNA-seq) on the abdominal aorta tissue of New Zealand rabbits and investigated the potential association of lncRNA TCONS_02443383 with the development of AS through bioinformatics analysis of the sequencing data. The obtained results were further validated using quantitative real-time polymerase chain reaction (qRT-PCR). METHOD: We induced an AS model in New Zealand rabbits by causing balloon injury to the abdominal aorta vascular wall and administering a high-fat diet. We then upregulated the expression level of the lncRNA TCONS_02443383 by injecting lentiviral plasmids through the ear vein. RNA sequencing (RNA-seq) was performed on the abdominal aorta tissues. We conducted Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway and Gene Ontology (GO) analyses. RESULT: The overexpression of the lncRNA TCONS_02443383 led to an upregulation of peroxisome proliferator-activated receptor (PPAR) signaling pathways as well as genes related to cell adhesion. CONCLUSION: The overexpression of the lncRNA TCONS_02443383 can inhibit the occurrence and development of AS by upregulating peroxisome proliferator-activated receptor (PPAR) signaling pathways and genes related to cell adhesion.


Subject(s)
Atherosclerosis , Cell Adhesion , Disease Models, Animal , Peroxisome Proliferator-Activated Receptors , RNA, Long Noncoding , Signal Transduction , Animals , Rabbits , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Signal Transduction/genetics , Peroxisome Proliferator-Activated Receptors/genetics , Peroxisome Proliferator-Activated Receptors/metabolism , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Cell Adhesion/genetics , Aorta, Abdominal/metabolism , Aorta, Abdominal/pathology , Male , Up-Regulation , Diet, High-Fat/adverse effects
4.
Clin Chim Acta ; 561: 119761, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38848897

ABSTRACT

BACKGROUND: Determination of DPYD and UGT1A1 polymorphisms prior to 5-fluorouracil and irinotecan therapy is crucial for avoiding severe adverse drug effects. Hence, there is a pressing need for accurate and reliable genotyping methods for the most common DPYD and UGT1A1 polymorphisms. In this study, we introduce a novel polymerase chain reaction (PCR) melting curve analysis method for discriminating DPYD c.1236G > A, c.1679 T > G, c.2846A > T, IVS14 + 1G > A and UGT1A1*1, *28, *6 (G71R) genotypes. METHODS: Following protocol optimization, this technique was employed to genotype 28 patients, recruited between March 2023 and October 2023, at the First Affiliated Hospital of Xiamen University. These patients included 20 with UGT1A1 *1/*1, 8 with UGT1A1 *1/*28, 4 with UGT1A1 *28/*28, 22 with UGT1A1*6 G/G, 6 with UGT1A1*6 G/A, 4 with UGT1A1*6 A/A, 27 with DPYD(c.1236) G/G, 3 with DPYD(c.1236) G/A, 2 with DPYD(c.1236) A/A, 27 with DPYD(c.1679) T/T, 2 with DPYD(c.1679) T/G, 3 with DPYD(c.1679) G/G, 28 with DPYD(c.2846A/T) A/A, 2 with DPYD(c.2846A/T) A/T, 2 with DPYD(c.2846A/T) T/T, 28 with DPYD(c.IVS14 + 1) G/G, 2 with DPYD(c.IVS14 + 1) G/G, and 2 with DPYD(c.IVS14 + 1) G/G, as well as 3 plasmid standards. Method accuracy was assessed by comparing results with those from Sanger sequencing or Multiplex quantitative PCR(qPCR). Intra- and inter-run precision of melting temperatures (Tms) were calculated to evaluate reliability, and sensitivity was assessed through limit of detection examination. RESULTS: The new method accurately identified all genotypes and exhibited higher accuracy than Multiplex qPCR. Intra- and inter-run coefficients of variation for Tms were both ≤1.97 %, with standard deviations ≤0.95 °C. The limit of detection was 0.09 ng/µL of input genomic DNA. CONCLUSION: Our developed PCR melting curve analysis offers accurate, reliable, rapid, simple, and cost-effective detection of DPYD and UGT1A1 polymorphisms. Its application can be easily extended to clinical laboratories equipped with a fluorescent PCR platform.


Subject(s)
Dihydrouracil Dehydrogenase (NADP) , Fluorouracil , Glucuronosyltransferase , Irinotecan , Polymerase Chain Reaction , Glucuronosyltransferase/genetics , Humans , Dihydrouracil Dehydrogenase (NADP)/genetics , Polymerase Chain Reaction/methods , Polymorphism, Genetic , Genotype , Transition Temperature
5.
Elife ; 122024 May 24.
Article in English | MEDLINE | ID: mdl-38787369

ABSTRACT

Rich data from large biobanks, coupled with increasingly accessible association statistics from genome-wide association studies (GWAS), provide great opportunities to dissect the complex relationships among human traits and diseases. We introduce BADGERS, a powerful method to perform polygenic score-based biobank-wide association scans. Compared to traditional approaches, BADGERS uses GWAS summary statistics as input and does not require multiple traits to be measured in the same cohort. We applied BADGERS to two independent datasets for late-onset Alzheimer's disease (AD; n=61,212). Among 1738 traits in the UK biobank, we identified 48 significant associations for AD. Family history, high cholesterol, and numerous traits related to intelligence and education showed strong and independent associations with AD. Furthermore, we identified 41 significant associations for a variety of AD endophenotypes. While family history and high cholesterol were strongly associated with AD subgroups and pathologies, only intelligence and education-related traits predicted pre-clinical cognitive phenotypes. These results provide novel insights into the distinct biological processes underlying various risk factors for AD.


Subject(s)
Alzheimer Disease , Biological Specimen Banks , Endophenotypes , Genome-Wide Association Study , Alzheimer Disease/genetics , Humans , Risk Factors , Male , Female , United Kingdom/epidemiology , Aged , Genetic Predisposition to Disease , Multifactorial Inheritance/genetics , Aged, 80 and over
6.
Sci Rep ; 14(1): 10707, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38730021

ABSTRACT

This study aimed to construct and externally validate a user-friendly nomogram-based scoring model for predicting the risk of urinary tract infections (UTIs) in patients with acute ischemic stroke (AIS). A retrospective real-world cohort study was conducted on 1748 consecutive hospitalized patients with AIS. Out of these patients, a total of 1132 participants were ultimately included in the final analysis, with 817 used for model construction and 315 utilized for external validation. Multivariate regression analysis was applied to develop the model. The discriminative capacity, calibration ability, and clinical effectiveness of the model were evaluated. The overall incidence of UTIs was 8.13% (92/1132), with Escherichia coli being the most prevalent causative pathogen in patients with AIS. After multivariable analysis, advanced age, female gender, National Institute of Health Stroke Scale (NIHSS) score ≥ 5, and use of urinary catheters were identified as independent risk factors for UTIs. A nomogram-based SUNA model was constructed using these four factors (Area under the receiver operating characteristic curve (AUC) = 0.810), which showed good discrimination (AUC = 0.788), calibration, and clinical utility in the external validation cohort. Based on four simple and readily available factors, we derived and externally validated a novel and user-friendly nomogram-based scoring model (SUNA score) to predict the risk of UTIs in patients with AIS. The model has a good predictive value and provides valuable information for timely intervention in patients with AIS to reduce the occurrence of UTIs.


Subject(s)
Ischemic Stroke , Nomograms , Urinary Tract Infections , Humans , Urinary Tract Infections/epidemiology , Urinary Tract Infections/complications , Urinary Tract Infections/diagnosis , Female , Male , Retrospective Studies , Aged , Middle Aged , Ischemic Stroke/complications , Ischemic Stroke/epidemiology , Risk Factors , ROC Curve , Aged, 80 and over , Risk Assessment/methods , Incidence
8.
Cancer Imaging ; 24(1): 65, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773634

ABSTRACT

OBJECTIVES: Magnetic resonance (MR)-based radiomics features of brain metastases are utilised to predict epidermal growth factor receptor (EGFR) mutation and human epidermal growth factor receptor 2 (HER2) overexpression in adenocarcinoma, with the aim to identify the most predictive MR sequence. METHODS: A retrospective inclusion of 268 individuals with brain metastases from adenocarcinoma across two institutions was conducted. Utilising T1-weighted imaging (T1 contrast-enhanced [T1-CE]) and T2 fluid-attenuated inversion recovery (T2-FLAIR) sequences, 1,409 radiomics features were extracted. These sequences were randomly divided into training and test sets at a 7:3 ratio. The selection of relevant features was done using the least absolute shrinkage selection operator, and the training cohort's support vector classifier model was employed to generate the predictive model. The performance of the radiomics features was evaluated using a separate test set. RESULTS: For contrast-enhanced T1-CE cohorts, the radiomics features based on 19 selected characteristics exhibited excellent discrimination. No significant differences in age, sex, and time to metastasis were observed between the groups with EGFR mutations or HER2 + and those with wild-type EGFR or HER2 (p > 0.05). Radiomics feature analysis for T1-CE revealed an area under the curve (AUC) of 0.98, classification accuracy of 0.93, sensitivity of 0.92, and specificity of 0.93 in the training cohort. In the test set, the AUC was 0.82. The 19 radiomics features for the T2-FLAIR sequence showed AUCs of 0.86 in the training set and 0.70 in the test set. CONCLUSIONS: This study developed a T1-CE signature that could serve as a non-invasive adjunctive tool to determine the presence of EGFR mutations and HER2 + status in adenocarcinoma, aiding in the direction of treatment plans. CLINICAL RELEVANCE STATEMENT: We propose radiomics features based on T1-CE brain MR sequences that are both evidence-based and non-invasive. These can be employed to guide clinical treatment planning in patients with brain metastases from adenocarcinoma.


Subject(s)
Adenocarcinoma , Brain Neoplasms , ErbB Receptors , Magnetic Resonance Imaging , Mutation , Receptor, ErbB-2 , Humans , Brain Neoplasms/secondary , Brain Neoplasms/genetics , Brain Neoplasms/diagnostic imaging , ErbB Receptors/genetics , Female , Male , Middle Aged , Retrospective Studies , Magnetic Resonance Imaging/methods , Receptor, ErbB-2/genetics , Adenocarcinoma/genetics , Adenocarcinoma/diagnostic imaging , Adenocarcinoma/pathology , Aged , Adult , Radiomics
9.
Acad Radiol ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38508934

ABSTRACT

RATIONALE AND OBJECTIVES: Medulloblastoma (MB) and Ependymoma (EM) in children, share similarities in age group, tumor location, and clinical presentation. Distinguishing between them through clinical diagnosis is challenging. This study aims to explore the effectiveness of using radiomics and machine learning on multiparametric magnetic resonance imaging (MRI) to differentiate between MB and EM and validate its diagnostic ability with an external set. MATERIALS AND METHODS: Axial T2 weighted image (T2WI) and contrast-enhanced T1weighted image (CE-T1WI) MRI sequences of 135 patients from two centers were collected as train/test sets. Volume of interest (VOI) was manually delineated by an experienced neuroradiologist, supervised by a senior. Feature selection analysis and the least absolute shrinkage and selection operator (LASSO) algorithm identified valuable features, and Shapley additive explanations (SHAP) evaluated their significance. Five machine-learning classifiers-extreme gradient boosting (XGBoost), Bernoulli naive Bayes (Bernoulli NB), Logistic Regression (LR), support vector machine (SVM), linear support vector machine (Linear SVC) classifiers were built based on T2WI (T2 model), CE-T1WI (T1 model), and T1 + T2WI (T1 + T2 model). A human expert diagnosis was developed and corrected by senior radiologists. External validation was performed at Sun Yat-Sen University Cancer Center. RESULTS: 31 valuable features were extracted from T2WI and CE-T1WI. XGBoost demonstrated the highest performance with an area under the curve (AUC) of 0.92 on the test set and maintained an AUC of 0.80 during external validation. For the T1 model, XGBoost achieved the highest AUC of 0.85 on the test set and the highest accuracy of 0.71 on the external validation set. In the T2 model, XGBoost achieved the highest AUC of 0.86 on the test set and the highest accuracy of 0.82 on the external validation set. The human expert diagnosis had an AUC of 0.66 on the test set and 0.69 on the external validation set. The integrated T1 + T2 model achieved an AUC of 0.92 on the test set, 0.80 on the external validation set, achieved the best performance. Overall, XGBoost consistently outperformed in different classification models. CONCLUSION: The combination of radiomics and machine learning on multiparametric MRI effectively distinguishes between MB and EM in childhood, surpassing human expert diagnosis in training and testing sets.

11.
Eur J Med Res ; 28(1): 577, 2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38071384

ABSTRACT

BACKGROUND: Cerebral alveolar echinococcosis (CAE) and brain metastases (BM) share similar in locations and imaging appearance. However, they require distinct treatment approaches, with CAE typically treated with chemotherapy and surgery, while BM is managed with radiotherapy and targeted therapy for the primary malignancy. Accurate diagnosis is crucial due to the divergent treatment strategies. PURPOSE: This study aims to evaluate the effectiveness of radiomics and machine learning techniques based on magnetic resonance imaging (MRI) to differentiate between CAE and BM. METHODS: We retrospectively analyzed MRI images of 130 patients (30 CAE and 100 BM) from Xinjiang Medical University First Affiliated Hospital and The First People's Hospital of Kashi Prefecture, between January 2014 and December 2022. The dataset was divided into training (91 cases) and testing (39 cases) sets. Three dimensional tumors were segmented by radiologists from contrast-enhanced T1WI images on open resources software 3D Slicer. Features were extracted on Pyradiomics, further feature reduction was carried out using univariate analysis, correlation analysis, and least absolute shrinkage and selection operator (LASSO). Finally, we built five machine learning models, support vector machine, logistic regression, linear discrimination analysis, k-nearest neighbors classifier, and Gaussian naïve bias and evaluated their performance via several metrics including sensitivity (recall), specificity, positive predictive value (precision), negative predictive value, accuracy and the area under the curve (AUC). RESULTS: The area under curve (AUC) of support vector classifier (SVC), linear discrimination analysis (LDA), k-nearest neighbors (KNN), and gaussian naïve bias (NB) algorithms in training (testing) sets are 0.99 (0.94), 1.00 (0.87), 0.98 (0.92), 0.97 (0.97), and 0.98 (0.93), respectively. Nested cross-validation demonstrated the robustness and generalizability of the models. Additionally, the calibration plot and decision curve analysis demonstrated the practical usefulness of these models in clinical practice, with lower bias toward different subgroups during decision-making. CONCLUSION: The combination of radiomics and machine learning approach based on contrast enhanced T1WI images could well distinguish CAE and BM. This approach holds promise in assisting doctors with accurate diagnosis and clinical decision-making.


Subject(s)
Brain Neoplasms , Echinococcosis , Humans , Retrospective Studies , Echinococcosis/diagnostic imaging , Brain Neoplasms/diagnostic imaging
12.
Artif Intell Med ; 143: 102609, 2023 09.
Article in English | MEDLINE | ID: mdl-37673577

ABSTRACT

Low-dose CT techniques attempt to minimize the radiation exposure of patients by estimating the high-resolution normal-dose CT images to reduce the risk of radiation-induced cancer. In recent years, many deep learning methods have been proposed to solve this problem by building a mapping function between low-dose CT images and their high-dose counterparts. However, most of these methods ignore the effect of different radiation doses on the final CT images, which results in large differences in the intensity of the noise observable in CT images. What'more, the noise intensity of low-dose CT images exists significantly differences under different medical devices manufacturers. In this paper, we propose a multi-level noise-aware network (MLNAN) implemented with constrained cycle Wasserstein generative adversarial networks to recovery the low-dose CT images under uncertain noise levels. Particularly, the noise-level classification is predicted and reused as a prior pattern in generator networks. Moreover, the discriminator network introduces noise-level determination. Under two dose-reduction strategies, experiments to evaluate the performance of proposed method are conducted on two datasets, including the simulated clinical AAPM challenge datasets and commercial CT datasets from United Imaging Healthcare (UIH). The experimental results illustrate the effectiveness of our proposed method in terms of noise suppression and structural detail preservation compared with several other deep-learning based methods. Ablation studies validate the effectiveness of the individual components regarding the afforded performance improvement. Further research for practical clinical applications and other medical modalities is required in future works.


Subject(s)
Radiation Exposure , Humans , Radiation Exposure/prevention & control , Uncertainty , Tomography, X-Ray Computed
13.
Med Biol Eng Comput ; 61(11): 3123-3135, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37656333

ABSTRACT

Parotid tumors are among the most prevalent tumors in otolaryngology, and malignant parotid tumors are one of the main causes of facial paralysis in patients. Currently, the main diagnostic modality for parotid tumors is computed tomography, which relies mainly on the subjective judgment of clinicians and leads to practical problems such as high workloads. Therefore, to assist physicians in solving the preoperative classification problem, a stacked generalization model is proposed for the automated classification of parotid tumor images. A ResNet50 pretrained model is used for feature extraction. The first layer of the adopted stacked generalization model consists of multiple weak learners, and the results of the weak learners are integrated as input data in a meta-classifier in the second layer. The output results of the meta-classifier are the final classification results. The classification accuracy of the stacked generalization model reaches 91%. Comparing the classification results under different classifiers, the stacked generalization model used in this study can identify benign and malignant tumors in the parotid gland effectively, thus relieving physicians of tedious work pressure.


Subject(s)
Parotid Neoplasms , Humans , Parotid Neoplasms/diagnostic imaging , Parotid Neoplasms/pathology , Parotid Gland/diagnostic imaging , Parotid Gland/pathology , Tomography, X-Ray Computed/methods
16.
J Interv Cardiol ; 2023: 4611602, 2023.
Article in English | MEDLINE | ID: mdl-37415784

ABSTRACT

Objective: To evaluate the value of the cardiac magnetic resonance intravoxel incoherent motion (IVIM) technique in microcirculatory dysfunction in patients with hypertrophic cardiomyopathy (HCM). Methods: The medical records of 19 patients with HCM in our hospital from January 2020 to May 2021 were collected retrospectively, and 23 healthy people with a similar age and gender distribution to the patients with HCM were included as controls. All the included subjects underwent clinical assessment and cardiac magnetic resonance imaging. The original IVIM images were analysed, and the imaging parameters of each segment were measured. The HCM group was divided into non-hypertrophic myocardium and hypertrophic myocardium groups. The differences in imaging parameters between the normal and HCM groups were compared. A Spearman correlation analysis was used to explore the correlation between end-diastolic thickness (EDTH) and each IVIM parameter. Results: The D∗ and f values in the HCM group were lower than those in the normal group (p < 0.0001 and p = 0.004, respectively). The f, D, D∗, and EDTH values of the hypertrophic segment, non-hypertrophic segment, and normal groups were statistically significant (p < 0.05). The difference in D∗ values among the mild, moderate, severe, and very severe HCM groups was statistically significant (p < 0.05). There was a statistically significant difference in EDTH among the mild, moderate, severe, and very severe groups (p < 0.001). There were significant differences in the values of D, D∗, and f between the non-delayed enhancement group and the delayed enhancement group (p < 0.05). The EDTH values of 304 segments in the HCM group were negatively correlated with f (r = -0.219, p = 0.028) and D∗ values (r = -0.310, p < 0.001). Conclusion: The use of IVIM technology can achieve a non-invasive early quantitative assessment of microvascular disease in HCM without the injection of a contrast agent and provide a reference for the early diagnosis of and intervention in myocardial ischemia in patients with HCM.


Subject(s)
Cardiomyopathy, Hypertrophic , Humans , Retrospective Studies , Microcirculation , Cardiomyopathy, Hypertrophic/diagnostic imaging , Magnetic Resonance Imaging/methods , Contrast Media , Magnetic Resonance Spectroscopy
17.
Rev. int. med. cienc. act. fis. deporte ; 23(91): 82-118, jul. 2023. tab, graf
Article in English | IBECS | ID: ibc-226920

ABSTRACT

Background: Investigating alterations in brain volumes among individuals with magnetic resonance-negative temporal lobe epilepsy (MRIn-MTLE) is of particular interest in the context of athletes and fitness enthusiasts. In this study, we aimed to examine these brain volume changes and their potential implications. Methods: We conducted a retrospective analysis of T1-weighted brain images from MRIn-MTLE patients and healthy controls (HC) who were actively engaged in athletics or fitness activities. Brain regions were segmented and quantified using FreeSurfer software, and we compared the volumes of ipsilateral brain regions between patients and controls. We employed Feature Explorer software, based on Pyradiomics, to construct a classification model using volume parameters and assessed its effectiveness in distinguishing between MRIn-MTLE patients and controls. Results: Significant differences in brain volumes were observed in various regions of the brain, both on the left and right sides, among both HC and MRIn-MTLE patients. Notably, these differences varied by gender. In males, the estimated total intracranial volume (eTIV) and the volumes of specific regions in the left hemisphere were larger in the HC group than in the MRIn-MTLE group. In females, certain brain regions in the right hemisphere were smaller in MRIn-MTLE patients compared to the HC group. The classification model achieved an area under the curve (AUC) of 0.780 and an accuracy of 0.721. Conclusions: Our study identified notable reductions in brain volumes among MRIn-MTLE patients who are athletes or fitness enthusiasts. Further investigations are needed to understand the underlying physiological and anatomical factors contributing to these differences. The findings suggest that brain volume measurements can serve as valuable features for constructing classification models to differentiate MRIn-MTLE patients from healthy individuals in the athletic and fitness community. (AU)


Subject(s)
Humans , Magnetic Resonance Imaging , Epilepsy, Temporal Lobe , Athletes , Cerebrum , Retrospective Studies , Sex Characteristics , Sports
18.
Epilepsia ; 64(4): 973-985, 2023 04.
Article in English | MEDLINE | ID: mdl-36695000

ABSTRACT

OBJECTIVE: Sleep strongly activates interictal epileptic activity through an unclear mechanism. We investigated how scalp sleep slow waves (SSWs), whose positive and negative half-waves reflect the fluctuation of neuronal excitability between the up and down states, respectively, modulate interictal epileptic events in focal epilepsy. METHODS: Simultaneous polysomnography was performed in 45 patients with drug-resistant focal epilepsy during intracranial electroencephalographic recording. Scalp SSWs and intracranial spikes and ripples (80-250 Hz) were detected; ripples were classified as type I (co-occurring with spikes) or type II (occurring alone). The Hilbert transform was used to analyze the distributions of spikes and ripples in the phases of SSWs. RESULTS: Thirty patients with discrete seizure-onset zone (SOZ) and discernable sleep architecture were included. Intracranial spikes and ripples accumulated around the negative peaks of SSWs and increased with SSW amplitude. Phase analysis revealed that spikes and both ripple subtypes in SOZ were similarly facilitated by SSWs exclusively during down state. In exclusively irritative zones outside SOZ (EIZ), SSWs facilitated spikes and type I ripples across a wider range of phases and to a greater extent than those in SOZ. The type II and type I ripples in EIZ were modulated by SSWs in different patterns. Ripples in normal zones decreased specifically during the up-to-down transition and then increased after the negative peak of SSW, with a characteristically high post-/pre-negative peak ratio. SIGNIFICANCE: SSWs modulate interictal events in an amplitude-dependent and region-specific pattern. Pathological ripples and spikes were facilitated predominantly during the cortical down state. Coupling analysis of SSWs could improve the discrimination of pathological and physiological ripples and facilitate seizure localization.


Subject(s)
Drug Resistant Epilepsy , Epilepsies, Partial , Epilepsy , Humans , Electroencephalography , Epilepsy/pathology , Epilepsies, Partial/diagnosis , Seizures/pathology , Sleep/physiology , Drug Resistant Epilepsy/diagnosis
19.
J Biosci Bioeng ; 135(2): 160-166, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36494249

ABSTRACT

The preparation of steady-state phospholipid liposomes requires cholesterol as a stabilizer, but excessive intake of cholesterol may increase the risk of cardiovascular disease. The sulfated sterols extracted from sea cucumber, mainly including sulfated 24-methylene cholesterol and cholesterol sulfate, have been reported to have a variety of physiological activities. Sulfated sterols are similar to cholesterol in structure and have the potential to replace cholesterol to prepare novel stable multifunctional liposomes, allowing the liposomes to act as carriers for the delivery of less bioavailable nutrients while allowing sulfated sterols in the lipid bilayer to exert physiologically active effects. This study aimed to prepare a novel multifunctional nanoliposome stabilized with sulfated sterols from sea cucumber instead of cholesterol by ultrasound-assisted thin-film dispersion method. The results showed that stable and uniformly dispersed nanoliposomes could be formed when the substitution ratio of sea cucumber-derived cholesterol sulfate was 100% and the ratio of lecithin to cholesterol sulfate was 3:1. Fucoxanthin encapsulated liposome with egg yolk lecithin/sea cucumber-derived cholesterol sulfate/fucoxanthin mass ratio of 6:2:3 was successfully prepared, with an average particle size of 214 ± 3 nm, polydispersity index (PDI) value of 0.297 ± 0.006, the zeta potential of -57.2 ± 1.10 mV, and the encapsulation efficiency of 85.5 ± 0.8%. The results of digestion and absorption in vitro and in vivo showed that liposomes could significantly improve the bioavailability of fucoxanthin and prolong its residence time in serum. As an efficient multifunctional carrier, this novel liposome has great potential for applications in functional foods and biomedicine.


Subject(s)
Phytosterols , Sea Cucumbers , Animals , Liposomes/chemistry , Lecithins , Sea Cucumbers/chemistry , Cholesterol/chemistry , Sterols , Particle Size
20.
Med Phys ; 50(3): 1507-1527, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36272103

ABSTRACT

BACKGROUND: Esophageal cancer has become one of the important cancers that seriously threaten human life and health, and its incidence and mortality rate are still among the top malignant tumors. Histopathological image analysis is the gold standard for diagnosing different differentiation types of esophageal cancer. PURPOSE: The grading accuracy and interpretability of the auxiliary diagnostic model for esophageal cancer are seriously affected by small interclass differences, imbalanced data distribution, and poor model interpretability. Therefore, we focused on developing the category imbalance attention block network (CIABNet) model to try to solve the previous problems. METHODS: First, the quantitative metrics and model visualization results are integrated to transfer knowledge from the source domain images to better identify the regions of interest (ROI) in the target domain of esophageal cancer. Second, in order to pay attention to the subtle interclass differences, we propose the concatenate fusion attention block, which can focus on the contextual local feature relationships and the changes of channel attention weights among different regions simultaneously. Third, we proposed a category imbalance attention module, which treats each esophageal cancer differentiation class fairly based on aggregating different intensity information at multiple scales and explores more representative regional features for each class, which effectively mitigates the negative impact of category imbalance. Finally, we use feature map visualization to focus on interpreting whether the ROIs are the same or similar between the model and pathologists, thus better improving the interpretability of the model. RESULTS: The experimental results show that the CIABNet model outperforms other state-of-the-art models, which achieves the most advanced results in classifying the differentiation types of esophageal cancer with an average classification accuracy of 92.24%, an average precision of 93.52%, an average recall of 90.31%, an average F1 value of 91.73%, and an average AUC value of 97.43%. In addition, the CIABNet model has essentially similar or identical to the ROI of pathologists in identifying histopathological images of esophageal cancer. CONCLUSIONS: Our experimental results prove that our proposed computer-aided diagnostic algorithm shows great potential in histopathological images of multi-differentiated types of esophageal cancer.


Subject(s)
Esophageal Neoplasms , Humans , Esophageal Neoplasms/diagnostic imaging , Benchmarking , Image Processing, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL