Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Sci Rep ; 14(1): 10457, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714778

ABSTRACT

Coagulation alterations manifest early after severe burns and are closely linked to mortality outcomes. Nevertheless, the precise characterization of coagulation changes associated with early mortality remains elusive. We examined alterations in indicators linked to mortality outcomes at both the transcriptomic and clinical characteristic levels. At the transcriptomic level, we pinpointed 28 differentially expressed coagulation-related genes (DECRGs) following burn injuries and endeavored to validate their causal relationships through Mendelian randomization. DECRGs tied to survival exhibit a significant association with neutrophil function, wherein the expression of CYP4F2 and P2RX1 serves as robust predictors of fatal outcomes. In terms of clinical indicators, early levels of D-dimer and alterations in serum calcium show a strong correlation with mortality outcomes. Coagulation depletion and fibrinolytic activation, stemming from the hyperactivation of coagulation pathways post-severe burns, are strongly linked to patient mortality. Monitoring these early coagulation markers with predictive value can effectively identify individuals necessitating priority critical care.


Subject(s)
Blood Coagulation , Burns , Humans , Burns/blood , Burns/mortality , Male , Female , Adult , Middle Aged , Fibrin Fibrinogen Degradation Products/metabolism , Fibrin Fibrinogen Degradation Products/analysis , Biomarkers/blood , Transcriptome , Calcium/blood , Calcium/metabolism , Mendelian Randomization Analysis
2.
Heliyon ; 10(8): e29112, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38644810

ABSTRACT

Background: Road rage is a common phenomenon during driving, which not only affects the psychological health of drivers but also may increase the risk of traffic accidents. This article explores the impact of moral disengagement and anger rumination on road rage through two studies. Method: This research combined experimental studies with survey questionnaires. Study one used a driving simulator to investigate whether moral disengagement and anger rumination are psychological triggers of road rage in real-time driving, and whether there are differences in the main psychological triggers of road rage under different road scenarios. Building on the first study, study two employed a survey questionnaire to analyze the relationship between moral disengagement, anger rumination, and road rage. Participants in both studies were drivers with certain driving ages and experience. Data were processed and analyzed using descriptive statistics, factor analysis, reliability and validity tests, and multiple regression analysis. Results: The findings indicated: (1) There were significant differences in the anger induction rate across different road scenarios, χ2 = 35.73, p < 0.01, effect size = 0.29. Significant differences in average anger levels were observed in scenarios involving oncoming vehicles, lane-cutting, sudden stops by the vehicle ahead, pedestrians crossing the road, and traffic congestion (F = 20.41, p < 0.01, ηp2 = 0.36), with anger rumination playing a major role in the formation of road rage; (2) Moral disengagement significantly predicted road rage (ß = 0.25, t = 3.85, p < 0.01). The predictive effect of moral disengagement on anger rumination was significant (ß = 0.39, t = 6.17, p < 0.01), as was the predictive effect of anger rumination on road rage (ß = 0.43, t = 6.3, p < 0.01). The direct effect of moral disengagement on road rage included 0 in the bootstrap 95% confidence interval, while the mediating effect of anger rumination did not include 0 in the bootstrap 95% confidence interval, indicating that anger rumination fully mediated the relationship between moral disengagement and road rage.

3.
Methods Enzymol ; 696: 25-42, 2024.
Article in English | MEDLINE | ID: mdl-38658082

ABSTRACT

Solid-state nuclear magnetic resonance (NMR) methods can probe the motions of membrane proteins in liposomes at the atomic level, and propel the understanding of biomolecular processes for which static structures cannot provide a satisfactory description. High-resolution crystallography snapshots have provided a structural basis for fluoride channels. NMR is a powerful tool to build upon these snapshots and depict a dynamic picture of fluoride channels in native-like lipid bilayers. In this contribution, we discuss solid-state and solution NMR experiments to detect fluoride binding and transport by fluoride channels. Ongoing developments in membrane protein sample preparation and ssNMR methodology, particularly in using 1H, 19F and 13C-detection schemes, offer additional opportunities to study structure and functional aspects of fluoride channels.


Subject(s)
Fluorides , Fluorides/chemistry , Fluorides/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Nuclear Magnetic Resonance, Biomolecular/methods , Protein Binding , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Liposomes/chemistry , Liposomes/metabolism , Magnetic Resonance Spectroscopy/methods
4.
iScience ; 27(3): 109133, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38384850

ABSTRACT

Despite adjuvant chemotherapy and endocrine therapy in luminal breast cancer (LBC), relapses are common. Addressing this, we aim to develop a prognostic model to refine adjuvant therapy strategies, particularly for patients at high recurrence risk. Notably, obesity profoundly affects the tumor microenvironment (TME) of LBC. However, it is unclear whether obesity-related biological features can effectively screen high-risk patients. Utilizing weighted gene coexpression network analysis (WGCNA) on RNA sequencing (RNAseq) data, we identified seven obese LBC genes (OLGs) closely associated with patient prognosis. Subsequently, we developed a luminal obesity-gene clinical prognostic index (LOG-CPI), combining a 7-gene signature, TNM staging, and age. Its predictive efficacy was confirmed across validation datasets and a clinical cohort (5-year accuracy = 0.828, 0.760, 0.751, and 0.792, respectively). LOG-CPI emerges as a promising predictor for clinical prognosis and treatment response, helping distinguish molecular and immunological features in LBC patients and guiding clinical practice by identifying varying prognoses.

5.
Small ; : e2311571, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38385823

ABSTRACT

Parkinson's disease (PD) is currently the second most incurable central neurodegenerative disease resulting from various pathogenesis. As the "energy factory" of cells, mitochondria play an extremely important role in supporting neuronal signal transmission and other physiological activities. Mitochondrial dysfunction can cause and accelerate the occurrence and progression of PD. How to effectively prevent and suppress mitochondrial disorders is a key strategy for the treatment of PD from the root. Therefore, the emerging mitochondria-targeted therapy has attracted considerable interest. Herein, the relationship between mitochondrial dysfunction and PD, the causes and results of mitochondrial dysfunction, and major strategies for ameliorating mitochondrial dysfunction to treat PD are systematically reviewed. The study also prospects the main challenges for the treatment of PD.

6.
Nat Commun ; 15(1): 313, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38182565

ABSTRACT

Geometric deep learning has been revolutionizing the molecular modeling field. Despite the state-of-the-art neural network models are approaching ab initio accuracy for molecular property prediction, their applications, such as drug discovery and molecular dynamics (MD) simulation, have been hindered by insufficient utilization of geometric information and high computational costs. Here we propose an equivariant geometry-enhanced graph neural network called ViSNet, which elegantly extracts geometric features and efficiently models molecular structures with low computational costs. Our proposed ViSNet outperforms state-of-the-art approaches on multiple MD benchmarks, including MD17, revised MD17 and MD22, and achieves excellent chemical property prediction on QM9 and Molecule3D datasets. Furthermore, through a series of simulations and case studies, ViSNet can efficiently explore the conformational space and provide reasonable interpretability to map geometric representations to molecular structures.

7.
J Burn Care Res ; 45(2): 438-450, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-37933438

ABSTRACT

Inhalation injury is a common complication in burn patients and is also a factor that can affect the multiple prognoses of burn patients. Attention to inhalation injury began early globally, but few articles have systematically analyzed its development. We employed bibliometric methods to analyze articles on inhalation injury published in 3 medical databases. A total of 3056 relevant articles on inhalation injury were included in our analysis and divided into 3 distinct periods based on Price's law. Notably, a slowdown in publication growth was observed in period III. The majority of these articles were authored by a small group of individuals, with a significant proportion of them being American scholars. In fact, nearly half of the articles were published by American researchers. Applying Bradford's Law, we identified 4 major output sources in the field, namely Burns, Journal of Burn Care & Research, Journal of Trauma, and Critical Care Medicine. Recent research has focused on the clinical risks and outcomes associated with inhalation injury, while basic research in this area has been relatively neglected over the last decade. In conclusion, the growth of publications on inhalation injuries has largely followed standard scientific growth patterns, with a small number of countries and established research groups contributing the majority of articles. However, the recent slowdown in scientific output is a cause for concern, and the lack of emphasis on basic research and clinical trials in this field raises questions about the foundation for widespread clinical management of inhalation injuries.


Subject(s)
Burns , Humans , Burns/therapy , Bibliometrics
8.
Microorganisms ; 11(8)2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37630668

ABSTRACT

The role of the gut microbiota in modulating the risk of respiratory infections has garnered increasing attention. However, conventional clinical trials have faced challenges in establishing the precise relationship between the two. In this study, we conducted a Mendelian randomization analysis with single nucleotide polymorphisms employed as instrumental variables to assess the causal links between the gut microbiota and respiratory infections. Two categories of bacteria, family Lactobacillaceae and genus Family XIII AD3011, were causally associated with the occurrence of upper respiratory tract infections (URTIs). Four categories of gut microbiota existed that were causally associated with lower respiratory tract infections (LRTIs), with order Bacillales and genus Paraprevotella showing a positive association and genus Alistipes and genus Ruminococcaceae UCG009 showing a negative association. The metabolites and metabolic pathways only played a role in the development of LRTIs, with the metabolite deoxycholine acting negatively and menaquinol 8 biosynthesis acting positively. The identification of specific bacterial populations, metabolites, and pathways may provide new clues for mechanism research concerning therapeutic interventions for respiratory infections. Future research should focus on elucidating the potential mechanisms regulating the gut microbiota and developing effective strategies to reduce the incidence of respiratory infections. These findings have the potential to significantly improve global respiratory health.

9.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 35(6): 578-585, 2023 Jun.
Article in Chinese | MEDLINE | ID: mdl-37366122

ABSTRACT

OBJECTIVE: To investigate the correlation between early-stage blood pressure indexes and prognosis in sepsis patients. METHODS: A retrospective cohort study was conducted on the medical records of patients diagnosed with sepsis from 2001 to 2012 in the Medical Information Mart for Intensive Care-III (MIMIC-III) database. Patients were divided into survival group and death group according to the 28-day prognosis. General data of patients and heart rate (HR) and blood pressure at admission to ICU and within 24 hours after admission were collected. The blood pressure indexes including the maximum, median and mean value of systolic index, diastolic index and mean arterial pressure (MAP) index were calculated. The data were randomly divided into training set and validation set (4 : 1). Univariate Logistic regression analysis was used to screen covariates, and multivariate Logistic stepwise regression models were further developed. Model 1 (including HR, blood pressure, and blood pressure index related variables with P < 0.1 and other variables with P < 0.05) and Model 2 (including HR, blood pressure, and blood pressure index related variables with P < 0.1) were developed respectively. The receiver operator characteristic curve (ROC curve), precision recall curve (PRC) and decision curve analysis (DCA) curve were used to evaluate the quality of the two models, and the influencing factors of the prognosis of sepsis patients were analyzed. Finally, nomogram model was developed according to the better model and effectiveness of it was evaluated. RESULTS: A total of 11 559 sepsis patients were included in the study, with 10 012 patients in the survival group and 1 547 patients in the death group. There were significant differences in age, survival time, Elixhauser comorbidity score and other 46 variables between the two groups (all P < 0.05). Thirty-seven variables were preliminarily screened by univariate Logistic regression analysis. After multivariate Logistic stepwise regression model screening, among the indicators related to HR, blood pressure and blood pressure index, the HR at admission to ICU [odds ratio (OR) = 0.992, 95% confidence interval (95%CI) was 0.988-0.997] and the maximum HR (OR = 1.006, 95%CI was 1.001-1.011), maximum MAP index (OR = 1.620, 95%CI was 1.244-2.126), mean diastolic index (OR = 0.283, 95%CI was 0.091-0.856), median systolic index (OR = 2.149, 95%CI was 0.805-4.461), median diastolic index (OR = 3.986, 95%CI was 1.376-11.758) were selected (all P < 0.1). There were 14 other variables with P < 0.05, including age, Elixhauser comorbidity score, continuous renal replacement therapy (CRRT), use of ventilator, sedation and analgesia, norepinephrine, norepinephrine, highest serum creatinine (SCr), maximum blood urea nitrogen (BUN), highest prothrombin time (PT), highest activated partial thromboplastin time (APTT), lowest platelet count (PLT), highest white blood cell count (WBC), minimum hemoglobin (Hb). The ROC curve showed that the area under the curve (AUC) of Model 1 and Model 2 were 0.769 and 0.637, respectively, indicating that model 1 had higher prediction accuracy. The PRC curve showed that the AUC of Model 1 and Model 2 were 0.381 and 0.240, respectively, indicating that Model 1 had a better effect. The DCA curve showed that when the threshold was 0-0.8 (the probability of death was 0-80%), the net benefit rate of Model 1 was higher than that of Model 2. The calibration curve showed that the prediction effect of the nomogram model developed according to Model 1 was in good agreement with the actual outcome. The Bootstrap verification results showed that the nomogram model was consistent with the above results and had good prediction effects. CONCLUSIONS: The nomogram model constructed has good prediction effects on the 28-day prognosis in sepsis patients, and the blood pressure indexes are important predictors in the model.


Subject(s)
Intensive Care Units , Sepsis , Humans , Cohort Studies , Retrospective Studies , Blood Pressure , ROC Curve , Sepsis/diagnosis , Prognosis , Critical Care , Norepinephrine
10.
ACS Macro Lett ; 12(6): 767-772, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37212681

ABSTRACT

We described an insect-inspired strategy for conferring reversible, high responsivity on polymer microgels to dilute-source CO2 (≤5000 ppm in gas mixtures). This is demonstrated on oligo(ethylene oxide)-based microgels that contain tertiary amines on the polymer chains with proper organic small molecular carbonates in the polymer-solvent system. Similar to the synergistic contribution of the CO2 receptor subunits in mosquitoes for CO2 response, laser light scattering and related studies indicated that the CO2-response of the microgels in terms of the volume changes works through the coordination of different functional moieties in the system, making it different from the conventional CO2-response mechanism. While this pushes the lower response threshold of CO2 concentration down to ca. 1000 ppm, this unique strategy can also satisfy the urge to achieve both effective CO2 capture and facile CO2 release, making it possible to couple the detection with the capture and utilization of indoor excess CO2.

11.
J Chromatogr A ; 1696: 463923, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37023637

ABSTRACT

Isotope tracing assisted metabolic analysis is becoming a unique tool to understand metabolic regulation in cell biology and biomedical research. Targeted mass spectrometry analysis based on selected reaction monitoring (SRM) has been widely applied in isotope tracing experiment with the advantages of high sensitivity and broad linearity. However, its application for new pathway discovery is largely restrained by molecular coverage. To overcome this limitation, we describe a strategy called pseudo-targeted profiling of isotopic metabolomics (PtPIM) to expand the analysis of isotope labeled metabolites beyond the limit of known pathways and chemical standards. Pseudo-targeted metabolomics was first established with ion transitions and retention times transformed from high resolution (orbitrap) mass spectrometry. Isotope labeled MRM transitions were then generated according to chemical formulas of fragments, which were derived from accurate ion masses acquired by HRMS. An in-house software "PseudoIsoMRM" was developed to simulate isotope labeled ion transitions in batch mode and correct the interference of natural isotopologues. This PtPIM strategy was successfully applied to study 13C6-glucose traced HepG2 cells. As 313 molecules determined as analysis targets, a total of 4104 ion transitions were simulated to monitor 13C labeled metabolites in positive-negative switching mode of QQQ mass spectrometer with minimum dwell time of 0.3 ms achieved. A total of 68 metabolites covering glycolysis, TCA cycle, nucleotide biosynthesis, one-carbon metabolism and related derivatives were found to be labeled (> 2%) in HepG2 cells. Active pentose phosphate pathway was observed with diverse labeling status of glycolysis intermediates. Meanwhile, our PtPIM strategy revealed that rotenone severely suppressed mitochondrial function e.g. oxidative phosphorylation and fatty acid beta-oxidation. In this case, anaerobic respiration became the major source of energy metabolism by producing abundant lactate. Conclusively, the simulation based PtPIM method demonstrates a strategy to broaden metabolite coverage in isotope tracing analysis independent of standard chemicals.


Subject(s)
Glucose , Metabolomics , Humans , Hep G2 Cells , Carbon Isotopes/analysis , Mass Spectrometry , Metabolomics/methods , Isotope Labeling/methods
12.
Neurocomputing (Amst) ; 534: 161-170, 2023 May 14.
Article in English | MEDLINE | ID: mdl-36923265

ABSTRACT

The mutant strains of COVID-19 caused a global explosion of infections, including many cities of China. In 2020, a hybrid AI model was proposed by Zheng et al., which accurately predicted the epidemic in Wuhan. As the main part of the hybrid AI model, ISI method makes two important assumptions to avoid over-fitting. However, the assumptions cannot be effectively applied to new mutant strains. In this paper, a more general method, named the multi-weight susceptible-infected model (MSI) is proposed to predict COVID-19 in Chinese Mainland. First, a Gaussian pre-processing method is proposed to solve the problem of data fluctuation based on the quantity consistency of cumulative infection number and the trend consistency of daily infection number. Then, we improve the model from two aspects: changing the grouped multi-parameter strategy to the multi-weight strategy, and removing the restriction of weight distribution of viral infectivity. Experiments on the outbreaks in many places in China from the end of 2021 to May 2022 show that, in China, an individual infected by Delta or Omicron strains of SARS-CoV-2 can infect others within 3-4 days after he/she got infected. Especially, the proposed method effectively predicts the trend of the epidemics in Xi'an, Tianjin, Henan, and Shanghai from December 2021 to May 2022.

13.
iScience ; 26(4): 106330, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-36950120

ABSTRACT

Neoadjuvant therapy (NAT) is currently recommended to patients with human epidermal growth factor receptor 2-positive breast cancer (HER2+ BC) that typically exhibit a poor prognosis. The tumor immune microenvironment profoundly affects the efficacy of NAT. However, the correlation between tumor-infiltrating lymphocytes or their specific subpopulations and the response to NAT in HER2+ BC remains largely unknown. In our study, the immune infiltration status of 295 patients was classified as "immune-rich" or "immune-poor" phenotypes. The "immune-rich" phenotype was significantly positively related to pathological complete response (pCR). Ten genes were correlated with both pCR and the immune phenotype based on the results of spline and logistic regression. We constructed a generalized non-linear model combining linear and non-linear gene effects and successfully validated its predictive power using an internal and external validation set (AUC = 0.819, 0.797; respectively) and a clinical set (accuracy = 0.75).

14.
Cancer Biol Med ; 20(3)2023 03 24.
Article in English | MEDLINE | ID: mdl-36971132

ABSTRACT

OBJECTIVE: Neoadjuvant therapy (NAT) has been widely implemented as an essential treatment to improve therapeutic efficacy in patients with locally-advanced cancer to reduce tumor burden and prolong survival, particularly for human epidermal growth receptor 2-positive and triple-negative breast cancer. The role of peripheral immune components in predicting therapeutic responses has received limited attention. Herein we determined the relationship between dynamic changes in peripheral immune indices and therapeutic responses during NAT administration. METHODS: Peripheral immune index data were collected from 134 patients before and after NAT. Logistic regression and machine learning algorithms were applied to the feature selection and model construction processes, respectively. RESULTS: Peripheral immune status with a greater number of CD3+ T cells before and after NAT, and a greater number of CD8+ T cells, fewer CD4+ T cells, and fewer NK cells after NAT was significantly related to a pathological complete response (P < 0.05). The post-NAT NK cell-to-pre-NAT NK cell ratio was negatively correlated with the response to NAT (HR = 0.13, P = 0.008). Based on the results of logistic regression, 14 reliable features (P < 0.05) were selected to construct the machine learning model. The random forest model exhibited the best power to predict efficacy of NAT among 10 machine learning model approaches (AUC = 0.733). CONCLUSIONS: Statistically significant relationships between several specific immune indices and the efficacy of NAT were revealed. A random forest model based on dynamic changes in peripheral immune indices showed robust performance in predicting NAT efficacy.


Subject(s)
Neoadjuvant Therapy , Triple Negative Breast Neoplasms , Humans , Neoadjuvant Therapy/methods , CD8-Positive T-Lymphocytes , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Machine Learning , Killer Cells, Natural
15.
Nature ; 615(7954): 830-835, 2023 03.
Article in English | MEDLINE | ID: mdl-36922588

ABSTRACT

Perovskite light-emitting diodes (LEDs) have attracted broad attention due to their rapidly increasing external quantum efficiencies (EQEs)1-15. However, most high EQEs of perovskite LEDs are reported at low current densities (<1 mA cm-2) and low brightness. Decrease in efficiency and rapid degradation at high brightness inhibit their practical applications. Here, we demonstrate perovskite LEDs with exceptional performance at high brightness, achieved by the introduction of a multifunctional molecule that simultaneously removes non-radiative regions in the perovskite films and suppresses luminescence quenching of perovskites at the interface with charge-transport layers. The resulting LEDs emit near-infrared light at 800 nm, show a peak EQE of 23.8% at 33 mA cm-2 and retain EQEs more than 10% at high current densities of up to 1,000 mA cm-2. In pulsed operation, they retain EQE of 16% at an ultrahigh current density of 4,000 mA cm-2, along with a high radiance of more than 3,200 W s-1 m-2. Notably, an operational half-lifetime of 32 h at an initial radiance of 107 W s-1 m-2 has been achieved, representing the best stability for perovskite LEDs having EQEs exceeding 20% at high brightness levels. The demonstration of efficient and stable perovskite LEDs at high brightness is an important step towards commercialization and opens up new opportunities beyond conventional LED technologies, such as perovskite electrically pumped lasers.

16.
Retina ; 43(4): 659-669, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36729610

ABSTRACT

PURPOSE: To determine the prognostic value of outer retinal tubulation (ORT) in the eyes of a Chinese cohort with Bietti crystalline dystrophy (BCD). METHODS: This retrospective, multicenter cohort study enrolled 42 patients with clinically and genetically diagnosed BCD. Eighty eyes with good-quality images of spectral domain optical coherence tomography were included. Demographic details and clinical data were collected. The characteristics of ORT, including prevalence, location, and morphologic characteristics were analyzed. RESULTS: Forty-two patients with BCD harbored potentially CYP4V2 disease-causing mutations. The mutation spectrum comprised 17 unique variants, 9 of which were novel. Fifty-two of these 80 eyes demonstrated evidence of ORT. The incidence of ORT is significantly higher in Stage 2 than other stages ( P < 0.001). ORT was mainly bilateral and located at the margin of the atrophic area of retinal pigment epithelium (RPE), and dynamically changed with the progressive RPE atrophy. The process of RPE atrophy was slower in eyes with ORT ( P = 0.017), with significantly longer intact RPE width in Stage 3 ( P = 0.024). Eyes with ORT had slower vision loss than eyes without ORT ( P = 0.044). CONCLUSION: ORT may be a sign of the onset of RPE atrophy in early-stage BCD and may suggest less risk of rapid progression in late-stage BCD.


Subject(s)
Retinal Degeneration , Retinal Diseases , Humans , Retinal Pigment Epithelium/pathology , Retrospective Studies , Cohort Studies , Retinal Diseases/diagnosis , Retinal Diseases/genetics , Retinal Diseases/pathology , Retinal Degeneration/pathology , Tomography, Optical Coherence , Atrophy/pathology
17.
RSC Adv ; 13(2): 1333-1338, 2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36686900

ABSTRACT

Novel porous gold nanospheres are prepared by calcination of the gold-urea complexes. The enhanced Raman spectra of ethanol catalyzed by different doses of porous gold nanospheres are measured with a 532 nm laser as the excitation source, and an enhanced charge coupled device served in spectral detection and microscopic imaging. The electrochemical experiments show that the catalytic oxidation products of ethanol with porous gold nanoparticles are acetaldehyde, acetic acid, and water, which further proved that the porous gold nanoparticles can activate the -CH2 of ethanol.

18.
Int Immunopharmacol ; 115: 109691, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36638665

ABSTRACT

Age-related macular degeneration (AMD) is characterized by progressive accumulation of drusen deposits and retinal pigment epithelium (RPE) disorders. As the main component of drusen, amyloid ß (Aß) plays a critical role in activating microglia and causing neuroinflammation in AMD pathogenesis. However, the role of activated microglia-mediated neuroinflammation in RPE senescence remains unclear. Recent evidence indicates that inflammatory microglia are glycolytic and driven by an increase in 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), an enzyme described as the master regulator of glycolysis. In this study, we mimicked the retinal inflammatory microenvironment of AMD by intravitreal injection of oligomeric Aß1-40 in mice, which resulted in activation of microglia and upregulation of PFKFB3. RNA sequencing was performed to evaluate PFKFB3-mediated microglial activation. The effect of microglial activation on RPE disorders was assessed using gene knockout experiments, immunofluorescence, CCK-8 assay, and ß-galactosidase staining. Intravitreal Aß1-40 injection induced proinflammatory activation of microglia by upregulating PFKFB3 and resulted in RPE disorders, which was verified in heterozygous Pfkfb3-deficient mice (Pfkfb3+/-) mice, Aß1-40-activated microglial cell line BV2, and co-culture of RPE cell line ARPE19. RNA sequencing revealed that PFKFB3 mainly affected innate immune processes during Aß1-40-induced retinal inflammation. PFKFB3 knockdown inhibited RPE disorders and rescued the retinal structure and function. Overall, the modulation of PFKFB3-mediated microglial glycolysis and activation is a promising strategy for AMD treatment.


Subject(s)
Macular Degeneration , Retinal Pigment Epithelium , Mice , Animals , Microglia , Amyloid beta-Peptides/metabolism , Neuroinflammatory Diseases , Retina/pathology , Macular Degeneration/genetics
19.
Nature ; 614(7946): 95-101, 2023 02.
Article in English | MEDLINE | ID: mdl-36631612

ABSTRACT

Carbon structures with covalent bonds connecting C60 molecules have been reported1-3, but their production methods typically result in very small amounts of sample, which restrict the detailed characterization and exploration necessary for potential applications. We report the gram-scale preparation of a new type of carbon, long-range ordered porous carbon (LOPC), from C60 powder catalysed by α-Li3N at ambient pressure. LOPC consists of connected broken C60 cages that maintain long-range periodicity, and has been characterized by X-ray diffraction, Raman spectroscopy, magic-angle spinning solid-state nuclear magnetic resonance spectroscopy, aberration-corrected transmission electron microscopy and neutron scattering. Numerical simulations based on a neural network show that LOPC is a metastable structure produced during the transformation from fullerene-type to graphene-type carbons. At a lower temperature, shorter annealing time or by using less α-Li3N, a well-known polymerized C60 crystal forms owing to the electron transfer from α-Li3N to C60. The carbon K-edge near-edge X-ray absorption fine structure shows a higher degree of delocalization of electrons in LOPC than in C60(s). The electrical conductivity is 1.17 × 10-2 S cm-1 at room temperature, and conduction at T < 30 K appears to result from a combination of metallic-like transport over short distances punctuated by carrier hopping. The preparation of LOPC enables the discovery of other crystalline carbons starting from C60(s).

20.
Eye (Lond) ; 37(10): 2048-2054, 2023 07.
Article in English | MEDLINE | ID: mdl-36434285

ABSTRACT

PURPOSE: To investigate the growth of nonexudative macular neovascularization (MNV) in age-related macular degeneration (AMD) using swept-source optical coherence tomography angiography (SS-OCTA). METHODS: Patients with treatment-naïve nonexudative AMD in one eye and exudative AMD in the fellow eye who underwent SS-OCTA imaging for at least 12 months were retrospectively reviewed. The MNV area measurement was quantified in eyes with treatment-naïve nonexudative MNV using ImageJ for analysing the correlation between MNV growth and the onset of exudation, as well as evaluating the consistency of the MNV growth rate during the subclinical and exudative stages. Kaplan-Meier survival analysis and logistic regression analyses were used. RESULTS: In total, 45 eyes with treatment-naïve nonexudative AMD from 45 patients were enrolled. Treatment-naïve nonexudative MNV was identified in 21 eyes (46.67%) at baseline. The development of exudative findings was noted in eight eyes (17.78%), including six eyes with previously noted nonexudative MNV. Eyes with growing MNV (increase in area ≥50% within 12 months) had an increased risk of exudation and developed exudation earlier than eyes with stable MNV (13.60 [6.43-20.77] months versus 31.11 [26.61-35.62] months, P < 0.0001, Log-rank test). Consistent growth pattern of MNV lesions was further identified in eyes with growing MNV during anti-VEGF treatment. CONCLUSION: SS-OCTA allows to qualitatively and quantitatively evaluate nonexudative MNV in AMD patients. Growing MNV involved higher probabilities and a faster onset of exudation compared to stable MNV. Identifying the growth of MNV on OCTA might be helpful for establishing treatment strategies and follow-up planning.


Subject(s)
Choroidal Neovascularization , Geographic Atrophy , Macular Degeneration , Wet Macular Degeneration , Humans , Fluorescein Angiography/methods , Retrospective Studies , Macular Degeneration/drug therapy , Choroidal Neovascularization/diagnosis , Choroidal Neovascularization/drug therapy , Tomography, Optical Coherence/methods , Wet Macular Degeneration/diagnosis , Wet Macular Degeneration/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...