Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
1.
J Colloid Interface Sci ; 668: 666-677, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38703514

ABSTRACT

Silicon is considered as the next-generation anode material for lithium-ion batteries due to its high theoretical specific capacity and abundant crustal abundance. However, its poor electrical conductivity results in slow diffusion of lithium ions during battery operation. Simultaneously, the alloying process of silicon undergoes a 300 % volume change, leading to structural fractures in silicon during the cycling process. As a result, it loses contact with the current collector, continuously exposing active sites, and forming a sustained solid electrolyte interface (SEI) membrane. This paper presents the design of a fluorine-ion-regulated yolk-shell carbon-silicon anode material, highlighting the following advantages: (a) Alleviating volume changes through the design of a yolk-shell structure, thereby maintaining material structural integrity during cycling. (b) Carbon shell prevents silicon from coming into contact with the electrolyte, simultaneously improving silicon's electrical conductivity and increasing ion/electron conductivity. (c) Utilizing fluorine-ion interface modification to obtain an SEI membrane rich in fluorine components (such as LiF), thereby enhancing its long cycling performance. The F-Si@Void@C exhibits outstanding electrochemical performance, with a reversible capacity of 1166 mAh/g after 900 cycles at a current density of 0.5 A/g.

2.
Front Pharmacol ; 15: 1370900, 2024.
Article in English | MEDLINE | ID: mdl-38628648

ABSTRACT

Osteoporosis characterized by decreased bone density and mass, is a systemic bone disease with the destruction of microstructure and increase in fragility. Osteoporosis is attributed to multiple causes, including aging, inflammation, diabetes mellitus, and other factors induced by the adverse effects of medications. Without treatment, osteoporosis will further progress and bring great trouble to human life. Due to the various causes, the treatment of osteoporosis is mainly aimed at improving bone metabolism, inhibiting bone resorption, and promoting bone formation. Although the currently approved drugs can reduce the risk of fragility fractures in individuals, a single drug has limitations in terms of safety and effectiveness. By contrast, traditional Chinese medicine (TCM), a characteristic discipline in China, including syndrome differentiation, Chinese medicine prescription, and active ingredients, shows unique advantages in the treatment of osteoporosis and has received attention all over the world. Therefore, this review summarized the pathogenic factors, pathogenesis, therapy limitations, and advantages of TCM, aiming at providing new ideas for the prevention and treatment of OP.

3.
J Pharm Anal ; 14(5): 100927, 2024 May.
Article in English | MEDLINE | ID: mdl-38646453

ABSTRACT

Cornus officinalis, a medicinal and edible plant known for its liver-nourishing properties, has shown promise in inhibiting the activation of hepatic stellate cells (HSCs), crucial indicators of hepatic fibrosis, especially when processed by high pressure wine steaming (HPWS). Herein, this study aims to investigate the regulatory effects of cornus officinalis, both in its raw and HPWS forms, on inflammation and apoptosis in liver fibrosis and their underlying mechanisms. In vivo liver fibrosis models were established by subcutaneous injection of CCl4, while in vitro HSCs were exposed to transforming growth factor-ß (TGF-ß). These findings demonstrated that cornus officinalis with HPWS conspicuously ameliorated histopathological injury, reduced the release of proinflammatory factors, and decreased collagen deposition in CCl4-induced rats compared to its raw form. Utilizing ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometer (UHPLC-QTOF-MS) combined with network analysis, we identified that the pharmacological effects of the changed components of cornus officinalis before and after HPWS, primarily centered on the adenosine phosphate (AMP)-activated protein kinase (AMPK) pathway. Of note, cornus officinalis activated AMPK and Sirtuin 3 (SIRT3), promoting the apoptosis of activated HSCs through the caspase cascade by regulating caspase3, caspase6 and caspase9. siRNA experiments showed that cornus officinalis could regulate AMPK activity and its mediated-apoptosis through SIRT3. In conclusion, cornus officinalis exhibited the ability to reduce inflammation and apoptosis, with the SIRT3-AMPK signaling pathway identified as a potential mechanism underlying the synergistic effect of cornus officinalis with HPWS on anti-liver fibrosis.

4.
Pharmacol Ther ; 257: 108639, 2024 May.
Article in English | MEDLINE | ID: mdl-38561088

ABSTRACT

Sirtuin3 (SIRT3) is a nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylase located in the mitochondria, which mainly regulates the acetylation of mitochondrial proteins. In addition, SIRT3 is involved in critical biological processes, including oxidative stress, inflammation, DNA damage, and apoptosis, all of which are closely related to the progression of liver disease. Liver fibrosis characterized by the deposition of extracellular matrix is a result of long termed or repeated liver damage, frequently accompanied by damaged hepatocytes, the recruitment of inflammatory cells, and the activation of hepatic stellate cells. Based on the functions and pharmacology of SIRT3, we will review its roles in liver fibrosis from three aspects: First, the main functions and pharmacological effects of SIRT3 were investigated based on its structure. Second, the roles of SIRT3 in major cells in the liver were summarized to reveal its mechanism in developing liver fibrosis. Last, drugs that regulate SIRT3 to prevent and treat liver fibrosis were discussed. In conclusion, exploring the pharmacological effects of SIRT3, especially in the liver, may be a potential strategy for treating liver fibrosis.


Subject(s)
Liver Diseases , Sirtuin 3 , Humans , Sirtuin 3/genetics , Sirtuin 3/metabolism , Mitochondrial Proteins , Oxidative Stress/physiology , Liver Cirrhosis/drug therapy
5.
Physiol Plant ; 176(2): e14249, 2024.
Article in English | MEDLINE | ID: mdl-38472657

ABSTRACT

The potential of fulvic acid (FA) to improve plant growth has been acknowledged, but its effect on plant growth and nutrient uptake under nutrient stress remains unclear. This study investigated the effects of different FA application rates on maize growth and nitrogen utilization under low nitrogen stress. The results showed that under low nitrogen stress, FA significantly stimulated maize growth, particularly root development, biomass, and nitrogen content. The enhanced activity levels of key enzymes in nitrogen metabolism were observed, along with differential gene expression in maize, which enriched nitrogen metabolism, amino acid metabolism and plant hormone metabolism. The application of FA regulated the hormones' level, reduced abscisic acid content in leaves and Me-JA content in roots, and increased auxin and zeatin ribose content in leaves. This study concludes that, by promoting root development, nitrogen metabolism, and hormone metabolism, an appropriate concentration of FA can enhance plant tolerance to low nitrogen conditions and improve nitrogen use efficiency.


Subject(s)
Benzopyrans , Nitrogen , Zea mays , Nitrogen/metabolism , Zea mays/metabolism , Plant Growth Regulators/metabolism , Abscisic Acid/metabolism , Plant Roots/metabolism
6.
Front Plant Sci ; 15: 1326917, 2024.
Article in English | MEDLINE | ID: mdl-38516657

ABSTRACT

Introduction: Endophytes play a significant role in regulating plant root development and facilitating nutrient solubilization and transportation. This association could improve plant growth. The present study has uncovered a distinct phenotype, which we refer to as "white root", arising from the intricate interactions between endophytic fungi and bacteria with the roots in a sugarcane and bamboo fungus (Dictyophora indusiata) intercropping system. Methods: We investigated the mechanisms underlying the formation of this "white root" phenotype and its impact on sugarcane yield and metabolism by metabarcoding and metabolome analysis. Results and Discussion: Initial analysis revealed that intercropping with D. indusiata increased sugarcane yield by enhancing the number of viable tillers compared with bagasse and no input control. Metabarcoding based on second-generation and third-generation sequencing indicated that D. indusiate and Bacillus aryabhattai dominates the fungal and bacterial composition in the "white root" phenotype of sugarcane root. The coexistence of D. indusiata and B. aryabhattai as endophytes induced plant growth-promoting metabolites in the sugarcane root system, such as lysoPC 18:1 and dihydrobenzofuran, probably contributing to increased sugarcane yield. Furthermore, the association also enhanced the metabolism of compounds, such as naringenin-7-O-glucoside (Prunin), naringenin-7-O-neohesperidoside (Naringin)*, hesperetin-7-O-neohesperidoside (Neohesperidin), epicatechin, and aromadendrin (Dihydrokaempferol), involved in flavonoid metabolism during the formation of the endophytic phenotype in the sugarcane root system. These observations suggest that the "white root" phenotype promotes sugarcane growth by activating flavonoid metabolism. This study reports an interesting phenomenon where D. indusiata, coordinate with the specific bacteria invade, forms a "white root" phenotype with sugarcane root. The study also provides new insights into using D. indusiata as a soil inoculant for promoting sugarcane growth and proposes a new approach for improve sugarcane cultivation.

7.
Angew Chem Int Ed Engl ; 63(19): e202400122, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38494445

ABSTRACT

Electrochemical acetylene reduction (EAR) employing Cu catalysts represents an environmentally friendly and cost-effective method for ethylene production and purification. However, Cu-based catalysts encounter product selectivity issues stemming from carbon-carbon coupling and other side reactions. We explored the use of secondary metals to modify Cu-based catalysts and identified Cd decoration as particular effective. Cd decoration demonstrated a high ethylene Faradaic efficiency (FE) of 98.38 % with well-inhibited carbon-carbon coupling reactions (0.06 % for butadiene FE at -0.5 V versus reversible hydrogen electrode) in a 5 vol % acetylene gas feed. Notably, ethylene selectivity of 99.99 % was achieved in the crude ethylene feed during prolonged stability tests. Theoretical calculations revealed that Cd metal accelerates the water dissociation on neighboring Cu surfaces allowing more H* to participate in the acetylene semi-hydrogenation, while increasing the energy barrier for carbon-carbon coupling, thereby contributing to a high ethylene semi-hydrogenation efficiency and significant inhibition of carbon-carbon coupling. This study provides a paradigm for a deeper understanding of secondary metals in regulating the product selectivity of EAR electrocatalysts.

8.
Plants (Basel) ; 13(3)2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38337981

ABSTRACT

Sugarcane is the most important sugar crop and one of the leading energy-producing crops in the world. Ratoon stunting disease (RSD), caused by the bacterium Leifsonia xyli subsp. xyli, poses a huge threat to ratoon crops, causing a significant yield loss in sugarcane. Breeding resistant varieties is considered the most effective and fundamental approach to control RSD in sugarcane. The exploration of resistance genes forms the foundation for breeding resistant varieties through molecular technology. The pglA gene is a pathogenicity gene in L. xyli subsp. xyli, encoding an endopolygalacturonase. In this study, the pglA gene from L. xyli subsp. xyli and related microorganisms was analyzed. Then, a non-toxic, non-autoactivating pglA bait was successfully expressed in yeast cells. Simultaneously the yeast two-hybrid library was generated using RNA from the L. xyli subsp. xyli-infected sugarcane. Screening the library with the pglA bait uncovered proteins that interacted with pglA, primarily associated with ABA pathways and the plant immune system, suggesting that sugarcane employs these pathways to respond to L. xyli subsp. xyli, triggering pathogenicity or resistance. The expression of genes encoding these proteins was also investigated in L. xyli subsp. xyli-infected sugarcane, suggesting multiple layers of regulatory mechanisms in the interaction between sugarcane and L. xyli subsp. xyli. This work promotes the understanding of plant-pathogen interaction and provides target proteins/genes for molecular breeding to improve sugarcane resistance to L. xyli subsp. xyli.

9.
Inorg Chem ; 62(45): 18331-18337, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37910803

ABSTRACT

Here, two isomeric ionic zero-dimensional indium bromide crystals of α (1)/ß (2)-[OPy][InBr4(Phen)] (OPy = N-octylpyridinium; Phen = 1,10-phenanthroline) have been isolated simply by changing the cooling conditions in solvothermal syntheses. Structural comparisons indicate their different supramolecular interactions, which can be confirmed by Hirshfeld surface analyses. The crystal 2 has additional hydrogen bonds and π-π interactions; as a result, the more compact stacking of 2 could result in a 10-fold higher photoluminescence (PL) quantum yield (PLQY) than that of 1. Density functional theory calculations confirm the electron transition from the inorganic moiety to the organic ligand, which provides a further understanding of the optical process. This work provides a new idea for designing PL indium-based halides by understanding the structure-PL relationship.

10.
BMC Plant Biol ; 23(1): 573, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37978424

ABSTRACT

BACKGROUND: Drought limits crop growth and is an important issue in commercial sugarcane (Saccharum officinarum) production. Drought tolerance in sugarcane induced by endophytic nitrogen-fixing bacteria is a complex biological process that ranges from altered gene expression and cellular metabolism to changes in growth and productivity. RESULTS: In this study, changes in physiological features and transcriptome related to drought tolerance in sugarcane conferred by the Burkholderia endophytic nitrogen-fixing bacterial strain GXS16 were investigated. Sugarcane samples inoculated with GXS16 exhibited significantly higher leaf relative water content than those without GXS16 inoculation during the drought stages. Sugarcane treated with GXS16 had lower levels of H2O2 and higher levels of abscisic acid than sugarcane not treated with GXS16 in the non-watering groups. Transcriptomic analysis of sugarcane roots identified multiple differentially expressed genes between adjacent stages under different treatments. Moreover, both trend and weighted correlation network analyses revealed that carotenoid biosynthesis, terpenoid backbone biosynthesis, starch and sucrose metabolism, and plant hormone signal transduction strongly contributed to the drought-tolerant phenotype of sugarcane induced by GXS16 treatment. Accordingly, a gene regulatory network including four differentially regulated genes from carotenoid biosynthesis (crtB, crtZ, ZEP and CYP707A) and three genes from terpenoid backbone biosynthesis (dxs, dxr, and PCME) was constructed. CONCLUSIONS: This study provides insights into the molecular mechanisms underlying the application of GXS16 treatment to enhance drought tolerance in sugarcane, which will lay the foundation for crop development and improve productivity.


Subject(s)
Nitrogen-Fixing Bacteria , Saccharum , Saccharum/metabolism , Drought Resistance , Nitrogen-Fixing Bacteria/metabolism , Hydrogen Peroxide/metabolism , Abscisic Acid/metabolism , Droughts , Water/metabolism , Gene Expression Regulation, Plant
11.
BMC Plant Biol ; 23(1): 601, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38030995

ABSTRACT

BACKGROUND: Lodging seriously affects sugarcane stem growth and sugar accumulation, reduces sugarcane yield and sucrose content, and impedes mechanization. However, the molecular mechanisms underlying sugarcane lodging tolerance remain unclear. In this study, comprehensive transcriptomic and proteomic analyses were performed to explore the differential genetic regulatory mechanisms between upright (GT42) and lodged (GF98-296) sugarcane varieties. RESULTS: The stain test showed that GT42 had more lignin and vascular bundles in the stem than GF98-296. The gene expression analysis revealed that the genes that were differentially expressed between the two varieties were mainly involved in the phenylpropanoid pathway at the growth stage. The protein expression analysis indicated that the proteins that were differentially expressed between the two varieties were related to the synthesis of secondary metabolites, the process of endocytosis, and the formation of aminoacyl-tRNA. Time-series analysis revealed variations in differential gene expression patterns between the two varieties, whereas significant protein expression trends in the two varieties were largely consistent, except for one profile. The expression of CYP84A, 4CL, and CAD from the key phenylpropanoid biosynthetic pathway was enhanced in GT42 at stage 2 but suppressed in GF98-296 at the growth stage. Furthermore, the expression of SDT1 in the nicotinate and nicotinamide metabolism was enhanced in GT42 cells but suppressed in GF98-296 cells at the growth stage. CONCLUSION: Our findings provide reference data for mining lodging tolerance-related genes that are expected to facilitate the selective breeding of sugarcane varieties with excellent lodging tolerance.


Subject(s)
Saccharum , Transcriptome , Saccharum/metabolism , Proteomics , Gene Expression Profiling , Edible Grain/genetics , Gene Expression Regulation, Plant
12.
Aging Dis ; 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37815898

ABSTRACT

The farnesoid X receptor (FXR), a ligand-activated transcription factor, plays a crucial role in regulating bile acid metabolism within the enterohepatic circulation. Beyond its involvement in metabolic disorders and immune imbalances affecting various tissues, FXR is implicated in microbiota modulation, gut- to-brain communication, and liver disease. The liver, as a pivotal metabolic and detoxification organ, is susceptible to damage from factors such as alcohol, viruses, drugs, and high-fat diets. Chronic or recurrent liver injury can culminate in liver fibrosis, which, if left untreated, may progress to cirrhosis and even liver cancer, posing significant health risks. However, therapeutic options for liver fibrosis remain limited in terms of FDA- approved drugs. Recent insights into the structure of FXR, coupled with animal and clinical investigations, have shed light on its potential pharmacological role in hepatic fibrosis. Progress has been achieved in both fundamental research and clinical applications. This review critically examines recent advancements in FXR research, highlighting challenges and potential mechanisms underlying its role in liver fibrosis treatment.

13.
Adv Mater ; 35(42): e2303818, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37433306

ABSTRACT

Electrochemical acetylene reduction (EAR) is a promising strategy for removing acetylene from ethylene-rich gas streams. However, suppressing the undesirable hydrogen evolution is vital for practical applications in acetylene-insufficient conditions. Herein, Cu single atoms are immobilized on anatase TiO2 nanoplates (Cu-SA/TiO2 ) for electrochemical acetylene reduction, achieving an ethylene selectivity of ≈97% with a 5 vol% acetylene gas feed (Ar balance). At the optimal Cu-single-atom loading, Cu-SA/TiO2 is able to effectively suppress HER and ethylene over-hydrogenation even when using dilute acetylene (0.5 vol%) or ethylene-rich gas feeds, delivering a 99.8% acetylene conversion, providing a turnover frequency of 8.9 × 10-2  s-1 , which is superior to other EAR catalysts reported to date. Theoretical calculations show that the Cu single atoms and the TiO2 support acted cooperatively to promote charge transfer to adsorbed acetylene molecules, whilst also inhibiting hydrogen generation in alkali environments, thus allowing selective ethylene production with negligible hydrogen evolution at low acetylene concentrations.

14.
Front Pharmacol ; 14: 1122969, 2023.
Article in English | MEDLINE | ID: mdl-37324475

ABSTRACT

Background and ethnopharmacological relevance: The morbidity and mortality of cardiovascular diseases (CVDs) are among the highest of all diseases, necessitating the search for effective drugs and the improvement of prognosis for CVD patients. Paeoniflorin (5beta-[(Benzoyloxy)methyl] tetrahydro-5-hydroxy-2-methyl-2,5-methano-1H-3,4-dioxacyclobuta [cd] pentalen-1alpha (2H)-yl-beta-D-glucopyranoside, C23H28O11) is mostly derived from the plants of the family Paeoniaceae (a single genus family) and is known to possess multiple pharmacological properties in the treatment of CVDs, making it a promising agent for the protection of the cardiovascular system. Aim of the study: This review evaluates the pharmacological effects and potential mechanisms of paeoniflorin in the treatment of CVDs, with the aim of advancing its further development and application. Methods: Various relevant literatures were searched in PubMed, ScienceDirect, Google Scholar and Web of Science. All eligible studies were analyzed and summarized in this review. Results: Paeoniflorin is a natural drug with great potential for development, which can protect the cardiovascular system by regulating glucose and lipid metabolism, exerting anti-inflammatory, anti-oxidative stress, and anti-arteriosclerotic activities, improving cardiac function, and inhibiting cardiac remodeling. However, paeoniflorin was found to have low bioavailability, and its toxicology and safety must be further studied and analyzed, and clinical studies related to it must be carried out. Conclusion: Before paeoniflorin can be used as an effective therapeutic drug for CVDs, further in-depth experimental research, clinical trials, and structural modifications or development of new preparations are required.

15.
Front Microbiol ; 14: 1193990, 2023.
Article in English | MEDLINE | ID: mdl-37303785

ABSTRACT

Introduction: Greater amounts of fertilizer are applied every year to meet the growing demand for food. Sugarcane is one of the important food sources for human beings. Methods: Here, we evaluated the effects of a sugarcane-Dictyophora indusiata (DI) intercropping system on soil health by conducting an experiment with three different treatments: (1) bagasse application (BAS process), (2) bagasse + DI (DIS process), and (3) the control (CK). We then analyzed soil chemistry, the diversity of soil bacteria and fungi, and the composition of metabolites to clarify the mechanism underlying the effects of this intercropping system on soil properties. Results and discussion: Soil chemistry analyses revealed that the content of several soil nutrients such as nitrogen (N) and phosphorus (P) was higher in the BAS process than in the CK. In the DIS process, a large amount of soil P was consumed by DI. At the same time, the urease activity was inhibited, thus slowing down the loss of soil in the DI process, while the activity of other enzymes such as ß-glucosidase and laccase was increased. It was also noticed that the content of lanthanum and calcium was higher in the BAS process than in the other treatments, and DI did not significantly alter the concentrations of these soil metal ions. Bacterial diversity was higher in the BAS process than in the other treatments, and fungal diversity was lower in the DIS process than in the other treatments. The soil metabolome analysis revealed that the abundance of carbohydrate metabolites was significantly lower in the BAS process than in the CK and the DIS process. The abundance of D(+)-talose was correlated with the content of soil nutrients. Path analysis revealed that the content of soil nutrients in the DIS process was mainly affected by fungi, bacteria, the soil metabolome, and soil enzyme activity. Our findings indicate that the sugarcane-DIS intercropping system can enhance soil health.

16.
J Labelled Comp Radiopharm ; 66(10): 321-331, 2023 08.
Article in English | MEDLINE | ID: mdl-37337654

ABSTRACT

The direct electrophilic deuteration of the aromatic moiety in aromatic and aralkyl amines is reported. The acid-catalyzed deuteration is facilitated by deuterated trifluoromethanesulfonic acid, [D]triflic acid, CF3 SO3 D, TfOD, which acts as both the reaction solvent and the source of the deuterium label. The mild conditions enable room temperature hydrogen/deuterium exchange for most of the para-substituted aromatic amine derivatives studied. In addition, short reaction times and a high degree of aromatic deuteration are achieved and isolation of the product is simple. The optical activity of the chiral aralkyl amines studied was preserved.


Subject(s)
Amines , Hydrogen , Deuterium , Deuterium Exchange Measurement
17.
BMC Cardiovasc Disord ; 23(1): 227, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37127585

ABSTRACT

BACKGROUND: Familial hypercholesterolemia (FH) leads to high plasma low-density lipoprotein cholesterol (LDL-C) levels and early cardiovascular morbidity and mortality. We treated a pair of siblings with FH. The cardiovascular manifestations in the proband were more severe than those in his elder sister, although they had almost similar LDL-C levels, ages, and lifestyles. Herein, we report the cases of this family to explore the possible causes of clinical phenotypic differences within the same genetic background. CASE PRESENTATION: We treated a 27-year-old male patient and his 30-year-old sister, both with FH. The coronary angiogram in the male patient revealed 80, 70, and 100% stenosis of the initial, distal right coronary artery branch, and left anterior descending branch, respectively, whereas his sister had almost no coronary stenosis. We treated them accordingly and performed family screening. We found that the LDL-C/particle discordance of the proband is much greater than that of his elder sister. In addition, the average size of LDL-C particle in the proband was smaller than that in his sister. CONCLUSIONS: Patients with FH have a much higher risk of premature atherosclerotic cardiovascular disease, but the clinical manifestations are heterogeneous. The smaller LDL particle size may be the underlying cause for different clinical outcomes in this pair of FH cases and be a potential novel indicator for predicting the prognosis of FH.


Subject(s)
Hyperlipoproteinemia Type II , Siblings , Male , Humans , Cholesterol, LDL , Constriction, Pathologic , Phenotype
18.
Molecules ; 28(9)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37175182

ABSTRACT

The use of radiolabeled glucose for PET imaging resulted in the most commonly used tracer in the clinic, 2-deoxy-2-[18F]fluoroglucose (FDG). More recently, other radiolabeled sugars have been reported for various applications, including imaging tumors and infections. Therefore, in this study, we developed a series of fluorine-18-labeled L-rhamnose derivatives as potential PET tracers of various fungal and bacterial strains. Acetyl-protected triflate precursors of rhamnose were prepared and radiolabeled with fluorine-18 followed by hydrolysis to produce L-deoxy [18F]fluororhamnose. The overall radiochemical yield was 7-27% in a 90 min synthesis time with a radiochemical purity of 95%. In vivo biodistribution of the ligands using PET imaging showed that 2-deoxy-2-[18F]fluoro-L-rhamnose is stable for at least up to 60 min in mice and eliminated via renal clearance. The tracer also exhibited minimal tissue or skeletal uptake in healthy mice resulting in a low background signal.


Subject(s)
Fluorine Radioisotopes , Rhamnose , Mice , Animals , Tissue Distribution , Cell Line, Tumor , Positron-Emission Tomography/methods , Radiopharmaceuticals
19.
J Ethnopharmacol ; 309: 116304, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-36870461

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Polydatin is a bioactive ingredient extracted from the roots of the Reynoutria japonica Houtt, and it is a natural precursor of resveratrol. Polydatin is a useful inhibitor of inflammation and acts as a regulator of lipid metabolism. However, the specific mechanisms of action of polydatin in atherosclerosis (AS) remains poorly explained. AIM OF THE STUDY: The aim of this study was to assess the efficacy of polydatin on inflammation induced by the inflammatory cell death and autophagy in AS. MATERIALS AND METHODS: Apolipoprotein E knockout (ApoE-/-) mice were fed with a high-fat diet (HFD) for 12 weeks to induce the formation of atherosclerotic lesions. The ApoE-/- mice were then randomly divided into the following six groups: (1) model group, (2) simvastatin group, (3) MCC950 group, (4) low dose polydatin group (Polydatin-L), (5) medium dose polydatin group (Polydatin-M), (6) and high dose polydatin group (Polydatin-H). The C57BL/6J mice were treated as controls and administered a standard chow diet. All mice were gavaged once daily for 8 weeks. The distribution of aortic plaques was observed by En Oil-red-O staining and hematoxylin and eosin staining (H&E). Oil-red-O staining was used to observe lipid content in the aortic sinus plaque; Masson trichrome staining was used to gauge collagen content in the plaque; and immunohistochemistry was used to evaluate smooth muscle actin (α-SMA) and CD68 macrophages marker expression levels in the plaque, which were used to assess the vulnerability index of the plaque. The lipid levels were measured using an enzymatic assay with an automatic biochemical analyzer. The level of inflammation was detected by enzyme-linked-immunosorbent assay (ELISA). Autophagosomes were detected by transmission electron microscopy (TEM). Pyroptosis was detected by terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling (TUNEL)/caspase-1 and other proteins related to the expression levels of autophagy and pyroptosis were detected by Western blot analysis. RESULTS: Nucleotide oligomerization (NOD)-like receptor (NLR) family pyrin domain-containing protein 3 (NLRP3) inflammasome activation leads to pyroptosis, including the cleavage of caspase-1, interleukin (IL)-1ß and IL-18 production, and the co-expression of TUNEL/caspase-1-all of these are inhibited by polydatin, whose inhibitory effect is similar to that of MCC950, a specific inhibitor of NLRP3. Further, polydatin decreased the protein expression of NLRP3 and the phosphorylated mammalian target of rapamycin (p-mTOR), and increased the number of autophagosomes as well as the increased the cytoplasmic microtubule-associated protein light chain 3 (LC3)/autophagosome membrane-type LC3 ratio. Moreover, the protein expression levels of p62 decreased, suggesting that polydatin can increase autophagy. CONCLUSIONS: Polydatin can inhibit the activation of the NLRP3 inflammasome and cleavage of caspase-1, thereby inhibiting pyroptosis and secretion of inflammatory cytokines, and promoting autophagy through NLRP3/mTOR pathway in AS.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Mice , Animals , Inflammasomes/metabolism , Pyroptosis , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Mice, Inbred C57BL , Atherosclerosis/drug therapy , Atherosclerosis/prevention & control , Atherosclerosis/metabolism , Autophagy , TOR Serine-Threonine Kinases , Inflammation/drug therapy , Caspase 1/metabolism , Apolipoproteins E/genetics , Lipids/pharmacology , Mammals/metabolism
20.
Molecules ; 28(5)2023 Mar 04.
Article in English | MEDLINE | ID: mdl-36903625

ABSTRACT

Bismuth-halide-based inorganic-organic hybrid materials (Bi-IOHMs) are desirable in luminescence-related applications due to their advantages such as low toxicity and chemical stability. Herein, two Bi-IOHMs of [Bpy][BiCl4(Phen)] (1, Bpy = N-butylpyridinium, Phen = 1,10-phenanthroline) and [PP14][BiCl4(Phen)]·0.25H2O (2, PP14 = N-butyl-N-methylpiperidinium), containing different ionic liquid cations and same anionic units, have been synthesized and characterized. Single-crystal X-ray diffraction reveals that compounds 1 and 2 crystallize in the monoclinic space group of P21/c and P21, respectively. They both possess zero-dimensional ionic structures and exhibit phosphorescence at room temperature upon excitation of UV light (375 nm for 1, 390 nm for 2), with microsecond lifetime (24.13 µs for 1 and 95.37 µs for 2). Hirshfeld surface analysis has been utilized to visually exhibit the different packing motifs and intermolecular interactions in 1 and 2. The variation in ionic liquids makes compound 2 have a more rigid supramolecular structure than 1, resulting in a significant enhancement in photoluminescence quantum yield (PLQY), that is, 0.68% for 1 and 33.24% for 2. In addition, the ratio of the emission intensities for compounds 1 and 2 shows a correlation with temperature. This work provides new insight into luminescence enhancement and temperature sensing applications involving Bi-IOHMs.

SELECTION OF CITATIONS
SEARCH DETAIL
...