Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
Article in English | MEDLINE | ID: mdl-39169601

ABSTRACT

BACKGROUND AND AIMS: Tick-borne encephalitis (TBE) is a serious and acute central nervous system infection caused by the tick-borne encephalitis virus (TBEV). In recent years, TBE has emerged as a growing public health threat, with cases reported across Europe, the Russian Far East, Japan and China. This study aims to assess the prevalence of TBEV infection and examine behaviours associated with an increased risk of infection among individuals who visited the Heilongjiang Red Cross Sengong General Hospital due to tick bites from 2020 to 2023. METHODS AND RESULTS: We collected blood samples and administered survey questionnaires from tick-bitten people. A total of 457 samples were screened using Nested PCR, and the detected TBEV prevalence rate was 29.54% (135/457). The symptoms of redness and swelling at the site of tick bite (42.57%), fever (28.71%) and headache (10.89%) were identified in the TBEV-positive individuals when they visited the hospital by the physician. Phylogenetic analysis of the partial E gene of TBEV revealed that the predominant strains in the region are highly virulent Far Eastern subtype. However, they do not cluster with the three established evolutionary clades of the Far Eastern type. Questionnaires data analysis identified age and first tick bite as important factors associated with TBEV infection. CONCLUSIONS: This study provides basic information on the epidemiology of TBEV in Heilongjiang Province in recent years and identifies that the most related risk factor of infecting TBEV is tick exposure. Further research is needed to develop effective prevention and control measures.

2.
Poult Sci ; 103(10): 104049, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39094496

ABSTRACT

Gut health of broiler chickens is essential for production performance. The present study aimed to evaluate the impact of dietary supplementation with potassium diformate (KDF) on growth performance and intestinal health in broiler chickens. A total of 180 Arbor Acres (AA) broiler chickens were randomly allocated into 3 treatments, with 6 replicates, containing 10 chicks in each replicate. The treatment groups were: control group (CON) was fed a basal diet; KDF-4 groups fed the basal diet with 4 g/kg KDF; KDF-8 groups fed the basal diet with 8 g/kg KDF. The experiment period lasted for 42 d. During the starter phase, the ADFI and F/G of broilers in KDF groups were lower (P < 0.05) compared to the CON group. Furthermore, the BW and ADG in KDF-4 group was improved (P<0.05). The treatment groups exhibited a significant increase (P < 0.05) in both ADG and ADFI during the grower and overall phase. Moreover, the F/G in KDF-4 group was lower (P < 0.05) compared to the CON and KDF-8 groups. The semi-eviscerated weight rate (SEWR), eviscerated carcass weight rate (ECWR), pectoral muscle rate (PMR), and leg muscle rate (LMR) of broilers were improved (P < 0.05) in KDF groups. The serum levels of glucose (GLU) and UREA (UA) were significantly higher (P < 0.05) in KDF-8 group. Additionally, the nutrient apparent utilization rate of dry matter (DM), energy (EE), and crude protein (CP) were improved (P < 0.05) in KDF-4 group. The villus height (VH) and villus height to crypt depth ratio (V/C) of duodenum, jejunum, and ileum were higher (P < 0.05) in KDF groups compared to the CON group, while crypt depth (CD) was significantly reduced (P < 0.05). The digestive enzyme activities of lipase (LIP), amylase (AMS), or trypsin (TPS) were significantly enhanced (P < 0.05) in the intestinal chyme, while the total bacterial count, Escherichia coli, Lactobacilli, Bifidobacteria, and Bacillus were reduced (P < 0.05) in the ileum. This study demonstrates that the inclusion of KDF in the diet of broilers leads to improvements in growth, slaughter performance, nutrient utilization rate, and maintenance of intestinal health.

3.
Sensors (Basel) ; 24(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38894292

ABSTRACT

Intelligent fault diagnostics based on deep learning provides a favorable guarantee for the reliable operation of equipment, but a trained deep learning model generally has low prediction accuracy in cross-domain diagnostics. To solve this problem, a deep learning fault diagnosis method based on the reconstructed envelope spectrum is proposed to improve the ability of rolling bearing cross-domain fault diagnostics in this paper. First, based on the envelope spectrum morphology of rolling bearing failures, a standard envelope spectrum is constructed that reveals the unique characteristics of different bearing health states and eliminates the differences between domains due to different bearing speeds and bearing models. Then, a fault diagnosis model was constructed using a convolutional neural network to learn features and complete fault classification. Finally, using two publicly available bearing data sets and one bearing data set obtained by self-experimentation, the proposed method is applied to the data of the fault diagnostics of rolling bearings under different rotational speeds and different bearing types. The experimental results show that, compared with some popular feature extraction methods, the proposed method can achieve high diagnostic accuracy with data at different rotational speeds and different bearing types, and it is an effective method for solving the problem with cross-domain fault diagnostics for rolling bearings.

4.
Environ Pollut ; 357: 124416, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38942271

ABSTRACT

Solid fuel combustion emitted abundant pollutants, especially polycyclic aromatic hydrocarbons (PAHs) which had significant minus impact on human health in rural China. PAHs in PM2.5 emitted from different fuels combustion and hydroxylated metabolites of PAHs (OH-PAHs) in urine samples of different fuel users were detected in this study. The indoor PAHs were higher than that in outdoors for solid fuel use households, and the concentration of PAHs in the indoor of liquefied petroleum gas (LPG) use household was not much lower than solid fuel use households. Biogas-use household produced the lowest PAHs, which significantly reduced 64-82% compared with those emitted by solid fuel combustion. The different combustion conditions influenced the gaseous PAHs in indoors between two sampling sites. The gas/particle partition indicated that PAHs tended to occur in the particle phase with increased molecular weight, and the absorption was the main mechanism. The relative higher contribution of high molecular weight PAHs (HMW-PAHs) in solid fuel use households than in clean fuel use households, induced more health risks of PAHs. The concentration of Σ10OH-PAHs in the urine samples for elders of different fuel-use households displayed the trend of coal (83.27 ng/mL) > wood (79.32 ng/mL) > LPG (51.61 ng/mL) > biogas (28.96 ng/mL), and OH-NaPs was the predominant metabolites, which accounted for more than 90% of the total concentration. The carcinogenic risk of PAHs based on internal exposure was greater than or close to 10-4, with serious carcinogenic risks. This was different with the incremental lifetime cancer risk based on the atmospheric concentrations. The exposure of PAHs from solid fuel combustion for human being especially for the elders in this region should be concerned, and more data should be done for the internal exposure of PAHs.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Cooking , Heating , Polycyclic Aromatic Hydrocarbons , Polycyclic Aromatic Hydrocarbons/analysis , China , Humans , Air Pollution, Indoor/statistics & numerical data , Air Pollution, Indoor/analysis , Air Pollutants/analysis , Aged , Rural Population , Environmental Monitoring , Environmental Exposure/statistics & numerical data , Particulate Matter/analysis , Coal
5.
Emerg Infect Dis ; 30(7): 1434-1437, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38916639

ABSTRACT

We investigated Alongshan virus infection in reindeer in northeastern China. We found that 4.8% of the animals were viral RNA-positive, 33.3% tested positive for IgG, and 19.1% displayed neutralizing antibodies. These findings suggest reindeer could serve as sentinel animal species for the epidemiologic surveillance of Alongshan virus infection.


Subject(s)
Antibodies, Viral , Reindeer , Animals , Reindeer/virology , China/epidemiology , Antibodies, Viral/blood , Antibodies, Neutralizing/blood , Bunyaviridae Infections/veterinary , Bunyaviridae Infections/epidemiology , Bunyaviridae Infections/virology , RNA, Viral , Immunoglobulin G/blood
6.
ACS Omega ; 9(21): 22801-22818, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38826539

ABSTRACT

Microfluidic chips are important tools to study the microscopic flow of fluid. To better understand the research clues and development trends related to microfluidic chips, a bibliometric analysis of microfluidic chips was conducted based on 1115 paper records retrieved from the Web of Science Core Collection database. CiteSpace and VOSviewer software were used to analyze the distribution of annual paper quantity, country/region distribution, subject distribution, institution distribution, major source journals distribution, highly cited papers, coauthor cooperation relationship, research knowledge domain, research focuses, and research frontiers, and a knowledge domain map was drawn. The results show that the number of papers published on microfluidic chips increased from 2010 to 2023, among which China, the United States, Iran, Canada, and Japan were the most active countries in this field. The United States was the most influential country. Nanoscience, energy, and chemical industry and multidisciplinary materials science were the main fields of microfluidic chip research. Lab on a Chip, Microfluidics and Nanofluidics, and Journal of Petroleum Science and Engineering were the main sources of papers published. The fabrication of chips, as well as their applications in porous media flow and multiphase flow, is the main knowledge domain of microfluidic chips. Micromodeling, fluid displacement, wettability, and multiphase flow are the research focuses in this field currently. The research frontiers in this field are enhanced oil recovery, interfacial tension, and stability.

7.
J Med Chem ; 67(11): 9686-9708, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38809692

ABSTRACT

High extracellular concentrations of adenosine triphosphate (ATP) in the tumor microenvironment generate adenosine by sequential dephosphorylation of CD39 and CD73, resulting in potent immunosuppression to inhibit T cell and natural killer (NK) cell function. CD73, as the determining enzyme for adenosine production, has been shown to correlate with poor clinical tumor prognosis. Conventional inhibitors as analogues of adenosine 5'-monophosphate (AMP) may have a risk of further metabolism to adenosine analogues. Here, we report a new series of malonic acid non-nucleoside inhibitors coordinating with zinc ions of CD73. Compound 12f was found to be a superior CD73 inhibitor (IC50 = 60 nM) by structural optimization, and its pharmacokinetic properties were investigated. In mouse tumor models, compound 12f showed excellent efficacy and reversal of immunosuppression in combination with chemotherapeutic agents or checkpoint inhibitors, suggesting that it deserves further development as a novel CD73 inhibitor.


Subject(s)
5'-Nucleotidase , 5'-Nucleotidase/antagonists & inhibitors , 5'-Nucleotidase/metabolism , Animals , Humans , Mice , Malonates/pharmacology , Malonates/chemistry , Malonates/chemical synthesis , Zinc/chemistry , Zinc/metabolism , Structure-Activity Relationship , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , GPI-Linked Proteins/antagonists & inhibitors , GPI-Linked Proteins/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Drug Discovery , Cell Line, Tumor
8.
J Environ Manage ; 359: 121004, 2024 May.
Article in English | MEDLINE | ID: mdl-38710146

ABSTRACT

In order to fully understand the carbon emission from different fuels in rural villages of China, especially in the typical atmospheric pollution areas. The characteristics of carbonaceous aerosols and carbon dioxide (CO2) with its stable carbon isotope (δ13C) were investigated in six households, which two households used coal, two households used wood as well as two households used biogas and liquefied petroleum gas (LPG), from two rural villages in Fenwei Plain from March to April 2021. It showed that the fine particulate matter (PM2.5) emitted from biogas and LPG couldn't be as lower as expected in this area. However, the clean fuels could relatively reduce the emissions of organic carbon (OC) and element carbon (EC) in PM2.5 compare to the solid fuels. The pyrolyzed carbon (OP) accounted more total carbon (TC) in coal than the other fuels use households, indicating that more water-soluble OC existed, and it still had the highest secondary organic carbon (SOC) than the other fuels. Meantime, the coal combustions in the two villages had the highest CO2 concentration of 527.6 ppm and 1120.6 ppm, respectively, while the clean fuels could effectively reduce it. The average δ13C values (-26.9‰) was much lighter than almost all the outdoor monitoring and similar to the δ13C values for coal combustion and vehicle emission, showing that they might be the main contributors of the regional atmospheric aerosol in this area. During the sandstorm, the indoor PM2.5 mass and CO2 were increasing obviously. The indoor cancer risk of PAHs for adults and children were greater than 1 × 10-6, exert a potential carcinogenic risk to human of solid fuels combustion in rural northern China. It is important to continue concern the solid fuel combustion and its health impact in rural areas.


Subject(s)
Aerosols , Carbon Dioxide , Carbon Isotopes , Particulate Matter , Carbon Dioxide/analysis , China , Particulate Matter/analysis , Aerosols/analysis , Carbon Isotopes/analysis , Coal , Air Pollutants/analysis , Carbon/analysis , Humans , Family Characteristics , Rural Population , Environmental Monitoring
9.
Animals (Basel) ; 14(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38791638

ABSTRACT

Zanthoxylum bungeanum seed meal (ZBM), a novel plant protein raw material, has shown promising potential in enhancing the growth of broiler chickens as a substitute for soybean meal (SBM) in feed. In the artificial digestive experiment of vitro experiments, the digestibility of ZBM and SBM were assessed using the SDS-III Single Stomach Animal Biometric Digestion System. Subsequently, 180 1-day old AA chicks were divided into three groups for in vivo experiments: corn-soybean-meal-based diet (CON group); ZBM replacing 5% soybean meal in the basal diet (ZBM-1 group); ZBM replacing 10% soybean meal in the basal diet (ZBM-2 group). The experiment period lasted for 42 days. Compared to SBM, ZBM demonstrated higher crude protein content, dry matter digestibility, and extracorporeal digestible protein. Compared with the CON group, the broilers in the ZBM-2 group showed improved ADG and ADFI during the 1-21 d, 22-42 d, and 1-42 d periods (p < 0.05). Furthermore, the ZBM groups exhibited significant increases in slaughter performance compared with the CON group (p < 0.05). The substitution of ZBM for SBM also leads to a significant reduction in serum enzyme indicators (p < 0.05). Additionally, the lipoprotein and total cholesterol of the ZBM groups were significantly lower than those of the CON group (p < 0.05). Substituting SBM with ZBM significantly enhances the activity of superoxide dismutase and the content of immunoglobulin G in broiler serum, while reducing the content of malondildehyde (p < 0.05). The ZBM groups showed significantly higher utilization of dry matter, crude protein, and energy compared with the CON group (p < 0.05). In conclusion, the study confirmed that the substitution of SBM with 5-10% ZBM in broiler diets has a significant positive effect on growth, development, antioxidant capacity, immune function, and nutrient utilization. This study not only provides a theoretical foundation for the utilization of ZBM in broiler diets but also offers an effective approach for reducing reliance on soybean meal.

10.
Anim Biosci ; 37(7): 1236-1245, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38575131

ABSTRACT

OBJECTIVE: The object of this study was to investigate the effect of replacing soybean meal with Clostridium autoethanogenum protein (CAP) in broiler diets on growth performance, blood indicators, antioxidant capacity, and immune function. METHODS: A total of 180 Arbor Acres broilers were randomly divided into three treatments, each treatment with six replicates and 10 broilers per replicate for a 42-day feeding trial. The control group (CON) was fed corn-soybean meal based diet. The CAP-1 and CAP-2 groups were considered to use CAP to replace 25% or 50% of soybean meal in the diet, respectively. The average daily gain and average daily feed intake of broilers at 1 to 21 d, 22 to 42 d, and 1 to 42 d were measured, and the feed conversion ratio was calculated. At the 42nd day of age, two broilers with similar weights and fasted for 12 h were selected in each replicate for blood collection from the brachial wing vein. The blood routine indicators, serum biochemical indicators, serum antioxidant capacity, and immunoglobulin content of broiler chickens were measured. RESULTS: Replacement of soybean meal with 25% (CAP-1) and 50% (CAP-2) CAP significantly increased the average daily gain of 22 to 42 d and 1 to 42 d and decreased the average daily feed intake and feed conversion rate (p<0.05). The CAP-1 group, and CAP-2 group significantly increased hemoglobulin in the blood of broilers, while the CAP-2 group increased hematocrit content (p<0.05). Compared with the control group, the contents of superoxide dismutase and immunoglobulin A in serum of the CAP-2 group were significantly increased, while the contents of malondialdehyde in CAP group were significantly decreased (p<0.05). CONCLUSION: Replacing soybean meal with CAP led to significant improvements in the growth performance, antioxidant capacity, and immunoglobulin content of broilers.

11.
Front Cell Infect Microbiol ; 14: 1334351, 2024.
Article in English | MEDLINE | ID: mdl-38567020

ABSTRACT

Most tick-borne viruses (TBVs) are highly pathogenic and require high biosecurity, which severely limits their study. We found that Sindbis virus (SINV), predominantly transmitted by mosquitoes, can replicate in ticks and be subsequently transmitted, with the potential to serve as a model for studying tick-virus interactions. We found that both larval and nymphal stages of Rhipicephalus haemaphysaloides can be infected with SINV-wild-type (WT) when feeding on infected mice. SINV replicated in two species of ticks (R. haemaphysaloides and Hyalomma asiaticum) after infecting them by microinjection. Injection of ticks with SINV expressing enhanced Green Fluorescent Protein (eGFP) revealed that SINV-eGFP specifically aggregated in the tick midguts for replication. During blood-feeding, SINV-eGFP migrated from the midguts to the salivary glands and was transmitted to a new host. SINV infection caused changes in expression levels of tick genes related to immune responses, substance transport and metabolism, cell growth and death. SINV mainly induced autophagy during the early stage of infection; with increasing time of infection, the level of autophagy decreased, while the level of apoptosis increased. During the early stages of infection, the transcript levels of immune-related genes were significantly upregulated, and then decreased. In addition, SINV induced changes in the transcription levels of some functional genes that play important roles in the interactions between ticks and tick-borne pathogens. These results confirm that the SINV-based transmission model between ticks, viruses, and mammals can be widely used to unravel the interactions between ticks and viruses.


Subject(s)
Ticks , Viruses , Animals , Mice , Sindbis Virus/genetics , Mosquito Vectors , Mammals
12.
Cereb Cortex ; 34(2)2024 01 31.
Article in English | MEDLINE | ID: mdl-38183186

ABSTRACT

Motor imagery (MI) is a cognitive process wherein an individual mentally rehearses a specific movement without physically executing it. Recently, MI-based brain-computer interface (BCI) has attracted widespread attention. However, accurate decoding of MI and understanding of neural mechanisms still face huge challenges. These seriously hinder the clinical application and development of BCI systems based on MI. Thus, it is very necessary to develop new methods to decode MI tasks. In this work, we propose a multi-branch convolutional neural network (MBCNN) with a temporal convolutional network (TCN), an end-to-end deep learning framework to decode multi-class MI tasks. We first used MBCNN to capture the MI electroencephalography signals information on temporal and spectral domains through different convolutional kernels. Then, we introduce TCN to extract more discriminative features. The within-subject cross-session strategy is used to validate the classification performance on the dataset of BCI Competition IV-2a. The results showed that we achieved 75.08% average accuracy for 4-class MI task classification, outperforming several state-of-the-art approaches. The proposed MBCNN-TCN-Net framework successfully captures discriminative features and decodes MI tasks effectively, improving the performance of MI-BCIs. Our findings could provide significant potential for improving the clinical application and development of MI-based BCI systems.


Subject(s)
Brain-Computer Interfaces , Imagination , Neural Networks, Computer , Algorithms , Imagery, Psychotherapy , Electroencephalography/methods
13.
Virology ; 589: 109942, 2024 01.
Article in English | MEDLINE | ID: mdl-38048647

ABSTRACT

Hantaan virus (HTNV) is responsible for hemorrhagic fever with renal syndrome (HFRS), primarily due to its ability to inhibit host innate immune responses, such as type I interferon (IFN-I). In this study, we conducted a transcriptome analysis to identify host factors regulated by HTNV nucleocapsid protein (NP) and glycoprotein. Our findings demonstrate that NP and Gc proteins inhibit host IFN-I production by manipulating the retinoic acid-induced gene I (RIG-I)-like receptor (RLR) pathways. Further analysis reveals that HTNV NP and Gc proteins target upstream molecules of MAVS, such as RIG-I and MDA-5, with Gc exhibiting stronger inhibition of IFN-I responses than NP. Mechanistically, NP and Gc proteins interact with tripartite motif protein 25 (TRIM25) to competitively inhibit its interaction with RIG-I/MDA5, suppressing RLR signaling pathways. Our study unveils a cross-talk between HTNV NP/Gc proteins and host immune response, providing valuable insights into the pathogenic mechanism of HTNV.


Subject(s)
Hantaan virus , Interferon Type I , Interferon Type I/metabolism , Hantaan virus/genetics , Hantaan virus/metabolism , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Signal Transduction , Immunity, Innate , DEAD Box Protein 58/genetics , DEAD Box Protein 58/metabolism
14.
Animals (Basel) ; 13(23)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38067057

ABSTRACT

Cottonseed protein concentrate (CPC) has the function of replacing soybean meal to maintain normal animal growth and development. This study involved 180 Arbor Acres (AA) broilers, which were randomly assigned to three different treatments. Each treatment had six replicates, with each replicate consisting of 10 chicks. The control group was fed a basal diet, while the CPC-1 and CPC-2 groups used CPC to replace 25% and 50% of the soybean meal in the basal diet, respectively. The study showed that replacing soybean meal with 25% CPC in broilers' diets can maintain normal growth, while substituting 50% of soybean meal with CPC negatively affects the growth and development of broiler chickens. Furthermore, the CPC-1 group showed a significant increase in serum total antioxidant capacity, superoxide dismutase enzyme activity, and immunoglobulin content, along with a decrease in malondialdehyde content. Based on the research results mentioned above, it was speculated that CPC has the potential to replace around 25% of soybean meal in broiler feed without causing any negative impact on growth performance. This suggests that CPC could be a viable alternative to soybean meal in broiler diet.

15.
Parasitol Res ; 123(1): 34, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38087003

ABSTRACT

Toxoplasma gondii (T. gondii) exhibits a significantly high prevalence of infection in goats, leading to adverse consequences such as abortion and stillbirth in ewes, thereby posing a substantial challenge to the goat farming industry. Neutrophil extracellular traps (NETs) have been shown to capture T. gondii in goats; however, the precise mechanisms underlying NET release in goats remain poorly understood. Therefore, the aim of our research was to elucidate the involved mechanism. We assessed the cytotoxicity of T. gondii on neutrophils using CCK-8 assay, visualized the structure of T. gondii-induced goat NETs through immunofluorescence, quantified ROS release during T. gondii-induced NET formation using fluorescence microplate analysis, and employed inhibitors targeting TLR 2, TLR4, NADPH oxidase, ERK1/2, and P38 MAPK signaling pathways as well as glycolysis to dissect the mechanisms underlying T. gondii-induced NET release. Within 1 h, T. gondii did not exhibit significant cytotoxicity towards neutrophils in our findings. The formation of typical NET structures induced by T. gondii involved DNA, citrullinated histone 3 (citH3), and neutrophil elastase (NE). Additionally, T. gondii significantly stimulated the release of NETs in goats. The process was accompanied by the production of reactive oxygen species (ROS) mediated through NADPH oxidase, p38, and ERK1/2 signaling pathways. Inhibition of these pathways resulted in a decrease in NET release. Moreover, inhibition of TLR 2, TLR4, and glycolysis also led to a reduction in T. gondii-induced NET release. Overall, our study demonstrates that T. gondii can induce characteristic NET structures and elucidates the involvement of various mechanisms including TLR2/TLR4 signaling pathway activation, NADPH oxidase activity modulation via ROS production regulation through p38 MAPK and ERK1/2 signaling pathways, and glycolysis regulation during the innate immune response against T. gondii infection in goats.


Subject(s)
Extracellular Traps , Toxoplasma , Animals , Female , Sheep , MAP Kinase Signaling System , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/genetics , Reactive Oxygen Species/metabolism , Goats , Neutrophils , Signal Transduction , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism , NADPH Oxidases/metabolism
16.
Mikrochim Acta ; 191(1): 19, 2023 12 13.
Article in English | MEDLINE | ID: mdl-38087094

ABSTRACT

Silver nanocubes monolayer-modified polydimethylsiloxane (Ag NC/PDMS) flexible SERS substrates have been prepared by a three-phase interface self-assembly procedure. The combination of this method with membrane technology brings nanoparticles in close proximity, densely, and regularly arranged in monolayers over a large area, leading to excellent SERS properties. Considering the complexity of practical detection, molecular imprinted polymers (MIPs) were anchored on the surface of SERS substrate and applied to selective detection of microcystin-LR (MC-LR). It is worth mentioning that the SERS imprinted membranes (AP-MIMs) were still clearly detected at a concentration of 0.1 µg·L-1 of MC-LR in drinking water, and the detection limit was as low as 0.0067 µg·L-1. The substrate exhibited excellent uniformity with a relative standard deviation (RSD) of 6.1%. In the presence of interference molecules, AP-MIMs exhibited excellent selectivity for MC-LR. Furthermore, in the spiking and recovery tests of practical lake water samples, the method showed excellent recoveries ranging from 96.47 to 105.31%. It has been demonstrated that the prepared AP-MIMs can be applied to sensitive and specific detection of trace amounts of MC-LR in drinking water.


Subject(s)
Drinking Water , Metal Nanoparticles , Fresh Water , Microcystins , Metal Nanoparticles/chemistry
17.
Infect Med (Beijing) ; 2(3): 153-166, 2023 Sep.
Article in English | MEDLINE | ID: mdl-38073883

ABSTRACT

Mpox (monkeypox) virus (MPXV), which causes a mild smallpox-like disease, has been endemic in Africa for several decades, with sporadic cases occurring in other parts of the world. However, the most recent outbreak of mpox mainly among men that have sex with men has affected several continents, posing serious global public health concerns. The infections exhibit a wide spectrum of clinical presentation, ranging from asymptomatic infection to mild, severe disease, especially in immunocompromised individuals, young children, and pregnant women. Some therapeutics and vaccines developed for smallpox have partial protective and therapeutic effects against MPXV historic isolates in animal models. However, the continued evolution of MPXV has produced multiple lineages, leading to significant gaps in the knowledge of their pathogenesis that constrain the development of targeted antiviral therapies and vaccines. MPXV infections in various animal models have provided a central platform for identification and comparison of diseased pathogenesis between the contemporary and historic isolates. In this review, we discuss the susceptibility of various animals to MPXV, and describe the key pathologic features of rodent, rabbit and nonhuman primate models. We also provide application examples of animal models in elucidating viral pathogenesis and evaluating effectiveness of vaccine and antiviral drugs. These animal models are essential to understand the biology of MPXV contemporary isolates and to rapidly test potential countermeasures. Finally, we list some remaining scientific questions of MPXV that can be resolved by animal models.

18.
ACS Omega ; 8(40): 37202-37212, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37841184

ABSTRACT

During the underground mining process, various coal seams with different bedding structures are often encountered. The presence of bedding structures is one of the primary factors that influence the strength and deformation characteristics of the coal seam and then affect gas extraction and gas disaster prevention. However, there is still a lack of mechanical properties of coal rock with structural anisotropy influenced by bedding structures. In this study, numerical models were established by using the particle flow code method to simulate coal specimens containing bedding with varying inclination angles. The results demonstrate the impact of the bedding inclination angle on the mechanical properties, crack propagation patterns, and the temporal and spatial evolution of the stress field in coal specimens with bedding during the loading process. Furthermore, three crack initiation patterns were investigated for coal specimens with different bedding angles. Additionally, the quantitative relationship between the mechanical properties and the fractal dimension was analyzed. The numerical simulation results were effectively validated through laboratory tests.

19.
J Virol ; 97(10): e0102823, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37772822

ABSTRACT

IMPORTANCE: Emerging vaccine-breakthrough severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants highlight an urgent need for novel antiviral therapies. Understanding the pathogenesis of coronaviruses is critical for developing antiviral drugs. Here, we demonstrate that the SARS-CoV-2 N protein suppresses interferon (IFN) responses by reducing early growth response gene-1 (EGR1) expression. The overexpression of EGR1 inhibits SARS-CoV-2 replication by promoting IFN-regulated antiviral protein expression, which interacts with and degrades SARS-CoV-2 N protein via the E3 ubiquitin ligase MARCH8 and the cargo receptor NDP52. The MARCH8 mutants without ubiquitin ligase activity are no longer able to degrade SARS-CoV-2 N proteins, indicating that MARCH8 degrades SARS-CoV-2 N proteins dependent on its ubiquitin ligase activity. This study found a novel immune evasion mechanism of SARS-CoV-2 utilized by the N protein, which is helpful for understanding the pathogenesis of SARS-CoV-2 and guiding the design of new prevention strategies against the emerging coronaviruses.


Subject(s)
Early Growth Response Protein 1 , Host Microbial Interactions , SARS-CoV-2 , Ubiquitin-Protein Ligases , Virus Replication , Humans , COVID-19/virology , Drug Discovery , Early Growth Response Protein 1/metabolism , SARS-CoV-2/growth & development , SARS-CoV-2/pathogenicity , Ubiquitin-Protein Ligases/metabolism , Ubiquitins/metabolism
20.
Molecules ; 28(13)2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37446595

ABSTRACT

The internal three-dimensional characteristics of X-ray microtomography (micro-CT) has great application potential in the field of bronze corrosion. This work presents a method of simulating bronze disease based on an in situ micro-CT image to study the characteristics of the oxidative hydrolysis reactions of copper(I) chloride and copper(II) chloride dihydrate. A series of high-resolution reconstruction images were obtained by carrying out micro-CT at three key points throughout the experiment. We found that the reactions of copper(I) chloride and copper(II) chloride dihydrate showed different characteristics at different stages of the simulation in the micro-CT view. The method proposed in this work specifically simulated one single type of bronze corrosion and characterized the evolution characteristics of simulated bronze disease. It provides a new perspective to investigate bronze disease and can help improve the subsequent use of micro-CT to distinguish real bronze corrosions.


Subject(s)
Copper , Halogens , X-Ray Microtomography/methods , Chlorides
SELECTION OF CITATIONS
SEARCH DETAIL