Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Bone Miner Res ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38861455

ABSTRACT

The basis for increased fracture risk in type 2 diabetes (T2DM) is not well understood. In this multi-ethnic, population-based study (n = 565), we investigated bone microstructure, trabecular plate/rod morphology and mineralization in women with T2DM (n = 175) with and without fracture using a second-generation HRpQCT and individual trabecula segmentation and mineralization (ITS; ITM). Covariate-adjusted aBMD was 3.0-6.5% higher at all sites (all p < 0.005) in T2DM versus controls. By HRpQCT, T2DM had higher covariate-adjusted trabecular vBMD (5.3-6.4%) and number (3.8-5.1%) and greater cortical area at the radius and tibia. Covariate-adjusted cortical porosity was 10.0% higher at the tibia only in T2DM versus controls, but failure load did not differ. Among women with T2DM, those with adult atraumatic fracture (n = 59) had 5.2-8.5% lower adjusted aBMD at all sites by DXA compared to those without fracture (n = 103). By HRpQCT, those with fracture had lower adjusted total vBMD and smaller cortical area (10.2-16.1%), lower cortical thickness (10.5-15.8%) and lower cortical vBMD associated with 18.1% and 17.2% lower failure load at the radius and tibia respectively (all p < 0.05); plate volume and thickness were 5.7% and 4.7% lower respectively (p < 0.05) while rod volume fraction was 12.8% higher in the fracture group at the tibia only. Sodium glucose cotransporter 2 inhibitor users (SGLT2i; n = 19), tended to have lower radial rod tissue mineral density by ITS (p = 0.06). GLP1 agonist users (n = 19) had trabecular deficits at both sites and higher cortical porosity and larger pores at the distal tibia. In summary, T2DM is associated with increased cortical porosity while those with T2DM and fracture have more marked cortical deficits and fewer trabecular plates associated with lower failure load.


Reasons for increased fracture risk in type 2 diabetes (T2DM) are not well-understood. We used a multi-ethnic, population-based cohort (n = 565), to study bone structure in women with T2DM (n = 175) using advanced imaging and analysis techniques. Participants with T2DM tended to have higher bone density and better structure by dual energy x-ray absorptiometry and high resolution peripheral quantitative computed tomography respectively at the radius and tibia; only cortical porosity was higher (worse) in participants with diabetes compared to those without diabetes but there was no difference in bone strength. Participants with T2DM and fracture had lower cortical parameters and bone strength compared with participants with T2DM without fracture at both sites. In summary, T2DM is associated with increased cortical porosity while those with T2DM and fracture have more marked cortical deficits associated with lower failure load.

2.
Bioengineering (Basel) ; 10(7)2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37508864

ABSTRACT

Acupuncture is one of the most extensively used complementary and alternative medicine therapies worldwide. In this study, we explore the use of near-infrared light-emitting diodes (LEDs) to provide acupuncture-like physical stimulus to the skin tissue, but in a completely non-invasive way. A computational modeling framework has been developed to investigate the light-tissue interaction within a three-dimensional multi-layer model of skin tissue. Finite element-based analysis has been conducted, to obtain the spatiotemporal temperature distribution within the skin tissue, by solving Pennes' bioheat transfer equation, coupled with the Beer-Lambert law. The irradiation profile of the LED has been experimentally characterized and imposed in the numerical model. The experimental validation of the developed model has been conducted through comparing the numerical model predictions with those obtained experimentally on the agar phantom. The effects of the LED power, treatment duration, LED distance from the skin surface, and usage of multiple LEDs on the temperature distribution attained within the skin tissue have been systematically investigated, highlighting the safe operating power of the selected LEDs. The presented information about the spatiotemporal temperature distribution, and critical factors affecting it, would assist in better optimizing the desired thermal dosage, thereby enabling a safe and effective LED-based photothermal therapy.

3.
Sensors (Basel) ; 23(10)2023 May 12.
Article in English | MEDLINE | ID: mdl-37430615

ABSTRACT

Underwater vehicles are key carriers for underwater inspection and operation tasks, and the successful implementation of these tasks depends on the positioning and navigation equipment with corresponding accuracy. In practice, multiple positioning and navigation devices are often combined to integrate the advantages of each equipment. Currently, the most common method for integrated navigation is combination of the Strapdown Inertial Navigation System (SINS) and Doppler Velocity Log (DVL). Various errors will occur when SINS and DVL are combined together, such as installation declination. In addition, DVL itself also has errors in the measurement of speed. These errors will affect the final accuracy of the combined positioning and navigation system. Therefore, error correction technology has great significance for underwater inspection and operation tasks. This paper takes the SINS/DVL integrated positioning and navigation system as the research object and deeply studies the DVL error correction technology in the integrated system.

4.
Bone ; 167: 116638, 2023 02.
Article in English | MEDLINE | ID: mdl-36464243

ABSTRACT

Anterior cruciate ligament (ACL) tear leads to post-traumatic osteoarthritis (PTOA), a significant clinical burden worldwide that currently has no cure. Recent studies suggest a role of subchondral bone adaptations in the development of PTOA. Particularly, microstructural changes in the rod-and-plate microstructure of subchondral bone may precede and contribute to OA progression. In this study, we quantified microstructural changes in subchondral trabecular rods and plates after ACL-transection for the first time in the well-established preclinical canine model of PTOA and investigated the therapeutic potentials of a bisphosphonate (zoledronate) and NSAID treatment (meloxicam). Unilateral hindlimb ACL transection was performed on skeletally-mature (2-year-old, N = 20) and juvenile (10-month-old, N = 20) male beagles. Animals were assigned to 4 groups (N = 5): ACLT, un-operated control, ACLT with zoledronate, and ACLT with meloxicam treatment. Subchondral bone microstructure was evaluated by micro-computed tomography and cartilage integrity was evaluated histologically. We found that ACL-induced subchondral bone changes depended on skeletal maturity of animals. In mature animals, significant loss of trabecular plates that resulted in reduced PR ratio occurred at Month 1 and persisted until Month 8. Zoledronate treatment prevented trabecular plate loss while meloxicam treatment did not. Whether cartilage degeneration is also attenuated warrants further investigation. In juvenile animals that have not reached skeletal maturity, transient changes in trabecular plate and rod microstructure occurred at Month 3 but not Month 9. Neither zoledronate nor meloxicam treatment attenuated bone microstructural changes or cartilage damages. Findings from this study suggest that early inhibition of bone resorption by bisphosphonate after injury may be a promising therapeutic approach to prevent alterations in subchondral bone microstructure associated with PTOA. Our results further demonstrate that pathogenesis of PTOA may differ between adolescent and adult patients and therefore require distinct management strategies.


Subject(s)
Anterior Cruciate Ligament Injuries , Cartilage, Articular , Osteoarthritis , Animals , Male , Dogs , Zoledronic Acid/pharmacology , Zoledronic Acid/therapeutic use , X-Ray Microtomography , Meloxicam/pharmacology , Meloxicam/therapeutic use , Bone and Bones/pathology , Osteoarthritis/pathology , Anterior Cruciate Ligament Injuries/drug therapy , Anterior Cruciate Ligament Injuries/complications , Cartilage, Articular/pathology , Disease Models, Animal
5.
J Clin Endocrinol Metab ; 107(7): e2690-e2701, 2022 06 16.
Article in English | MEDLINE | ID: mdl-35428889

ABSTRACT

CONTEXT: Premenopausal women with idiopathic osteoporosis (PreMenIOP) have marked deficits in bone density, microstructure, and strength. OBJECTIVE: To define effects of treatment with teriparatide followed by denosumab on lumbar spine (LS) volumetric bone mineral density (vBMD) and stiffness by finite element analysis assessed on central quantitative computed tomography (cQCT) scans. DESIGN, SETTINGS, AND PARTICIPANTS: Ancillary analysis of baseline, post-teriparatide, and post-denosumab cQCT scans from a randomized trial of 41 women allocated to teriparatide (20 mcg daily; n = 28) or placebo (n = 11). After 6 months, those on teriparatide continued for 18 months, and those on placebo switched to teriparatide for 24 months. After completing teriparatide, 33 enrolled in a Phase 2B extension with denosumab (60 mg every 6 months) for 12 months. MAIN OUTCOME MEASURES: Primary outcomes were percentage change from baseline in LS trabecular vBMD and stiffness after teriparatide and between end of teriparatide and completing denosumab. Percentage change from baseline in LS trabecular vBMD and stiffness after sequential teriparatide and denosumab were secondary outcomes. FINDINGS: There were large increases (all Ps < 0.001) in trabecular vBMD (25%), other vBMD parameters, and stiffness (21%) after teriparatide. Statistically significant increases in trabecular vBMD (10%; P < 0.001) and other vBMD parameters (P = 0.03-0.001) were seen after denosumab, while stiffness increased by 7% (P = 0.068). Sequential teriparatide and denosumab led to highly significant (all Ps < 0.001) increases LS trabecular vBMD (43%), other vBMD parameters (15-31%), and stiffness (21%). CONCLUSIONS: The large and statistically significant increases in volumetric density and stiffness after sequential treatment with teriparatide followed by denosumab are encouraging and support use of this regimen in PreMenIOP.


Subject(s)
Bone Density Conservation Agents , Osteoporosis, Postmenopausal , Osteoporosis , Bone Density , Denosumab/pharmacology , Denosumab/therapeutic use , Female , Humans , Lumbar Vertebrae/diagnostic imaging , Osteoporosis/diagnostic imaging , Osteoporosis/drug therapy , Osteoporosis, Postmenopausal/diagnostic imaging , Osteoporosis, Postmenopausal/drug therapy , Teriparatide
6.
RSC Adv ; 10(8): 4538-4544, 2020 Jan 24.
Article in English | MEDLINE | ID: mdl-35495225

ABSTRACT

The shutting effect in lithium-sulfur (Li-S) batteries hinders their widespread application, which can be restrained effectively by a modified separator. In this work, a composite of reduced graphene oxide and beta-phase TiO2 nanoparticles (RGO/TiO2(B)) is designed as a separator modification material for improving the electrochemical behavior of Li-S batteries. The TiO2(B) nanoparticles are in situ prepared and tightly adhere to the RGO layer. A series of examinations demonstrated that the RGO/TiO2(B)-coated separator efficiently inhibits the polysulfide shuttling phenomenon by the cooperative effect of physical adsorption and chemical binding. Specifically, as modified separators, a comparison between TiO2(B) and anatase TiO2(A) each composited with RGO has been conducted. The TiO2(B) sample not only exhibits a superior blocking character of migrating polysulfides, but also enhances battery electrochemical kinetics by fast Li ion diffusion.

7.
J Trace Elem Med Biol ; 32: 1-6, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26302905

ABSTRACT

Potassium iodate (KIO3) and potassium iodide (KI) are the major salt iodization agents used worldwide. Unlike iodide (I(-)), iodate (IO3(-)) should be reduced to I(-) before it can be effectively used by the thyroid. In this study, we developed a new method for analyzing IO3(-) and I(-) in tissue homogenates using high performance liquid chromatography coupled to inductively coupled plasma mass spectrometry (HPLC-ICP-MS). We further applied the method to demonstrate the KIO3 reduction process by tissues in vitro. The effects of KIO3 on the total antioxidative activity (TAA) and reduced nicotinamide adenine dinucleotide phosphate (NADPH) were also investigated here. Finally, we found that IO3(-) can be reduced to I(-) by tissue homogenates and IO3(-) irreversibly decreases the antioxidant capability of tissues. Our studies suggest that KIO3 might have a big effect on the redox balance of tissue and would further result in oxidative stress of organisms.


Subject(s)
Chromatography, High Pressure Liquid/methods , Iodates/analysis , Mass Spectrometry/methods , Organ Specificity , Potassium Compounds/analysis , Animals , Antioxidants/metabolism , Female , Kidney/metabolism , Liver/metabolism , Male , NADP/metabolism , Rats, Wistar , Reference Standards , Solutions , Thyroid Gland/metabolism
8.
Microbiology (Reading) ; 153(Pt 3): 727-736, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17322193

ABSTRACT

Arabinose is a known component of plant cell walls and is found in the rhizosphere. In this work, a previously undeleted region of the megaplasmid pSymB was identified as encoding genes necessary for arabinose catabolism, by Tn5-B20 random mutagenesis and subsequent complementation. Transcription of this region was measured by beta-galactosidase assays of Tn5-B20 fusions, and shown to be strongly inducible by arabinose, and moderately so by galactose and seed exudate. Accumulation of [(3)H]arabinose in mutants and wild-type was measured, and the results suggested that this operon is necessary for arabinose transport. Although catabolite repression of the arabinose genes by succinate or glucose was not detected at the level of transcription, both glucose and galactose were found to inhibit accumulation of arabinose when present in excess. To determine if glucose was also taken up by the arabinose transport proteins, [(14)C]glucose uptake rates were measured in wild-type and arabinose mutant strains. No differences in glucose uptake rates were detected between wild-type and arabinose catabolism mutant strains, indicating that excess glucose did not compete with arabinose for transport by the same system. Arabinose mutants were tested for the ability to form nitrogen-fixing nodules on alfalfa, and to compete with the wild-type for nodule occupancy. Strains unable to utilize arabinose did not display any symbiotic defects, and were not found to be less competitive than wild-type for nodule occupancy in co-inoculation experiments. Moreover, the results suggest that other loci are required for arabinose catabolism, including a gene encoding arabinose dehydrogenase.


Subject(s)
Arabinose/metabolism , Plasmids/genetics , Sinorhizobium meliloti/genetics , Artificial Gene Fusion , Biological Transport , DNA Transposable Elements , Galactose/pharmacology , Gene Deletion , Gene Expression Regulation, Bacterial , Genes, Reporter , Genetic Complementation Test , Glucose/pharmacology , Medicago sativa/microbiology , Mutagenesis, Insertional , Root Nodules, Plant/microbiology , Sinorhizobium meliloti/metabolism , Transcription, Genetic , beta-Galactosidase/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...