Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.602
Filter
1.
Biomater Res ; 28: 0028, 2024.
Article in English | MEDLINE | ID: mdl-38715912

ABSTRACT

The field of immunotherapy, particularly immune checkpoint blockade (ICB), holds immense potential in mitigating the progression of cancer. However, the challenges of insufficient tumor antigen production and the immunosuppressive state in the tumor microenvironment substantially impede patients from deriving benefits. In this research, we present a tumor-microenvironment-modulation manganese-based nanosystem, PEG-MnMOF@PTX, aiming to improve the responsiveness of ICB. Under acidic conditions, the released Mn2+ accomplishes multiple objectives. It generates toxic hydroxyl radicals (•OH), together with the released paclitaxel (PTX), inducing immunogenic cell death of tumor cells and normalizing tumor blood vessels. Concurrently, it facilitates the in situ generation of oxygen (O2) from hydrogen peroxide (H2O2), ameliorating the microenvironmental immunosuppression and increasing the efficacy of immunotherapy. In addition, this study demonstrates that PEG-MnMOF@PTX can promote the maturation of dendritic cells and augment the infiltration of cytotoxic T lymphocytes through activation of the cyclic guanosine 5'-monophosphate-adenosine 5'-monophosphate synthase (cGAS) and interferon gene stimulator (STING) pathways, namely cGAS-STING pathways, thereby heightening the sensitivity to ICB immunotherapy. The findings of this study present a novel paradigm for the progress in cancer immunotherapy.

2.
Anal Chem ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717985

ABSTRACT

Cell membrane stiffness is critical for cellular function, with cholesterol and sphingomyelin as pivot contributors. Current methods for measuring membrane stiffness are often invasive, ex situ, and slow in process, prompting the need for innovative techniques. Here, we present a fluorescence resonance energy transfer (FRET)-based protein sensor designed to address these challenges. The sensor consists of two fluorescent units targeting sphingomyelin and cholesterol, connected by a linker that responds to the proximity of these lipids. In rigid membranes, cholesterol and sphingomyelin are in close proximity, leading to an increased FRET signal. We utilized this sensor in combination with confocal microscopy to explore changes in plasma membrane stiffness under various conditions, including differences in osmotic pressure, the presence of reactive oxygen species (ROS) and variations in substrate stiffness. Furthermore, we explored the impact of SARS-CoV-2 on membrane stiffness and the distribution of ACE2 after attachment to the cell membrane. This tool offers substantial potential for future investigations in the field of mechanobiology.

3.
Adv Mater ; : e2401640, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710154

ABSTRACT

Orthotopic glioblastoma (GBM) has an aggressive growth pattern and complex pathogenesis, becoming one of the most common and deadly tumors of the central nervous system (CNS). The emergence of RNA therapies offers promise for the treatment of GBM. However, the efficient and precise delivery of RNA drugs to specific tumor cells in the brain with high cellular heterogeneity remains ongoing. Here, a strategy is proposed to regulate protein conformation through lipid nanoenvironments to custom-design virus-mimicking nanoparticles (VMNs) with excellent selective cell targeting capabilities, leading to efficient and precise delivery of small interfering RNA for effective treatment of GBM. The optimized VMNs not only retain the ability to cross the blood-brain barrier and release the RNA by lysosomal escape like natural viruses but also ensure precise enrichment in the GBM area. This study lays the conceptual foundation for the custom design of VMNs with superior cell-selective targeting capabilities and opens up the possibility of RNA therapies for the efficient treatment of GBM and CNS tumors.

4.
Adv Sci (Weinh) ; : e2402759, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38704681

ABSTRACT

Soft on-skin electrodes play an important role in wearable technologies, requiring attributes such as wearing comfort, high conductivity, and gas permeability. However, conventional fabrication methods often compromise simplicity, cost-effectiveness, or mechanical resilience. In this study, a mechanically robust and gas-permeable on-skin electrode is presented that incorporates Flash Graphene (FG) integrated with a bioinspired armor design. FG, synthesized through Flash Joule Heating process, offers a small-sized and turbostratic arrangement that is ideal for the assembly of a conductive network with nanopore structures. Screen-printing is used to embed the FG assembly into the framework of polypropylene melt-blown nonwoven fabrics (PPMF), forming a soft on-skin electrode with low sheet resistance (125.2 ± 4.7 Ω/□) and high gas permeability (≈10.08 mg cm⁻2 h⁻¹). The "armor" framework ensures enduring mechanical stability through adhesion, washability, and 10,000 cycles of mechanical contact friction tests. Demonstrating capabilities in electrocardiogram (ECG) and electromyogram (EMG) monitoring, along with serving as a self-powered triboelectric sensor, the FG/PPMF electrode holds promise for scalable, high-performance flexible sensing applications, thereby enriching the landscape of integrated wearable technologies.

5.
ACS Nano ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38768091

ABSTRACT

Optogenetic, known as the method of 21 centuries, combines optic and genetic engineering to precisely control photosensitive proteins for manipulation of a broad range of cellular functions, such as flux of ions, protein oligomerization and dissociation, cellular intercommunication, and so on. In this technique, light is conventionally delivered to targeted cells through optical fibers or micro light-emitting diodes, always suffering from high invasiveness, wide-field illumination facula, strong absorption, and scattering by nontargeted endogenous substance. Light-transducing nanomaterials with advantages of high spatiotemporal resolution, abundant wireless-excitation manners, and easy functionalization for recognition of specific cells, recently have been widely explored in the field of optogenetics; however, there remain a few challenges to restrain its clinical applications. This review summarized recent progress on light-responsive genetically encoded proteins and the myriad of activation strategies by use of light-transducing nanomaterials and their disease-treatment applications, which is expected for sparking helpful thought to push forward its preclinical and translational uses.

6.
Polymers (Basel) ; 16(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38732668

ABSTRACT

Thermal-mechanical coupling during the molding process can cause compressive yield in the polymer foam core and then affect the molding quality of the sandwich structure. This work investigates the compressive mechanical properties and failure mechanism of polymethacrylimide (PMI) foam in the molding temperature range of 20-120 °C. First, the DMA result indicates that PMI foam has minimal mechanical loss in the 20~120 °C range and can be regarded as an elastoplastic material, and the TGA curve further proves that the PMI foam is thermally stable within 120 °C. Then, the compression results show that compared with 20 °C, the yield stress and elastic modulus of PMI foam decrease by 22.0% and 17.5% at 80 °C and 35.2% and 31.4% at 120 °C, respectively. Meanwhile, the failure mode changes from brittle fracture to plastic yield at about 80 °C. Moreover, a real representative volume element (rRVE) of PMI foam is established by using Micro-CT and Avizo 3D reconstruction methods, and the simulation results indicate that PMI foam mainly shows brittle fractures at 20 °C, while both brittle fractures and plastic yield occur at 80 °C, and most foam cells undergo plastic yield at 120 °C. Finally, the simulation based on a single-cell RVE reveals that the air pressure inside the foam has an obvious influence of about 6.7% on the yield stress of PMI foam at 80 °C (brittle-plastic transition zone).

7.
Oncol Lett ; 28(1): 294, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38737980

ABSTRACT

Flurbiprofen axetil or dezocine monotherapy has been applied for analgesia of postoperative non-small cell lung cancer (NSCLC); however, their combination is rarely investigated. Consequently, the present study aimed to explore the effect of flurbiprofen axetil plus dezocine on postoperative pain, surgical outcomes and its safety profile in patients with NSCLC. A total of 150 patients with resectable NSCLC were enrolled and randomized into three groups: i) The flurbiprofen axetil plus dezocine group (n=50), ii) the flurbiprofen axetil group (n=51) and iii) the dezocine group (n=49). A total of 50 mg flurbiprofen axetil, 5 mg of dezocine or their combination were administered intravenously 3 h prior to surgery and subsequently every 12 h until day 3 (D3) following surgery. The postoperative pain was lower in the flurbiprofen axetil plus dezocine group compared with that of the flurbiprofen axetil group at 6 h (P=0.008), 12 h (P=0.003), day 1 (D1) (P=0.013), day 2 (D2) (P=0.036) and D3 (P=0.010); in addition, it was lower in the flurbiprofen axetil plus dezocine group compared with that of the dezocine group at 6 h (P=0.010), 12 h (P=0.012) and D1 (P=0.020). Patient-controlled analgesia consumption was also lower in the flurbiprofen axetil plus dezocine group compared with that of the flurbiprofen axetil (P=0.010) and dezocine (P=0.002) groups. Furthermore, the length of hospital stay was lower in the flurbiprofen axetil plus dezocine group compared with that of the flurbiprofen axetil (P=0.008) and dezocine (P=0.048) groups, while other surgical outcomes and adverse events were similar among these three groups. Moreover, the expression of tumor necrosis factor-α was lower in the flurbiprofen axetil plus dezocine group compared with that of the dezocine group at 12 h (P<0.001), D1 (P<0.001) and D3 (P=0.033). The data indicated that flurbiprofen axetil and dezocine combination was superior to monotherapy for postoperative analgesia in patients with resectable NSCLC.

8.
Clin Chim Acta ; : 119734, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38777245

ABSTRACT

BACKGROUND: Ovarian cancer (OC) is a major global cause of death among gynecological cancers, with a high mortality rate. Early diagnosis, distinguishing between benign conditions and early malignant OC forms, is vital for successful treatment. This research investigates serum metabolites to find diagnostic biomarkers for early OC identification. METHODS: Metabolomic profiles derived from the serum of 60 patients with benign conditions and 60 patients with malignant OC were examined using ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). Comparative analysis revealed differential metabolites linked to OC, aiding biomarker identification for early-diagnosis of OC via machine learning features. The predictive ability of these biomarkers was evaluated against the traditional biomarker, cancer antigen 125 (CA125). RESULTS: 84 differential metabolites were identified, including 2-Thiothiazolidine-4-carboxylic acid (TTCA), Methionyl-Cysteine, and Citrulline that could serve as potential biomarkers to identify benign conditions and malignant OC. In the diagnosis of early-stage OC, the area under the curve (AUC) for Citrulline was 0.847 (95 % Confidence Interval (CI): 0.719-0.974), compared to 0.770 (95 % CI: 0.596-0.944) for TTCA, and 0.754 for Methionine-Cysteine (95 % CI: 0.589-0.919). These metabolites demonstrate a superior diagnostic capability relative to CA125, which has an AUC of 0.689 (95 % CI: 0.448-0.931). Among these biomarkers, Citrulline stands out as the most promising. Additionally, in the diagnosis of benign conditions and malignant OC, using logistic regression to combine potential biomarkers with CA125 has an AUC of 0.987 (95 % CI: 0.9708-1) has been proven to be more effective than relying solely on the traditional biomarker CA125 with an AUC of 0.933 (95 % CI: 0.870-0.996). Furthermore, among all the differential metabolites, lipid metabolites dominate, significantly impacting glycerophospholipid metabolism pathway. CONCLUSION: The discovered serum metabolite biomarkers demonstrate excellent diagnostic performance for distinguishing between benign conditions and malignant OC and for early diagnosis of malignant OC.

9.
Adv Healthc Mater ; : e2304421, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780250

ABSTRACT

Developing of small-molecule photothermal agents (PTAs) with good near-infrared-II (NIR-II) response for deeper tissue penetration and minimizing damage to healthy tissues has attracted much attention in photothermal therapy (PTT). However, concentrating ultra-long excitation wavelengths and high photothermal conversion efficiencies (PCEs) into a single organic small molecule is still challenging due to the lack of suitable molecular structures. Here, we synthesized six polymethine cyanine molecules based on the structure of ICG by increasing the conjugated structure of the two-terminal indole salts and the number of rigid methine units, and incorporating longer alkyl side chains into the indole salts. Ultimately, we obtained IC-1224 with an absorption wavelength of more than 1200 nm, which has a high PCE up to 83.2% in the NIR-II window and exhibits excellent PTT tumor ablation performance. This provides a high-performance NIR-II-responsive PTA, and offers further possibilities for the application of PTT in biomedical fields. This article is protected by copyright. All rights reserved.

10.
J Chem Phys ; 160(19)2024 May 21.
Article in English | MEDLINE | ID: mdl-38752536

ABSTRACT

The proton transport in one-dimensional (1D) confined water chains has been extensively studied as a model for ion channels in cell membrane and fuel cell. However, the mechanistic understanding of the proton transfer (PT) process in 1D water chains remains incomplete. In this study, we demonstrate that the two limiting structures of the hydrated excess proton, H5O2+ (Zundel) and H3O+ (linear H7O3+), undergo a change in dominance as the water chain grows, causing two co-existing and opposing PT mechanisms. Specifically, H5O2+ is stable in the middle of the chain, whereas H3O+ serves as a transition state (TS). Except for this region, H3O+ is stabilized while H5O2+ serves as a TS. The interaction analysis shows that the electrostatic interaction plays a crucial role in the difference in PT mechanisms. Our work fills a knowledge gap between the various PT mechanisms reported in bulk water and long 1D water chains, contributing to a deeper understanding of biological ion channels at the atomic level.

11.
Mini Rev Med Chem ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38752645

ABSTRACT

Nonalcoholic steatohepatitis (NASH), a multi-target disease, is becoming a global epidemic. Although several anti-NASH drug candidates are being evaluated in late-stage clinical trials, none have been approved by the FDA to date. Given the global prevalence of the disease, the lack of effective drugs, and the very limited therapeutic efficacy of most of the existing synthetic drugs focusing on a single target, there is an urgent need to continue to develop new therapeutic agents. In contrast, many natural products, including pure compounds and crude extracts, possess hepatoprotective activities. Usually, these natural components are characterized by multi-targeting and low side effects. Therefore, natural products are important resources for the development of new anti- NASH drugs. In this paper, we focus on reviewing the anti-NASH potential, structure, and some of the side effects of natural products based on structural classification. We hope this mini-review will help researchers design and develop new anti-NASH drugs, especially based on the structure of natural products.

12.
J Nanobiotechnology ; 22(1): 233, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725011

ABSTRACT

BACKGROUND: Dry Eye Disease (DED) is a prevalent multifactorial ocular disease characterized by a vicious cycle of inflammation, oxidative stress, and mitochondrial dysfunction on the ocular surface, all of which lead to DED deterioration and impair the patients' quality of life and social functioning. Currently, anti-inflammatory drugs have shown promising efficacy in treating DED; however, such drugs are associated with side effects. The bioavailability of ocular drugs is less than 5% owing to factors such as rapid tear turnover and the presence of the corneal barrier. This calls for investigations to overcome these challenges associated with ocular drug administration. RESULTS: A novel hierarchical action liposome nanosystem (PHP-DPS@INS) was developed in this study. In terms of delivery, PHP-DPS@INS nanoparticles (NPs) overcame the ocular surface transport barrier by adopting the strategy of "ocular surface electrostatic adhesion-lysosomal site-directed escape". In terms of therapy, PHP-DPS@INS achieved mitochondrial targeting and antioxidant effects through SS-31 peptide, and exerted an anti-inflammatory effect by loading insulin to reduce mitochondrial inflammatory metabolites. Ultimately, the synergistic action of "anti-inflammation-antioxidation-mitochondrial function restoration" breaks the vicious cycle associated with DED. The PHP-DPS@INS demonstrated remarkable cellular uptake, lysosomal escape, and mitochondrial targeting in vitro. Targeted metabolomics analysis revealed that PHP-DPS@INS effectively normalized the elevated level of mitochondrial proinflammatory metabolite fumarate in an in vitro hypertonic model of DED, thereby reducing the levels of key inflammatory factors (IL-1ß, IL-6, and TNF-α). Additionally, PHP-DPS@INS strongly inhibited reactive oxygen species (ROS) production and facilitated mitochondrial structural repair. In vivo, the PHP-DPS@INS treatment significantly enhanced the adhesion duration and corneal permeability of the ocular surface in DED mice, thereby improving insulin bioavailability. It also restored tear secretion, suppressed ocular surface damage, and reduced inflammation in DED mice. Moreover, it demonstrated favorable safety profiles both in vitro and in vivo. CONCLUSION: In summary, this study successfully developed a comprehensive DED management nanosystem that overcame the ocular surface transmission barrier and disrupted the vicious cycle that lead to dry eye pathogenesis. Additionally, it pioneered the regulation of mitochondrial metabolites as an anti-inflammatory treatment for ocular conditions, presenting a safe, efficient, and innovative therapeutic strategy for DED and other inflammatory diseases.


Subject(s)
Dry Eye Syndromes , Inflammation , Liposomes , Mitochondria , Oxidative Stress , Dry Eye Syndromes/drug therapy , Animals , Mitochondria/drug effects , Mitochondria/metabolism , Mice , Oxidative Stress/drug effects , Liposomes/chemistry , Inflammation/drug therapy , Humans , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/chemistry , Nanoparticles/chemistry , Antioxidants/pharmacology , Antioxidants/therapeutic use , Cornea/metabolism , Cornea/drug effects , Drug Delivery Systems , Oligopeptides
13.
Article in English | MEDLINE | ID: mdl-38783516

ABSTRACT

In vivo real-time qualitative and quantitative analysis is essential for the diagnosis and treatment of diseases such as tumors. Near-infrared-II (NIR-II, 1000-1700 nm) bioimaging is an emerging visualization modality based on fluorescent materials. The advantages of NIR-II region fluorescent materials in terms of reduced photon scattering and low tissue autofluorescence enable NIR-II bioimaging with high resolution and increasing depth of tissue penetration, and thus have great potential for in vivo qualitative and quantitative analysis. In this review, we first summarize recent advances in NIR-II imaging, including fluorescent probe selection, quantitative analysis strategies, and imaging. Then, we describe in detail representative applications to illustrate how NIR-II fluorescence imaging has become an important tool for in vivo quantitative analysis. Finally, we describe the future possibilities and challenges of NIR-II fluorescence imaging.

14.
Aging (Albany NY) ; 162024 May 22.
Article in English | MEDLINE | ID: mdl-38787354

ABSTRACT

Numerous studies have investigated the role of collagen type 1 α1 (COL1A1) polymorphisms in musculoskeletal soft tissue injuries (MSTIs), yielding conflicting results. This study was designed to synthesize existing evidence and clarify the relationship between COL1A1 polymorphisms and MSTI susceptibility. We conducted a comprehensive literature search using PubMed, Cochrane Library, Web of Science, EMBASE, and Wanfang databases. Associations were assessed using odds ratios (ORs) with 95% confidence intervals (95% CIs) across five genetic models. Subgroup analyses were performed based on ethnicity and injury type. Additionally, trial sequential analysis (TSA) was utilized to assess information size and statistical power. We analyzed a total of 16 articles from 358 retrieved studies, encompassing 2094 MSTI cases and 4105 controls. Our pooled data revealed that individuals with the TT genotype of the rs1800012 polymorphism had a significantly reduced risk of MSTIs (TT vs. GG, OR = 0.53, 95% CI 0.35-0.82, P = 0.004; TT vs. TG + GG, OR = 0.54, 95% CI 0.36-0.80, P = 0.002). Ethnicity-based stratification showed a significant association in Caucasians but not Asians. However, no significant association was observed between the rs1107946 polymorphism and MSTIs, regardless of ethnicity or injury type. TSA indicated that the sample sizes may have been insufficient to yield conclusive results. In conclusion, our study supports the protective effect of the TT genotype of the rs1800012 polymorphism against MSTIs, particularly among Caucasians. However, the rs1107946 polymorphism does not appear to influence MSTI susceptibility.

15.
Sci Total Environ ; 931: 172700, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38657815

ABSTRACT

Thermal stratification and mixing play important roles in the physicochemical composition of lakes and affect the geochemical cycle. However, the regulation of lake carbon exchange at the water-air interface by seasonal thermal structures remains unclear, especially for alpine saline lake on the Qinghai-Tibet Plateau (QTP). Based on continuous field sampling, carbon dioxide flux (FCO2) at the water-air interface in Qinghai Lake during the ice-free period was quantitatively analyzed by thin boundary layer model, as well as the driving factors of the change in FCO2 at the water-air interface. The findings revealed that the FCO2 was -22.16 ± 11.73 mmol m-2d-1 during the stratification period, and - 45.32 ± 29.67 mmol m-2d-1 during the mixing period. We found that thermal stratification limits the matter-energy exchange between the upper and bottom water columns, and carbonate precipitation results in a higher FCO2 than during mixing stage. However, the mixing process reduces the limiting effect of thermal stratification. During the carbonate process, water with higher salinity and pH at the bottom of the water column enters the upper part of the water column, reducing the partial pressure of carbon dioxide (pCO2) in the water column and causing the absorption of CO2 by the lake. Thermal stratification affects the vertical material-energy exchange and atmospheric CO2 uptake of lake. The present study further explains the possible underlying regulation of CO2 uptake in saline lake on the QTP involving the varied thermal structure.

16.
J Nanobiotechnology ; 22(1): 148, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570776

ABSTRACT

Kaempferol (KA), an natural antioxidant of traditional Chinese medicine (TCM), is extensively used as the primary treatment for inflammatory digestive diseases with impaired redox homeostasis. Severe acute pancreatitis (SAP) was exacerbated by mitochondrial dysfunction and abundant ROS, which highlights the role of antioxidants in targeting mitochondrial function. However, low bioavailability and high dosage of KA leading to unavoidable side effects limits clinical transformation. The mechanisms of KA with poor bioavailability largely unexplored, hindering development of the efficient strategies to maximizing the medicinal effects of KA. Here, we engineered a novel thioketals (TK)-modified based on DSPE-PEG2000 liposomal codelivery system for improving bioavailability and avoiding side effects (denotes as DSPE-TK-PEG2000-KA, DTM@KA NPs). We demonstrated that the liposome exerts profound impacts on damaging intracellular redox homeostasis by reducing GSH depletion and activating Nrf2, which synergizes with KA to reinforce the inhibition of inadequate fission, excessive mitochondrial fusion and impaired mitophagy resulting in inflammation and apoptosis; and then, the restored mitochondrial homeostasis strengthens ATP supply for PAC renovation and homeostasis. Interestingly, TK bond was proved as the main functional structure to improve the above efficacy of KA compared with the absence of TK bond. Most importantly, DTM@KA NPs obviously suppresses PAC death with negligible side effects in vitro and vivo. Mechanismly, DTM@KA NPs facilitated STAT6-regulated mitochondrial precursor proteins transport via interacting with TOM20 to further promote Drp1-dependent fission and Pink1/Parkin-regulated mitophagy with enhanced lysosomal degradation for removing damaged mitochondria in PAC and then reduce inflammation and apoptosis. Generally, DTM@KA NPs synergistically improved mitochondrial homeostasis, redox homeostasis, energy metabolism and inflammation response via regulating TOM20-STAT6-Drp1 signaling and promoting mitophagy in SAP. Consequently, such a TCM's active ingredients-based nanomedicine strategy is be expected to be an innovative approach for SAP therapy.


Subject(s)
Kaempferols , Pancreatitis , Humans , Acute Disease , Kaempferols/pharmacology , Kaempferols/metabolism , Protein Kinases/metabolism , Protein Kinases/pharmacology , Pancreatitis/drug therapy , Pancreatitis/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Inflammation/metabolism
17.
Front Plant Sci ; 15: 1341318, 2024.
Article in English | MEDLINE | ID: mdl-38559766

ABSTRACT

Seedling mode plays a crucial role in the rice production process, as it significantly affects the growth and development of seedlings. Among the various seedling modes, the seedling tray overlapping for seed emergence mode (STOSE mode) has been demonstrated to be effective in enhancing seedling quality. However, the impact of this mode on the germination and growth of seeds with varying plumpness remains uncertain. To investigate the effect of the STOSE mode on seedling emergence characteristics, growth uniformity, and nutrient uptake of seeds with varying plumpness levels, we conducted a study using super early rice Zhongzao 39 (ZZ39) as the test material. The seeds were categorized into three groups: plumped, mixed, and unplumped. The results indicated that the STOSE mode significantly improved the seedling rate for all types of seeds in comparison to the seedling tray nonoverlapping for seed emergence mode (TSR mode). Notably, the unplumped seeds exhibited the most pronounced enhancement effect. The soluble sugar content of the seeds increased significantly after 2 days of sowing under the STOSE mode, whereas the starch content exhibited a significant decrease. Furthermore, the STOSE mode outperformed the TSR mode in several aspects including seedling growth uniformity, aboveground dry matter mass, root traits, and nutrient uptake. Overall, the STOSE mode not only promoted the germination and growth of plumped and mixed seeds but also had a more pronounced impact on unplumped seeds.

18.
J Chem Phys ; 160(16)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38647312

ABSTRACT

Understanding and further regulating the degradation of mandrel materials is a key aspect of target fabrication in inertial confinement fusion (ICF). Here, a quasi-one-dimensional confinement model is developed using a series of single-walled carbon nanotubes with varying diameters (Dm), and the degradation of poly-α-methylstyrene (PAMS) as a typical mandrel material is investigated under such confined conditions by using the combined method of quantum mechanics and molecular mechanics. In comparison to the isolated system, the calculations show that confinement can decrease or increase the energy barriers of PAMS degradation, which directly depends on Dm. Following which a clear exponential relationship between the degradation rate of PAMS and its own density is derived, indicating that the density of PAMS can be used to regulate mandrel degradation. This work highlights the important effects of confinement on degradation and provides a valuable reference for further development of polymer degradation technologies in ICF target fabrication and other fields.

19.
Materials (Basel) ; 17(7)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38612049

ABSTRACT

The coal gangue coarse-aggregate content in ordinary concrete should not be too large. In order to further improve the utilization rate of coal gangue coarse aggregate, this study used the principle of "strong wrapped weak" to prepare high-performance concrete. This study considered four factors, namely, water-binder (W/B) ratios, non-spontaneous combustion coal gangue (NCCG) coarse-aggregate contents, fly ash-slag mass ratios, and silica fume coating to prepare high-performance concrete. The workability, mechanical, and durability properties were studied, and the changes in the interfacial transition zone (ITZ) of concrete before and after sulfate attack and freeze-thaw cycles were analyzed based on the SEM test. The life prediction of NCCG coarse-aggregate high-performance concrete was carried out based on the grey system GM(1,1) prediction model. The results show that the NCCG coarse-aggregate contents have the greatest effect on compressive strength, sulfate resistance, and frost resistance. The W/B ratio has the greatest effect on the anti-carbonization properties. Fly ash-slag mixing can obtain better durability. Considering the effect on the design service life of high-performance concrete, NCCG coarse aggregate is used to prepare high-performance concrete in North China, and the recommended content is 60%; in the Northwest and Northeast regions, the recommended content is 45%. This study provides a basis for the preparation of high-performance concrete with NCCG coarse aggregate.

20.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38675458

ABSTRACT

Acute alcoholic liver disease (ALD) resulting from short-term heavy alcohol consumption has become a global health concern. Moreover, anthocyanins have attracted much attention for their ability to prevent oxidation and inflammation. The present work evaluates the protective effects of Lycium ruthenicum Murray (LRM) against ALD and explores the possible underlying mechanism involved. The total anthocyanin content in LRM was 43.64 ± 9.28 Pt g/100 g dry weight. Mice were orally administered 50, 125, or 375 mg LRM/kg body weight (BW) for 21 days. On days 18-21, mice were orally administered 15 mL of ethanol/kg BW. Markers of liver damage, oxidative stress, and inflammation were examined. Furthermore, the modulatory effect of LRM on Nrf2/HO-1/NF-κB pathway molecules was evaluated through quantitative reverse transcription polymerase chain reaction (RT‒qPCR) and immunohistochemistry analyses. The difference between the groups indicated that LRM improved liver histopathology and the liver index, decreased aspartate transaminase, alanine transaminase, malondialdehyde, reactive oxygen species, IL-6, TNF-α, and IL-1ß expression, but elevated superoxide dismutase, catalase, and glutathione-s-transferase levels. Moreover, LRM upregulated Nrf2 and Ho-1 but downregulated Nf-κb and Tnf-α genes at the transcript level. In summary, LRM alleviated ethanol-induced ALD in mice by reducing oxidative damage and associated inflammatory responses. LRM protects against ALD by reducing damage factors and enhancing defense factors, especially via the Nrf2/HO-1/NF-κB pathway. Thus, LRM has application potential in ALD prophylaxis and treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...