Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Small ; : e2403350, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38988140

ABSTRACT

Conventional adhesives experience reduced adhesion when exposed to aqueous environments. The development of underwater adhesives capable of forming strong and durable bonds across various wet substrates is crucial in biomedical and engineering domains. Nonetheless, limited emphasis placed on retaining high adhesion strengths in different saline environments, addressing challenges such as elevated osmotic pressure and spontaneous dimensional alterations. Herein, a series of ionogel-based underwater adhesives are developed using a copolymerization approach that incorporates "dynamic complementary cross-linking" networks. Synergistic engineering of building blocks, cross-linking networks, pendant groups and counterions within ionogels ensures their adhesion and cohesion in brine spanning a wide salinity range. A high adhesion strength of ≈3.6 MPa is attained in freshwater. Gratifyingly, steady adhesion strengths exceeding 3.3 MPa are retained in hypersaline solutions with salinity ranging from 50 to 200 g kg-1, delivering one of the best-performing underwater adhesives suitable for diverse saline solutions. A combination of outstanding durability, reliability, deformation resistance, salt tolerance, and self-healing properties showcases the "self-contained" underwater adhesion. This study shines light on the facile fabrication of catechol-free ionogel-based adhesives, not merely boosting adhesion strengths in freshwater, but also broadening their applicability across various saline environments.

2.
Lipids Health Dis ; 23(1): 148, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762471

ABSTRACT

BACKGROUND: Previous evidence showed a possible link of dyslipidemia with bone health. Nevertheless, the correlation of remnant cholesterol (RC) with bone mineral density (BMD) has yet to be well investigated. This study investigated the association of RC with total spine BMD in general Americans. METHODS: This study explored the relationship of RC with total spine BMD in subjects aged ≥ 20 years from the National Health and Nutrition Examination Survey (NHANES) 2013-2018. After adjusting for covariates, multivariate linear regression and stratified analyses were conducted to determine the correlation of serum RC with total spine BMD in adult Americans. Restricted cubic spline (RCS) was applied to examine the nonlinear association of serum RC with total spine BMD. RESULTS: This study included 3815 individuals ≥ 20 years old, 1905 (49.93%) of whom were men and 1910 (50.07%) of whom were women. After adjusting for all covariates, the results showed a negative relationship of serum RC with total spine BMD (ß= -0.024, 95% CI: -0.039, -0.010). The interaction tests of age, sex, race, and BMI showed no statistically significant effects on the association. The RCS also indicated a negative linear correlation of serum RC with total spine BMD (nonlinear P = 0.068, overall P < 0.001). Moreover, RC had a stronger effect on total spine BMD than total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C). CONCLUSIONS: This study found that serum RC was negatively related to total spine BMD in U.S. adults. These findings emphasized the important role of RC in bone health in American adults.


Subject(s)
Bone Density , Cholesterol , Nutrition Surveys , Humans , Male , Female , Adult , Cholesterol/blood , Middle Aged , United States/epidemiology , Aged , Spine , Young Adult , Linear Models
3.
Mol Neurobiol ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775879

ABSTRACT

Autophagy is an intracellular recycling process that maintains cellular homeostasis by degrading excess or defective macromolecules and organelles. Chaperone-mediated autophagy (CMA) is a highly selective form of autophagy in which a substrate containing a KFERQ-like motif is recognized by a chaperone protein, delivered to the lysosomal membrane, and then translocated to the lysosome for degradation with the assistance of lysosomal membrane protein 2A. Normal CMA activity is involved in the regulation of cellular proteostasis, metabolism, differentiation, and survival. CMA dysfunction disturbs cellular homeostasis and directly participates in the pathogenesis of human diseases. Previous investigations on CMA in the central nervous system have primarily focus on neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease. Recently, mounting evidence suggested that brain injuries involve a wider range of types and severities, making the involvement of CMA in the bidirectional processes of damage and repair even more crucial. In this review, we summarize the basic processes of CMA and its associated regulatory mechanisms and highlight the critical role of CMA in brain injury such as cerebral ischemia, traumatic brain injury, and other specific brain injuries. We also discuss the potential of CMA as a therapeutic target to treat brain injury and provide valuable insights into clinical strategies.

4.
Chemistry ; 30(34): e202400322, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38629212

ABSTRACT

This study presents the synthesis and characterization of two fluorescent norbornadiene (NBD) photoswitches, each incorporating two conjugated pyrene units. Expanding on the limited repertoire of reported photoswitchable fluorescent NBDs, we explore their properties with a focus on applications in bioimaging of amyloid beta (Aß) plaques. While the fluorescence emission of the NBD decreases upon photoisomerization, aligning with what has been previously reported, for the first time we observed luminescence after irradiation of the quadricyclane (QC) isomer. We deduce how the observed emission is induced by photoisomerization to the excited state of the parent isomer (NBD) which is then the emitting species. Thorough characterizations including NMR, UV-Vis, fluorescence, X-ray structural analysis and density functional theory (DFT) calculations provide a comprehensive understanding of these systems. Notably, one NBD-QC system exhibits exceptional durability. Additionally, these molecules serve as effective fluorescent stains targeting Aß plaques in situ, with observed NBD/QC switching within the plaques. Molecular docking simulations explore NBD interactions with amyloid, unveiling novel binding modes. These insights mark a crucial advancement in the comprehension and design of future photochromic NBDs for bioimaging applications and beyond, emphasizing their potential in studying and addressing protein aggregates.


Subject(s)
Amyloid beta-Peptides , Fluorescent Dyes , Pyrenes , Fluorescent Dyes/chemistry , Pyrenes/chemistry , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/metabolism , Humans , Molecular Docking Simulation , Norbornanes/chemistry , Plaque, Amyloid/chemistry , Plaque, Amyloid/diagnostic imaging , Density Functional Theory , Isomerism , Spectrometry, Fluorescence
5.
J Med Chem ; 67(1): 467-478, 2024 01 11.
Article in English | MEDLINE | ID: mdl-38147641

ABSTRACT

Subcellular organelle mitochondria are becoming a key player and a driver of cancer. Mitochondrial targeting phototheranostics has attracted increasing attention for precise cancer therapy. However, those phototheranostic systems still face great challenges, including complex and multiple components, light scattering, and insufficient therapeutic efficacy. Herein, a molecular fluorophore IR-TPP-1100 was tactfully designed by molecular engineering for mitochondria-targeted fluorescence imaging-guided phototherapy in the second near-infrared window (NIR-II). IR-TPP-1100 not only exhibited prominent photophysical properties and high photothermal conversion efficiency but also achieved excellent mitochondria-targeting ability. The mitochondria-targeting IR-TPP-1100 enabled NIR-II fluorescence and photoacoustic dual-modality imaging of mitochondria at the organism level. Moreover, it integrated photothermal and photodynamic therapy, obtaining remarkable tumor therapeutic efficacy by inducing mitochondrial apoptosis. These results indicate that IR-TPP-1100 has great potential for precise cancer therapy and provides a promising strategy for developing mitochondria-targeting NIR-II phototheranostic agents.


Subject(s)
Nanoparticles , Neoplasms , Photochemotherapy , Humans , Phototherapy/methods , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Photochemotherapy/methods , Mitochondria , Theranostic Nanomedicine/methods , Cell Line, Tumor
6.
ACS Nano ; 18(2): 1599-1610, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38157218

ABSTRACT

Chaperone-mediated autophagy (CMA) is a lysosomal-dependent proteolysis pathway for the degradation of cytosolic proteins. However, exploiting CMA-mediated proteolysis to degrade proteins of interest in cancer therapy has not been widely applied. In this study, we develop a CMA-targeting chimera (CMATAC) to efficiently and specifically degrade signal transduction and activator of transcription 3 (STAT3) in tumor cells. CMATAC consists of STAT3 and heat shock cognate 70 kDa protein (HSC70) targeting peptides connected by a linker. To efficiently deliver CMATACs into tumor cells, lipid nanoparticles (LNPs) are used to encapsulate CMATACs (nCMATACs) and decorated with an insulin-like growth factor 2 receptor (IGF2R) targeting peptide (InCMATACs) to achieve tumor targeting and precise delivery. The CMA pathway is activated in tumor cells by a fasting-mimicking diet (FMD). Furthermore, FMD treatment strongly enhances the cellular uptake and tumor accumulation of InCMATACs by upregulating the IGF2R expression. As a result, InCMATACs efficiently degrade STAT3 protein in both A549 and HCC827 tumor cells and inhibit tumor growths in vivo. This study demonstrates that InCMATACs can be used for selective proteolysis in cancer therapy.


Subject(s)
Chaperone-Mediated Autophagy , Neoplasms , Humans , Autophagy , Neoplasms/metabolism , Proteolysis , HSC70 Heat-Shock Proteins/metabolism , Peptides/metabolism , Signal Transduction , Lysosomes/metabolism
7.
Chemistry ; 29(70): e202303168, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-37796081

ABSTRACT

Storing solar energy is a key challenge in modern science. MOlecular Solar Thermal (MOST) systems, in particular those based on azobenzene switches, have received great interest in the last decades. The energy storage properties of azobenzene (t1/2 <4 days; ΔH~270 kJ/kg) must be improved for future applications. Herein, we introduce peptoids as programmable supramolecular scaffolds to improve the energy storage properties of azobenzene-based MOST systems. We demonstrate with 3-unit peptoids bearing a single azobenzene chromophore that dynamics of the MOST systems can be tuned depending on the anchoring position of the photochromic unit on the macromolecular backbone. We measured a remarkable increase of the half-life of the metastable form up to 14 days at 20 °C for a specific anchoring site, significantly higher than the isolated azobenzene moiety, thus opening new perspectives for MOST development. We also highlight that liquid chromatography coupled to mass spectrometry does not only enable to monitor the different stereoisomers during the photoisomerization process as traditionally done, but also allows to determine the thermal back-isomerization kinetics.

8.
Arch Gerontol Geriatr ; 114: 105080, 2023 11.
Article in English | MEDLINE | ID: mdl-37269696

ABSTRACT

Mitochondrial dysfunction plays a crucial role in the development of glucocorticoid-induced osteoporosis (GIO). Cytidine monophosphate kinase 2 (Cmpk2), an essential mitochondria-associated gene, promotes the production of free mitochondrial DNA, which leads to the formation of inflammasome-mediated inflammatory factors. However, the specific role of Cmpk2 in GIO remains unclear. In this study, we report that glucocorticoids induce cellular senescence within the bone, particularly in bone marrow mesenchymal stem cells and preosteoblasts. We discovered that glucocorticoids cause mitochondrial dysfunction in preosteoblasts, increasing cellular senescence. Moreover, we observed elevated expression of Cmpk2 in preosteoblasts following glucocorticoid exposure. Inhibiting Cmpk2 expression alleviates glucocorticoid-induced cellular senescence and promotes osteogenic differentiation by improving mitochondrial function. Our study uncovers new mechanisms underlying glucocorticoid-induced senescence in stem cells and preosteoblasts, highlighting the potential of inhibiting the mitochondrial gene Cmpk2 to reduce senescence and enhance osteogenic differentiation. This finding offers a potential therapeutic approach for the treatment of GIO.


Subject(s)
Glucocorticoids , Osteoporosis , Humans , Glucocorticoids/adverse effects , Osteogenesis/genetics , Cell Differentiation/genetics , Osteoporosis/chemically induced , Osteoporosis/drug therapy , Osteoblasts/metabolism , Mitochondria/metabolism
9.
Int J Mol Sci ; 24(12)2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37373183

ABSTRACT

Ferroptosis, characterized by glutamate overload, glutathione depletion, and cysteine/cystine deprivation during iron- and oxidative-damage-dependent cell death, is a particular mode of regulated cell death. It is expected to effectively treat cancer through its tumor-suppressor function, as mitochondria are the intracellular energy factory and a binding site of reactive oxygen species production, closely related to ferroptosis. This review summarizes relevant research on the mechanisms of ferroptosis, highlights mitochondria's role in it, and collects and classifies the inducers of ferroptosis. A deeper understanding of the relationship between ferroptosis and mitochondrial function may provide new strategies for tumor treatment and drug development based on ferroptosis.


Subject(s)
Ferroptosis , Neoplasms , Humans , Cell Death , Iron/metabolism , Reactive Oxygen Species/metabolism , Mitochondria/metabolism , Neoplasms/metabolism , Lipid Peroxidation
10.
J Med Chem ; 66(9): 6263-6273, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37092695

ABSTRACT

Proteolysis-targeting chimera (PROTAC) has emerged as a promising strategy for degrading proteins of interest. Peptide-based PROTACs offer several advantages over small-molecule-based PROTACs, such as high specificity, low toxicity, and large protein-protein interaction surfaces. However, peptide-based PROTACs have several intrinsic shortcomings that strongly limit their application including poor cell permeability and low stability and potency. Herein, we designed a nanosized hybrid PROTAC (GNCTACs) to target and degrade human epidermal growth factor receptor 2 (HER2) in tumor cells. Gold nanoclusters (GNCs) were utilized to connect HER2-targeting peptides and cereblon (CRBN)-targeting ligands. GNCTACs could overcome the intrinsic barriers of peptide-based PROTACs, efficiently delivering HER2-targeting peptides in the cytoplasm and protecting them from degradation. Furthermore, a fasting-mimicking diet was applied to enhance the cellular uptake and proteasome activity. Consequently, more than 95% of HER2 in SKBR3 cells was degraded by GNCTACs, and the degradation lasted for at least 72 h, showing a catalytic-like reaction.


Subject(s)
Apoptosis , Proteins , Humans , Proteins/metabolism , Proteolysis , Ubiquitin-Protein Ligases/metabolism , Proteolysis Targeting Chimera
11.
Discov Nano ; 18(1): 32, 2023 03 06.
Article in English | MEDLINE | ID: mdl-36877371

ABSTRACT

Strong light-matter interaction plays a central role in realizing quantum photonic technologies. The entanglement state, which results from the hybridization of excitons and cavity photons, forms the foundation of quantum information science. In this work, an entanglement state is achieved by manipulating the mode coupling between surface lattice resonance and quantum emitter into the strong coupling regime. At the same time, a Rabi splitting of 40 meV is observed. A full quantum model based on the Heisenberg picture is used to describe this unclassical phenomenon, and it perfectly explains the interaction and dissipation process. In addition, the observed concurrency degree of the entanglement state is 0.5, presenting the quantum nonlocality. This work effectively contributes to the understanding of nonclassical quantum effects arising from strong coupling and will intrigue more interesting potential applications in quantum optics.

12.
Small ; 19(22): e2206053, 2023 06.
Article in English | MEDLINE | ID: mdl-36852618

ABSTRACT

The phototheranostics in the second near-infrared window (NIR-II) have proven to be promising for the precise cancer theranostics. However, the non-responsive and "always on" imaging mode lacks the selectivity, leading to the poor diagnosis specificity. Herein, a tumor microenvironment (TME) activated NIR-II phototheranostic nanoplatform (Ag2 S-Fe(III)-DBZ Pdots, AFD NPs) is designed based on the principle of Förster resonance energy transfer (FRET). The AFD NPs are fabricated through self-assembly of Ag2 S QDs (NIR-II fluorescence probe) and ultra-small semiconductor polymer dots (DBZ Pdots, NIR-II fluorescence quencher) utilizing Fe(III) as coordination nodes. In normal tissues, the AFD NPs maintain in "off" state, due to the FRET between Ag2 S QDs and DBZ Pdots. However, the NIR-II fluorescence signal of AFD NPs can be rapidly "turn on" by the overexpressed GSH in tumor tissues, achieving a superior tumor-to-normal tissue (T/NT) signal ratio. Moreover, the released Pdots and reduced Fe(II) ions provide NIR-II photothermal therapy (PTT) and chemodynamic therapy (CDT), respectively. The GSH depletion and NIR-II PTT effect further aggravate CDT mediated oxidative damage toward tumors, achieving the synergistic anti-tumor therapeutic effect. The work provides a promising strategy for the development of TME activated NIR-II phototheranostic nanoprobes.


Subject(s)
Nanoparticles , Neoplasms , Humans , Ferric Compounds , Photothermal Therapy , Neoplasms/diagnostic imaging , Neoplasms/therapy , Fluorescence Resonance Energy Transfer , Optical Imaging , Cell Line, Tumor , Tumor Microenvironment
13.
Angew Chem Int Ed Engl ; 62(11): e202218128, 2023 03 06.
Article in English | MEDLINE | ID: mdl-36647763

ABSTRACT

Proteolysis targeting chimeras (PROTACs) technology is an emerging approach to degrade disease-associated proteins. Here, we report carbon-dot (CD)-based PROTACs (CDTACs) that degrade membrane proteins via the ubiquitin-proteasome system. CDTACs can bind to programmed cell death ligand 1 (PD-L1), recruit cereblon (CRBN) to induce PD-L1 ubiquitination, and degrade them with proteasomes. Fasting-mimicking diet (FMD) is also used to enhance the cellular uptake and proteasome activity. More than 99 % or 90 % of PD-L1 in CT26 or B16-F10 tumor cells can be degraded by CDTACs, respectively. Furthermore, CDTACs can activate the stimulator of interferon genes (STING) pathway to trigger immune responses. Thus, CDTACs with FMD treatment effectively inhibit the growth of CT26 and B16-F10 tumors. Compared with small-molecule-based PROTACs, CDTACs offer several advantages, such as efficient membrane protein degradation, targeted tumor accumulation, immune system activation, and in vivo detection.


Subject(s)
Neoplasms , Proteasome Endopeptidase Complex , Humans , Proteasome Endopeptidase Complex/metabolism , Ubiquitin-Protein Ligases/metabolism , B7-H1 Antigen/metabolism , Proteolysis , Proteins/metabolism , Neoplasms/drug therapy , Immunotherapy
14.
Chem Sci ; 13(40): 11904-11911, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36320900

ABSTRACT

We report the first example of direct far-red triplet sensitized molecular photoswitching in a condensed phase wherein a liquid azobenzene derivative (Azo1) co-assembled within a liquid surfactant-protein film undergoes triplet sensitized Z-to-E photoswitching upon far-red/red light excitation in air. The role of triplet sensitization in photoswitching has been confirmed by quenching of sensitizer phosphorescence by Z-Azo1 and temperature-dependent photoswitching experiments. Herein, we demonstrate new biosustainable fabrication designs to address key challenges in solid-state photoswitching, effectively mitigating chromophore aggregation and requirement of high energy excitations by dispersing the photoswitch in the trapped liquid inside the solid framework and by shifting the action spectrum from blue-green light (450-560 nm) to the far-red/red light (740/640 nm) region.

15.
Article in English | MEDLINE | ID: mdl-36305787

ABSTRACT

Solar-powered interfacial evaporation has emerged as an innovative and sustainable technology for clean water production. However, the rapid, mass and shape-controlled fabrication of three-dimensional (3D) steam generators (SGs) for versatile hybrid applications remains challenging. Herein, composite aerogel beads with self-contained properties (i.e., hydrophilic, porous, photothermal, and durable) are developed and demonstrated for threefold hybrid applications including efficient solar-powered interfacial evaporation, water remediation, and controlled soil enrichment. The rational incorporation of selected polysaccharides enables us to fabricate bead-like aerogels with rapid gelation, continuous processing, and enhanced ion adsorption. The composite beads can attain a high water evaporation rate of 1.62 kg m-2 h-1 under 1 sun. Meanwhile, high phosphate adsorption capacity of over 120 mg g-1 is achieved in broad pH (2.5-12.4) and concentration (200-1000 mg L-1) ranges of phosphate solutions. Gratifyingly, we demonstrate the first example of recycling biomaterials from interfacial SGs for controlled nutrient release, soil enrichment, and sustainable agriculture. The phosphate-saturated beads can be gradually broken down in the soil. Macronutrients (N, P, and K) can be slowly released in 50 days, sustaining the plant germination and growth in a whole growth stage. This work shines light on the mass and controlled fabrication of aerogel beads based on double-network biopolymers, not merely scaling up solar-powered interfacial evaporation but also considering water remediation, waste material disposal, and value-added conversion.

16.
Materials (Basel) ; 15(14)2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35888480

ABSTRACT

Based on engineering practice and practical needs, this paper takes ordinary concrete specimens as the research object, and adopts a high-temperature true triaxial loading test system to carry out high-temperature uniaxial and true triaxial static compression tests of concrete under high-temperature conditions. By comparing with normal temperature conditions, this paper analyzes the influence of the coupling effect of high-temperature and biaxial unequal lateral pressure on the static mechanical properties of concrete. By analyzing the experimental data, we reached a series of conclusions and carried out theoretical research on this basis. High temperatures can significantly affect the uniaxial static pressure strength characteristics, deformation characteristics, and failure mode of concrete. When the temperature exceeds 400 °C, the compressive strength decreases significantly, the peak strain increases sharply, and the plasticity of concrete is further enhanced. The coupling effect of high-temperature deterioration and lateral pressure strengthening makes the true triaxial mechanical properties of concrete change significantly; 0.6:0.2 and 400 °C are the turning points of side pressure ratio and temperature that affect the change law of the true triaxial mechanical properties of concrete, respectively. Based on the study of the high-temperature deterioration factor and lateral pressure strengthening factor, this paper further puts forward a concrete strength formula under the coupling action of high temperature and biaxial unequal lateral pressure. It was verified that the formula has a high accuracy.

17.
Chem Sci ; 13(23): 6950-6958, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35774182

ABSTRACT

An optimal temperature is crucial for a broad range of applications, from chemical transformations, electronics, and human comfort, to energy production and our whole planet. Photochemical molecular thermal energy storage systems coupled with phase change behavior (MOST-PCMs) offer unique opportunities to capture energy and regulate temperature. Here, we demonstrate how a series of visible-light-responsive azopyrazoles couple MOST and PCMs to provide energy capture and release below 0 °C. The system is charged by blue light at -1 °C, and discharges energy in the form of heat under green light irradiation. High energy density (0.25 MJ kg-1) is realized through co-harvesting visible-light energy and thermal energy from the environment through phase transitions. Coatings on glass with photo-controlled transparency are prepared as a demonstration of thermal regulation. The temperature difference between the coatings and the ice cold surroundings is up to 22.7 °C during the discharging process. This study illustrates molecular design principles that pave the way for MOST-PCMs that can store natural sunlight energy and ambient heat over a wide temperature range.

18.
Sci Rep ; 12(1): 12928, 2022 Jul 28.
Article in English | MEDLINE | ID: mdl-35902715

ABSTRACT

This paper investigated the preparation method and the dispersion behaviour of Modified Carbon Nanotube-fiber Reinforcements (MCNF), the change laws and the effect mechanisms of dynamic compressive strength of MCNF concretes. Electrophoresis method was used to prepare MCNF and its interfacial shear performance was tested by interfacial shear strength (IFSS) test. In addition, the dispersion behavior of MCNF in simulated concrete solution was verified by turbidity method. Split Hopkinson Pressure Bar (SHPB), Scanning Electron Microscope (SEM) and Mercury Intrusion Porosimetry (MIP) tests were carried on concrete samples with different volume fractions (0%, 0.1%, 0.2%, 0.3%, 0.4%) of MCNF. The results show that carbon nanotubes are easier to deposit to the negative electrode, and the higher the content of polycarboxylate superplasticizer, the more obvious the dispersity of MCNF in alkaline environment. The dynamic compressive strength of MCNF concrete was 14.0-35.5% higher than that of untreated concrete, and reached the maximum when the MCNF content was about 0.3%. The MCNF was wrapped in concrete matrix and promoted hydration reaction of interface between cement and MCNF from microscopic observation. The addition of MCNF could increase the porosity. The volume percentage of ≥ 100 nm pore decreased first and then increased. Reasons for the improvement strength of MCNF concrete is that the bridging effect is stronger with the increase of MCNF content (≤ 0.3%) and limited when the MCNF content is equal to 0.4%. MCNF concrete could be used in actual engineering with high requirements for dynamic load.

19.
Chem Soc Rev ; 51(17): 7313-7326, 2022 Aug 30.
Article in English | MEDLINE | ID: mdl-35726574

ABSTRACT

Molecular solar thermal energy storage systems (MOST) offer emission-free energy storage where solar power is stored via valence isomerization in molecular photoswitches. These photoswitchable molecules can later release the stored energy as heat on-demand. Such systems are emerging in recent years as a vibrant research field that is rapidly transitioning from basic research to applications. Since a major part of the attention is focused on molecular design and engineering, MOST-based device development has not been systematically summarized and introduced to a broad audience. This tutorial review will discuss the most commonly used and developed devices from a chemical engineering point of view. It is expected that future developers of MOST technology could be inspired by the existing devices, keeping in mind the summarized essential practical challenges towards large-scale implementations and more innovative applications.

20.
Front Genet ; 13: 861954, 2022.
Article in English | MEDLINE | ID: mdl-35360863

ABSTRACT

In this paper, high-grade serous ovarian cancer (HGSOC) is studied, which is the most common histological subtype of ovarian cancer. We use a new analytical procedure to combine the bulk RNA-Seq sample for ovarian cancer, mRNA expression-based stemness index (mRNAsi), and single-cell data for ovarian cancer. Through integrating bulk RNA-Seq sample of cancer samples from TCGA, UCSC Xena and single-cell RNA-Seq (scRNA-Seq) data of HGSOC from GEO, and performing a series of computational analyses on them, we identify stemness markers and survival-related markers, explore stem cell populations in ovarian cancer, and provide potential treatment recommendation. As a result, 171 key genes for capturing stem cell characteristics are screened and one vital cancer stem cell subpopulation is identified. Through further analysis of these key genes and cancer stem cell subpopulation, more critical genes can be obtained as LCP2, FCGR3A, COL1A1, COL1A2, MT-CYB, CCT5, and PAPPA, are closely associated with ovarian cancer. So these genes have the potential to be used as prognostic biomarkers for ovarian cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...