Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Conserv Biol ; : e14311, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38853694

ABSTRACT

Conducting conservation research and establishing protected areas (PAs) based on research results are critical to biodiversity conservation. However, the effect of research and PAs on conservation of threatened species has rarely been evaluated simultaneously. We collected data on PAs from 2000 for 2021 and determined the number of publications on global primates (published from 1950 to 2021) to assess the effect of PAs, research, and biological and socioeconomic factors on the current International Union for Conservation of Nature endangered status and change in status. We used the MCMCglmm package to conduct a phylogenetic comparative analysis to control the phylogenetic relationship of primate species. The status of 24.6% (82 of 333) of species assessed at least twice declined. Only the black lion tamarin (Leontopithecus chrysopygus) had an improved status. Species with status declines mostly occurred on the south coast of West Africa and in Madagascar. PAs covered 22.1% of each species' range. Forest loss in PAs (5.5%) was significantly lower than forest loss within 5 km outside PAs (13.8%), suggesting PAs effectively mitigated forest loss. Both the median number of total publications and conservation publications on critically endangered species were higher than those of other categories. Models showed that PA coverage and number of publications or conservation-focused publications were not related to current status or change in status over time. A decline in status was not related to creation of PAs or increase of research since the last assessment. Our results suggest that current PAs and research are not reversing the extinction crisis of global primates. Doing more conservation-oriented research, strengthening management of current PAs, and expanding PAs will be needed to protect primates globally.


Efectos de la cobertura e investigación de áreas protegidas sobre el estado de conservación de los primates a nivel mundial Resumen La investigación para la conservación y la creación de áreas protegidas (AP) con base en sus resultados son de suma importancia para conservar la biodiversidad. Sin embargo, pocas veces se ha analizado de forma simultánea el efecto de la investigación y las AP sobre la conservación de especies amenazadas. Recolectamos datos sobre las AP entre el 2000 y el 2021 y determinamos el número de artículos sobre primates publicados entre 1950 y 2021 para evaluar el efecto de las AP, la investigación y los factores biológicos y socioeconómicos sobre el estado actual de en peligro y de cambio de estatus de la Unión Internacional para la Conservación de la Naturaleza. Usamos el paquete MCMCglmm para realizar un estudio filogenético comparativo para analizar la relación filogenética del estado de las especies y del cambio de estatus de primates. El estatus del 24.6% (82 de 333) de las especies analizadas declinó al menos dos veces. Solamente el tití leoncito (Leontopithecus chrysopygus) tuvo una mejoraría en su estado. Las especies con declinación en su estado se ubicaron principalmente en la costa sur del Oeste de África y en Madagascar. Las AP cubrieron el 22.1% de la distribución de cada especie. La pérdida de bosques en las AP (5.5%) fue mucho menor que la pérdida dentro de los primeros 5 km fuera de las AP (13.8%), lo que sugiere que las AP mitigan eficientemente la pérdida de bosque. Tanto el número medio de publicaciones totales como el de publicaciones sobre la conservación de especies en peligro crítico fue mayor que aquellos de cualquier otra categoría. Los modelos mostraron que la cobertura de AP y el número de publicaciones o de publicaciones enfocadas en la conservación no estaban relacionados con el estado actual o el cambio de estado. La declinación del estado no estuvo relacionada con la creación de AP o el incremento en la investigación desde nuestro último análisis. Nuestros resultados sugieren que la investigación y las AP actuales no están revirtiendo la crisis mundial de extinción de primates. Para proteger a los primates se necesitará realizar más investigación orientada a la conservación, fortalecer el manejo actual de las AP, así como expandirlas.

2.
Small ; : e2401719, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874065

ABSTRACT

Considering the potential threats posed by oily wastewater to the ecosystem, it is urgently in demand to develop efficient, eco-friendly, and intelligent oil/water separation materials to enhance the safety of the water environment. Herein, an intelligent hydrogel-coated wood (PPT/PPy@DW) membrane with self-healing, self-cleaning, and oil pollution detection performances is fabricated for the controllable separation of oil-in-water (O/W) emulsions and water-in-oil (W/O) emulsions. The PPT/PPy@DW is prepared by loading polypyrrole (PPy) particles on the delignified wood (DW) membranes, further modifying the hydrogel layer as an oil-repellent barrier. The layered porous structure and selective wettability endow PPT/PPy@DW with great separation performance for various O/W emulsions (≥98.69% for separation efficiency and ≈1000 L m-2 h-1 bar-1 for permeance). Notably, the oil pollution degree of PPT/PPy@DW can be monitored in real-time based on the changed voltage generated during O/W emulsion separation, and the oil-polluted PPT/PPy@DW can be self-cleaned by soaking in water to recover its separation performance. The high affinity of PPT/PPy@DW for water makes it effective in trapping water from the mixed surfactant-stabilized W/O emulsions. The prepared eco-friendly and low-cost multifunctional hydrogel wood membrane shows promising potential in on-demand oil/water separation and provides new ideas for the functional improvement of new biomass oil/water separation membrane materials.

3.
Environ Sci Technol ; 58(26): 11855-11863, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38875312

ABSTRACT

Polyamide (PA)-based nanofiltration (NF) membranes have demonstrated extensive applications for a sustainable water-energy-environment nexus. A rational control of interfacial polymerization (IP) is highly efficacious to enhance NF separation performance yet remains a technical challenge. Herein, we proposed a regulation strategy of constructing amphiphilic molybdenum disulfide/cetyltrimethylammonium bromide interlayer atop the Kevlar hydrogel substrate. The amphiphilic nanosheet interlayered NF membrane exhibited a crumpled PA surface with an elevated cross-linking degree of 76.9%, leading to an excellent water permeance (16.8 L m-2 h-1 bar-1) and an impressive Na2SO4 rejection (99.1%). Meanwhile, the selectivity coefficient of Na2SO4/NaCl of the optimized TFC membrane reached 91, surpassing those of the recently reported NF membranes. Moreover, the optimized membrane exhibited a desirable rejection of over 90% against Mn2+ and Cu2+ in actual textile wastewater. Importantly, the underlying NF membrane formation mechanism was elucidated via both experiments and molecular simulations. The synchronous control of mass and heat transfer of IP process offers a new methodology for the state-of-the-art membrane fabrication, which opens more avenues in softening of brackish water and purification of industrial wastewater containing heavy metal ions.


Subject(s)
Membranes, Artificial , Polymerization , Water Purification , Water Purification/methods , Nanostructures/chemistry , Molybdenum/chemistry
4.
Water Res ; 261: 122006, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38944970

ABSTRACT

Silica scaling imposes a significant limitation on the efficacy of membrane distillation (MD) in the treatment of hypersaline wastewater. The complex dynamic behaviors of silica at the membrane-water-air interface and the poor understanding of molecular-level anti-scaling mechanism hampers the development of effective antiscalants for mitigating silica scaling in MD. Despite using functional polymers to prevent silica polymerization, the inhibition mechanisms are unclear. Here, the kinetic process of silica scaling during MD and the potential anti-scaling mechanism of poly-ethylenimine (PEI) were investigated at the molecular level via molecular dynamics simulations. The investigation reveals that silica scales were more likely to adhere to the water-PTFE interface with a free energy potential well of -40.0 kJ mol-1 than that of the water-air interface with a -11.4 kJ mol-1 potential well. Silica scales falling at the water-air interface also migrated on the water-air interface until captured by the PTFE membrane. In this work, a representative functional amino-rich polymer PEI was constructed as silica inhibitors and its scale inhibition mechanism was elucidated. Notably, the inclusion of PEI increased the free-energy barriers for the silica polymerization reaction from 72.0 kJ mol-1 to 86.1 kJ mol-1, compared to scenarios without the antiscalants. Moreover, quantitative structure-activity relationships (QSAR) model of ΔGwater-silica was developed to predict the anti-scaling efficiencies of typical antiscalants based on machine learning method. These findings provide valuable insights into enhancing the efficiency of silica scaling mitigation strategies.

5.
Environ Sci Technol ; 58(13): 6039-6048, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38507701

ABSTRACT

Membrane distillation (MD) has attracted considerable interest in hypersaline wastewater treatment. However, its practicability is severely impeded by the ineffective interception of volatile organic compounds (VOCs), which seriously affects the product water quality. Herein, a hypercrosslinked alginate (Alg)/aluminum (Al) hydrogel composite membrane is facilely fabricated via Alg pregel formation and ionic crosslinking for efficient VOC interception. The obtained MD membrane shows a sufficient phenol rejection of 99.52% at the phenol concentration of 100 ppm, which is the highest rejection among the reported MD membranes. Moreover, the hydrogel composite membrane maintains a high phenol interception (>99%), regardless of the feed temperature, initial phenol concentration, and operating time. Diffusion experiments and molecular dynamics simulation verify that the selective diffusion is the dominant mechanism for VOCs-water separation. Phenol experiences a higher energy barrier to pass through the dense hydrogel layer compared to water molecules as the stronger interaction between phenol-Alg compared with water-Alg. Benefited from the dense and hydratable Alg/Al hydrogel layer, the composite membrane also exhibits robust resistance to wetting and fouling during long-term operation. The superior VOCs removal efficiency and excellent durability endow the hydrogel composite membrane with a promising application for treating complex wastewater containing both volatile and nonvolatile contaminants.


Subject(s)
Volatile Organic Compounds , Water Purification , Distillation , Hydrogels , Membranes, Artificial , Phenol
6.
Cancer Res ; 84(9): 1388-1395, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38488507

ABSTRACT

Since 2014, the NCI has launched a series of data commons as part of the Cancer Research Data Commons (CRDC) ecosystem housing genomic, proteomic, imaging, and clinical data to support cancer research and promote data sharing of NCI-funded studies. This review describes each data commons (Genomic Data Commons, Proteomic Data Commons, Integrated Canine Data Commons, Cancer Data Service, Imaging Data Commons, and Clinical and Translational Data Commons), including their unique and shared features, accomplishments, and challenges. Also discussed is how the CRDC data commons implement Findable, Accessible, Interoperable, Reusable (FAIR) principles and promote data sharing in support of the new NIH Data Management and Sharing Policy. See related articles by Brady et al., p. 1384, Pot et al., p. 1396, and Kim et al., p. 1404.


Subject(s)
Information Dissemination , National Cancer Institute (U.S.) , Neoplasms , Humans , United States , Neoplasms/metabolism , Information Dissemination/methods , Biomedical Research , Genomics/methods , Animals , Proteomics/methods
7.
Water Res ; 253: 121329, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38387269

ABSTRACT

Membrane fouling induced by oily substances significantly constrains membrane distillation performance in treating hypersaline oily wastewater. Overcoming this challenge necessitates a heightened fundamental understanding of the oil fouling phenomenon. Herein, the adsorption and penetration mechanism of oil droplets on hydrophobic membranes in membrane distillation process was investigated at the molecular level. Our results demonstrated that the adsorption and penetration of oil droplets were divided into four stages, including the free stage, contact stage, spreading stage, and equilibrium stage. Due to the extensive non-polar surface distribution of the polytetrafluoroethylene (PTFE) membrane (comprising 95.41 %), the interaction between oil molecules and PTFE was primarily governed by van der Waals interaction. Continuous oil droplet membrane fouling model revealed that the new oil droplet molecules preferred to penetrate into membrane pores where oil droplets already existed. The penetration of resin (a component of medium-quality oil droplets) onto PTFE membrane pores required the "pre-paving" of light crude oil. Finally, the ΔE quantitative structure-activity relationships (QSAR) models were developed to evaluate the penetration mechanism of pollutant molecules on the PTFE membrane. This research provides new insights for improving sustainable membrane distillation technologies in treating saline oily wastewater.


Subject(s)
Wastewater , Water Purification , Adsorption , Distillation , Membranes, Artificial , Water Purification/methods , Polytetrafluoroethylene
8.
Sci Total Environ ; 917: 170537, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38301792

ABSTRACT

Sulfonamide antibiotics (SAs) are widely used as a broad-spectrum antibiotic, leading to global concerns due to their potential soil accumulation and subsequent effects on ecosystems. SAs often exhibit remarkable environmental persistence, necessitating further investigation to uncover the ultimate destiny of these molecules. In this work, molecular dynamics simulations combined with complementary quantum chemistry calculations were employed to investigate the influence of pH on the behavior of sulfadiazine (SDZ, a typical SAs) in soil particle models (silica, one of the main components of soil). Meanwhile, the quantification of SDZ molecules aggregation potential onto silica was further extended. SDZ molecules tend to form a monolayer on the soil surface under acidic conditions while forming aggregated adsorption on the surface under neutral conditions. Due to the hydrophilicity of the silica, multiple hydration layers would form on its surface, hindering the further adsorption of SDZ molecules on its surface. The calculated soil-water partition coefficient (Psoil/water) of SDZ+ and SDZ were 9.01 and 7.02, respectively. The adsorption evaluation and mechanisms are useful in controlling the migration and transformation of SAs in the soil environment. These findings provide valuable insights into the interactions between SDZ and soil components, shedding light on its fate and transport in the environment.


Subject(s)
Anti-Bacterial Agents , Soil Pollutants , Anti-Bacterial Agents/analysis , Sulfadiazine/analysis , Soil/chemistry , Ecosystem , Sulfonamides , Sulfanilamide , Soil Pollutants/analysis , Silicon Dioxide , Water , Hydrogen-Ion Concentration
9.
ACS Appl Mater Interfaces ; 16(4): 5255-5267, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38240531

ABSTRACT

Supramolecular polymers offer promising potential for enhanced oil recovery (EOR) advancing techniques. Current instrumental analyses face limitations in capturing instantaneous intracomplex motions due to temporal and spatial constraints. The molecular mechanism of supramolecular polymer transport behavior within nanoconfinement is not yet fully understood. Therefore, the self-assembly mechanism of ß-cyclodextrin (ß-CD) and adamantane (ADA)-modified supramolecular polymers (p-AA-ß-CD-ADA) was delved into in this work. Further exploration focuses on the translocation dynamics of p-AA-ß-CD-ADA within nanoconfinement under external driving forces. Results suggest that ß-CD and ADA in p-AA-ß-CD-ADA were assembled into nodes in the form of a host and a guest, combining with a "node-rebar-cement" interaction model encapsulating the formation mechanism of these supramolecular polymers. The heightened density of the hydrate layers at the nanoscale pore throats acts as a constraining factor, resulting in restricted mobility and altered dynamics of the supramolecular polymers. During passage through nanopore throats, host-guest molecules within the supramolecular polymer experience noncovalent dissociation. Notably, these supramolecular polymers exhibit remarkable self-healing capabilities, reinstating their assembly state upon traversing pore throats. This work provides a molecular-level comprehension of the potential utility of supramolecular polymers in EOR processes, offering valuable information for the molecular design of polymers employed for EOR in low-permeability reservoirs.

10.
Nano Lett ; 24(2): 724-732, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38166126

ABSTRACT

Photothermal membrane distillation (PMD) has emerged as a promising and sustainable approach for seawater desalination and wastewater purification. However, the wide application of the technique is severely impeded by low freshwater production and membrane fouling/wetting issues. Herein, we developed an advanced hydrogel-engineered membrane with simultaneously enhanced photothermal conversion capacity and desired fouling and wetting resistance for PMD. By the synergies of photothermal Ti3C2Tx MXene nanosheets and the tannic acid-Fe3+ network in the hydrogel, the membrane was endowed with excellent surface self-heating ability, yielding the highest freshwater production rate (1.71 kg m-2 h-1) and photothermal efficiency among the fabricated hydrogel composite membranes under 1 sun irradiation. Meanwhile, the PMD membrane could robustly resist oil-induced fouling and surfactant-induced wetting, significantly extending the membrane lifespan in treating contaminated saline water. Furthermore, when desalinating real seawater, the membrane exhibited superior durability with a stable vapor flux and excellent ion rejection (e.g., 99.24% for boron) for 100 h.

11.
ACS Appl Mater Interfaces ; 16(2): 2624-2636, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38166459

ABSTRACT

Using membrane materials to purify viscous watery oil from industrial production processes and accidental oil spills is of great importance but still challenging. Based on the excellent electrical conductivity and electric-thermal conversion of poly(pyrrole) (PPy), a hydrophobic PPy-modified micro-fibrillated cellulose membrane (P-CP) was successfully prepared. The size of the P-CP membrane can be customized to meet specific requirements. In this research, the membrane diameter is capable of reaching 24 cm. By applying a voltage ranging from 0 to 12 V, the surface temperature of the P-CP membrane can be elevated to roughly 120 °C. After 10 cycles of heating and cooling under 12 V voltage, the electric-thermal curves, surface hydrophobicity, and pore structure of P-CP membrane can remain stable, which suggests remarkable electric-thermal stability and reliability despite prolonged operation. The P-CP membrane shows good linearity between voltage and current (R2 = 0.997) and easy temperature control from room temperature to ∼120 °C at low supply voltage (0-12 V). Under the condition of 12 V power supply and self-gravity, the separation flux of the P-CP membrane for water-in-oil (W/O) emulsions (kerosene, diesel) is 2-3 times higher than that at room temperature, and the separation efficiency is also improved. Importantly, the P-CP membrane shows excellent separation performance for high viscosity water-in-crude oil emulsions, with a separation flux of 40 L m-2 h-1 by gravity. Compared to the situation without electricity, the separation flux of water-in-crude oil emulsion has increased four-fold. The joule heating of the P-CP membrane expands its service time and application scenarios, demonstrating its great application prospects in actual viscous oil-water emulsion separation.

12.
J Appl Psychol ; 109(6): 811-828, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38270991

ABSTRACT

Leader bottom-line mentality (LBLM) exists when leaders solely focus on securing bottom-line outcomes to the exclusion of alternative considerations. Our research examines why leaders adopt LBLMs and the implications of this focused leadership strategy on team sales performance and pro-environmental behavior. Utilizing social information processing theory, we examine LBLM as a mediator and contend that competitive action intensity in the work environment provokes LBLM, which then signals to teams the importance of raising sales performance and reducing pro-environmental behavior. We also suggest that leader performance reward expectancy (i.e., perceptions that rewards are directly tied to high performance) serves as a first-stage moderator and team performance reward expectancy serves as a second-stage moderator, with higher (vs. lower) levels of each strengthening the indirect effects of competitive action intensity, through LBLM, onto team sales performance and pro-environmental behavior. Utilizing field data from a large pharmaceutical company (Study 1) as well as an experimental causal chain design (Studies 2a and 2b), we found support for our theoretical model. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Subject(s)
Competitive Behavior , Leadership , Humans , Adult , Male , Female , Group Processes , Work Performance , Employment/psychology
13.
Water Res ; 249: 120914, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38007899

ABSTRACT

The fouling of seawater reverse osmosis (SWRO) membranes remains a persistent challenge in desalination. Previous research has focused mainly on fouling separately; however, organic, inorganic, and biofouling can coexist and influence each other. Hence, in-depth study of the spatiotemporal changes in actual combined fouling in full-scale seawater desalination will provide more effective information for fouling investigation and control. In this study, we monitored (i) the operational performance of a full-scale desalination plant for 7 years and (ii) the development and characterization of membrane and spacer fouling at different locations of spiral-wound membrane modules sampled after 2.5-, 3.5-, and 7-year operation. The findings showed that (i) operational performance indicators declined with time (normalized flux 40 % reduction, salt rejection 2 % in 7 years), with a limited effect of the 20-day cleaning frequency, (ii) fouling accumulation in the membrane module mainly occurred at the feed side of the lead module and the microbial community in these area exhibited the highest diversity, (iii) the dominant microbial OTUs belonged mainly to Proteobacteria (43-70 %), followed by Bacteroidetes (10-11 %), (iv) Phylogenetic molecular ecological networks and Spearman correlation analysis revealed that Chloroflexi (Anaerolineae) and Planctomycetes were keystone species in maintaining the community structure and biofilm maturation and significantly impacted the foulant content on the SWRO membrane, even with low abundance, and that (v) fouling accumulation was composed of polysaccharides, soluble microbial products, marine humic acid-like substances, and inorganic Ca/Fe/Mg/Si dominate the fouling layer of both the membrane and spacer. Overall, variation partitioning analysis quantitatively describes the increasing contribution of biofouling over time. Ultimately, the organic‒inorganic-biofouling interaction (70 %) significantly contributed to the overall fouling of the membrane after 7 years of operation. These results can be used to develop more targeted fouling control strategies to optimize SWRO desalination plant design and operation.


Subject(s)
Biofouling , Water Purification , Phylogeny , Membranes, Artificial , Water Purification/methods , Osmosis , Seawater/chemistry
14.
Water Res ; 249: 120945, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38043352

ABSTRACT

Nanoplastics (NPs) are a prevalent type of emerging pollutant in marine environment. However, their fouling behavior and impact on reverse osmosis (RO) membrane performance remain unexplored. We investigated the relationship between polystyrene (PS), one of the most abundant NPs, with silica scaling and humic acid (HA) fouling in RO. The results demonstrated that the surface potential of NPs played an important role in the combined scaling and fouling process. Compared with the negatively charged NPs (original PS and carboxyl group modified PS, PS-COOH), the amino-functionalized PS (PS-NH2) with positive surface charge significantly accelerated membrane scaling/fouling and induced a synergistic water flux decline, due to the strong electrostatic attraction between PS-NH2, foulants, and the membrane surface. The amino groups acted as binding sites, which promoted the heterogeneous nucleation of silica and adsorption of HA, then formed stable composite pollutants. Thermodynamic analysis via isothermal titration calorimetry (ITC) further confirmed the spontaneous formation of stable complexes between PS-NH2 and silicates/HA. Our study provides new insights into the combined NPs fouling with other scalants or foulants, and offers guidance for the accurate prediction of RO performance in the presence of NPs.


Subject(s)
Microplastics , Water Purification , Osmosis , Water Purification/methods , Membranes, Artificial , Silicon Dioxide , Polystyrenes , Humic Substances
15.
Chemosphere ; 350: 140999, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38151066

ABSTRACT

In this study, machine learning-based models were established for layer-by-layer (LBL) nanofiltration (NF) membrane performance prediction and polymer candidate exploration. Four different models, i.e., linear, random forest (RF), boosted tree (BT), and eXtreme Gradient Boosting (XGBoost), were formed, and membrane performance prediction was determined in terms of membrane permeability and selectivity. The XGBoost exhibited optimal prediction accuracy for membrane permeability (coefficient of determination (R2): 0.99) and membrane selectivity (R2: 0.80). The Shapley Additive exPlanation (SHAP) method was utilized to evaluate the effects of different LBL NF membrane fabrication conditions on membrane performances. The SHAP method was also used to identify the relationships between polymer structure and membrane performance. Polymers were represented by Morgan fingerprint, which is an effective description approach for developing modeling. Based on the SHAP value results, two reference Morgan fingerprints were constructed containing atomic groups with positive contributions to membrane permeability and selectivity. According to the reference Morgan fingerprint, 204 potential polymers were explored from the largest polymer database (PoLyInfo). By calculating the similarities between each potential polymer and both reference Morgan fingerprints, 23 polymer candidates were selected and could be further used for LBL NF membrane fabrication with the potential for providing good membrane performance. Overall, this work provided new ways both for LBL NF membrane performance prediction and high-performance polymer candidate exploration. The source code for the models and algorithms used in this study is publicly available to facilitate replication and further research. https://github.com/wangliwfsd/LLNMPP/.


Subject(s)
Algorithms , Machine Learning , Membranes , Databases, Factual , Polymers
16.
Environ Sci Technol ; 57(41): 15725-15735, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37787747

ABSTRACT

Membrane distillation (MD) is considered to be rather promising for high-salinity wastewater reclamation. However, its practical viability is seriously challenged by membrane wetting, fouling, and scaling issues arising from the complex components of hypersaline wastewater. It remains extremely difficult to overcome all three challenges at the same time. Herein, a nanocomposite hydrogel engineered Janus membrane has been facilely constructed for desired wetting/fouling/scaling-free properties, where a cellulose nanocrystal (CNC) composite hydrogel layer is formed in situ atop a microporous hydrophobic polytetrafluoroethylene (PTFE) substrate intermediated by an adhesive layer. By the synergies of the elevated membrane liquid entry pressure, inhibited surfactant diffusion, and highly hydratable surface imparted by the hydrogel/CNC (HC) layer, the resultant HC-PTFE membrane exhibits robust resistance to surfactant-induced wetting and oil fouling during 120 h of MD operation. Meanwhile, owing to the dense and hydroxyl-abundant surface, it is capable of mitigating gypsum scaling and scaling-induced wetting, resulting in a high normalized flux and low distillate conductivity at a concentration factor of 5.2. Importantly, the HC-PTFE membrane enables direct desalination of real hypersaline wastewater containing broad-spectrum foulants with stable vapor flux and robust salt rejection (99.90%) during long-term operation, demonstrating its great potential for wastewater management in industrial scenarios.


Subject(s)
Wastewater , Water Purification , Nanogels , Distillation/methods , Water Purification/methods , Membranes, Artificial , Hydrogels , Polytetrafluoroethylene , Surface-Active Agents
17.
J Hazard Mater ; 460: 132353, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37657327

ABSTRACT

The frequent occurrence of oil spills has led to serious environmental pollution and ecological issues. Given the high-viscosity of crude oil, it is essential to develop sorbents with efficient viscosity reduction and sorption capacity in various environmental conditions. Herein, a superhydrophobic carboxymethyl cellulose (CMC) aerogel co-modified by MXene and graphene jointly (M-Mxene/Gr CA) with aligned channels structure was prepared. The aligned channels structure can effectively improve the longitudinal thermal conductivity and reduce the sorption resistance. Through the modification of MXene and graphene, the aerogel realized efficient photo/electro-thermal conversion, thus ensuring its adaption to various working environments. The rapid heat generation can significantly reduce the viscosity of crude oil, achieving rapid recovery. Under one sun illumination (1.0 kW/m2), the surface temperature of M-Mxene/Gr CA can reach 72.6 °C and its sorption capability for high-viscous crude oil reaches 18 g/g. Combining photo-thermal and electro-thermal (0.5 kW/m2 and 23 V), the average sorption rate of crude oil can reach 1.3 × 107 g m-3 s-1. Finally, we present a continuous sorption system to recover offshore oil spills under the assistance of a pump. This work provides a new option for tackling high-viscous offshore oil spills due to its environmental friendliness and fast sorption capacity.

18.
ACS Appl Mater Interfaces ; 15(40): 46952-46961, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37774146

ABSTRACT

Uranium extraction from seawater is a potential technique that will change the world. Adsorption capacity, selectivity, and antibacterial ability for high-performance uranium adsorbents remain the major challenges. In this study, a dual-ligand zeolitic imidazolate framework 8 (ZIF-8) decorated with cyano groups (ZIF-8-CN) is prepared via a facile blend strategy at room temperature. Owing to the abundant mesopores and nitrogen functional groups, ZIF-8-CN shows an extremely high uranium uptake of 1000 mg/g at pH = 6, which is 2.42 times that of pristine ZIF-8. Noteworthily, ZIF-8-CN possesses a 16.2 mg/g uranium adsorption in natural seawater within 28 days, and the distribution coefficient (Kd = 3.25 × 106 mL/g) is far greater than that for other coexisting metal ions, demonstrating a marked preference for uranyl ions. Except for the coordination between uranium and nitrogen in imidazole, the cyano groups provide additional adsorption sites and preferentially bind to uranyl, thereby strengthening the affinity for uranyl. Notably, ZIF-8-CN displays ultrastrong antimicrobial ability against both Escherichia coli and Staphylococcus aureus, which is greatly desired for the scale-up marine tests. Our study demonstrates the high potential of ZIF-8-CN in uranium capture and provides a wide scope for the application of mixed-ligand MOFs.

19.
Am J Cancer Res ; 13(8): 3315-3323, 2023.
Article in English | MEDLINE | ID: mdl-37693133

ABSTRACT

Th22 cells are a newly identified subpopulation of CD4+ T lymphocytes distinct from Th1, Th2, and Th17 cells, which secretes mainly interleukin-22 (IL-22), in addition to a variety of other cytokines. The function of Th22 cells in tumors is mainly realized through IL-22, which can activate JAK/STAT and MAPK cell signaling pathways, thereby regulating the anti-tumor immune response of the body. The main function of Th22 cells is to participate in mucosal defense, tissue repair, and wound healing. However, controversial data have shown that overexpression of IL-22 can lead to pathological changes under inflammatory conditions and tumor progression. In this review, we searched the PubMed and Web of Science databases for articles and reviews published before May 6, 2022, using the keywords "Th22 cells, T helper 22 cells, cancer, tumor", and conducted a comprehensive review of the relevant literature. In addition, this article offers an overview of the relevant findings on the function of Th22 cells in tumors published in recent years, along with a more comprehensive analysis of the functions and mechanisms of Th22 cells in tumors. This article will hopefully inspire new future directions in the research on cancer therapy.

20.
Water Res ; 244: 120483, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37633212

ABSTRACT

Antibiotics bring potential risks to human health and ecosystem, and their coexistence with natural organic matters (NOMs) could have harmful impacts on the environment. Herein, a polyaluminium chloride (PAC)-polydimethyl diallyl ammonium chloride (PDMDAAC) dual coagulation process was designed to remove the co-pollutants of chlortetracycline (CTC) and humic acid (HA), representing antibiotics and NOMs, respectively. The main research strength was given to understand molecular interactions and their mechanisms associated with the coagulation and flocculation. We found that the co-existing HA and CTC increased the hydrophily and stability of contaminants, and generated HA@CTC complexes with large particles size. The interaction mechanism between CTC and HA was mainly hydrogen bonding, hydrophobic association action, n-π* electron donor-acceptor interaction, and π-π* conjugation. Lewis acid-base interaction was the main force between HA and CTC. The bonding energies of OH…N, OH…O, and hydrophobic association were -12.2 kcal/mol, -13.1 kcal/mol, and -11.4 kcal/mol, respectively, indicating that hydrogen bonding was stronger than hydrophobic association. The interactions between HA and CTC could improve their removal efficiency in the coagulation process. This is due to that the functional groups (COOH and OH) in the HA@CTC could be adsorbed by Al based hydrolysates. Polar interaction dominated the CTC and HA removal, and PAC was more efficient than PDMDAAC to remove HA@CTC complexes due to its higher complexing capacity. Thanks to the low concentration of residual contaminants and the formation of large and loose flocs, the interaction of HA and CTC could alleviate membrane fouling during ultrafiltration process. This study will provide new insight into the efficient removal of combined pollution and membrane fouling control.


Subject(s)
Chlortetracycline , Water Purification , Humans , Anti-Bacterial Agents , Ecosystem , Aluminum Hydroxide , Ultrafiltration , Humic Substances/analysis , Membranes, Artificial , Flocculation
SELECTION OF CITATIONS
SEARCH DETAIL
...