Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 139
Filter
1.
Adv Sci (Weinh) ; : e2401944, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38704733

ABSTRACT

2D magnetic materials hold substantial promise in information storage and neuromorphic device applications. However, achieving a 2D material with high Curie temperature (TC), environmental stability, and multi-level magnetic states remains a challenge. This is particularly relevant for spintronic devices, which require multi-level resistance states to enhance memory density and fulfil low power consumption and multi-functionality. Here, the synthesis of 2D non-layered triangular and hexagonal magnetite (Fe3O4) nanosheets are proposed with high TC and environmental stability, and demonstrate that the ultrathin triangular nanosheets show broad antiphase boundaries (bAPBs) and sharp antiphase boundaries (sAPBs), which induce multiple spin precession modes and multi-level resistance. Conversely, the hexagonal nanosheets display slip bands with sAPBs associated with pinning effects, resulting in magnetic-field-driven spin texture reversal reminiscent of "0" and "1" switching signals. In support of the micromagnetic simulation, direct explanation is offer to the variation in multi-level resistance under a microwave field, which is ascribed to the multi-spin texture magnetization structure and the randomly distributed APBs within the material. These novel 2D magnetite nanosheets with unique spin textures and spin dynamics provide an exciting platform for constructing real multi-level storage devices catering to emerging information storage and neuromorphic computing requirements.

2.
Analyst ; 149(10): 2956-2965, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38597984

ABSTRACT

Glioblastoma is the most fatal and insidious malignancy, due to the existence of the blood-brain barrier (BBB) and the high invasiveness of tumor cells. Abnormal mitochondrial viscosity has been identified as a key feature of malignancies. Therefore, this study reports on a novel fluorescent probe for mitochondrial viscosity, called ZVGQ, which is based on the twisted intramolecular charge transfer (TICT) effect. The probe uses 3-dicyanomethyl-1,5,5-trimethylcyclohexene as an electron donor moiety and molecular rotor, and triphenylphosphine (TPP) cation as an electron acceptor and mitochondrial targeting group. ZVGQ is highly selective, pH and time stable, and exhibits rapid viscosity responsiveness. In vitro experiments showed that ZVGQ could rapidly recognize to detect the changes in mitochondrial viscosity induced by nystatin and rotenone in U87MG cells and enable long-term imaging for up to 12 h in live U87MG cells. Additionally, in vitro 3D tumor spheres and in vivo orthotopic tumor-bearing models demonstrated that the probe ZVGQ exhibited exceptional tissue penetration depth and the ability to penetrate the BBB. The probe ZVGQ not only successfully visualizes abnormal mitochondrial viscosity changes, but also provides a practical and feasible tool for real-time imaging and clinical diagnosis of glioblastoma.


Subject(s)
Fluorescent Dyes , Glioblastoma , Mitochondria , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Humans , Glioblastoma/diagnostic imaging , Glioblastoma/pathology , Mitochondria/metabolism , Viscosity , Cell Line, Tumor , Animals , Mice , Mice, Nude , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Optical Imaging
3.
Adv Mater ; : e2400639, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664988

ABSTRACT

Lithium-sulfur (Li-S) batteries, operated through the interconversion between sulfur and solid-state lithium sulfide, are regarded as next-generation energy storage systems. However, the sluggish kinetics of lithium sulfide deposition/dissolution, caused by its insoluble and insulated nature, hampers the practical use of Li-S batteries. Herein, leaf-like carbon scaffold (LCS) with the modification of Mo2C clusters (Mo2C@LCS) is reported as host material of sulfur powder. During cycles, the dissociative Mo ions at the Mo2C@LCS/electrolyte interface are detected to exhibit competitive binding energy with Li ions for lithium sulfide anions, which disrupts the deposition behavior of crystalline lithium sulfide and trends a shift in the configuration of lithium sulfide toward an amorphous structure. Combining the related electrochemical study and first-principle calculation, it is revealed that the formation of amorphous lithium sulfides shows significantly improved kinetics for lithium sulfide deposition and decomposition. As a result, the obtained Mo2C@LCS/S cathode shows an ultralow capacity decay rate of 0.015% per cycle at a high mass loading of 9.5 mg cm-2 after 700 cycles. More strikingly, an ultrahigh sulfur loading of 61.2 mg cm-2 can also be achieved. This work defines an efficacious strategy to advance the commercialization of Mo2C@LCS host for Li-S batteries.

4.
Adv Sci (Weinh) ; : e2310166, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38544352

ABSTRACT

Advanced lithium-ion batteries (LIBs) are crucial to portable devices and electric vehicles. However, it is still challenging to further develop the current anodic materials such as graphite due to the intrinsic limited capacity and sluggish Li-ion diffusion. Indium nitride (InN), which is a new type of anodic material with low redox potential (<0.7 V vs Li/Li+) and narrow bandgap (0.69 eV), may serve as a new high-energy density anode material for LIBs. Here, the growth of 1D single crystalline InN nanowires is reported on Au-decorated carbon fibers (InN/Au-CFs) via chemical vapor deposition, possessing a high aspect ratio of 400. The binder-free Au-CFs with high conductivity can provide abundant sites and enhance binding force for the dense growth of InN nanowires, displaying shortened Li ion diffusion paths, high structural stability, and fast Li+ kinetics. The InN/Au-CFs can offer stable and high-rate Li delithiation/lithiation without Li deposition, and achieve a remarkable capacity of 632.5 mAh g-1 at 0.1 A g-1 after 450 cycles and 416 mAh g-1 at a high rate of 30 A g-1. The InN nanowires as battery anodes shall hold substantial promise for fulfilling superior long-term cycling performance and high-rate capability for advanced LIBs.

5.
Adv Mater ; : e2402071, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38382487

ABSTRACT

Photocatalytic reduction of CO2 to energy carriers is intriguing in the industry but kinetically hard to fulfil due to the lack of rationally designed catalysts. A promising way to improve the efficiency and selectivity of such reduction is to break the structural symmetry of catalysts by manipulating coordination. Here, inspired by analogous CoO6 and CoSe6 octahedral structural motifs of the Co(OH)2 and CoSe, a hetero-anionic coordination strategy is proposed to construct a symmetry-breaking photocatalyst prototype of oxygen-deficient Se-doped cobalt hydroxide upon first-principles calculations. Such involvement of large-size Se atoms in CoO6 octahedral frameworks experimentally lead to the switching of semiconductor type of cobalt hydroxide from p to n, generation of oxygen defects, and amorphization. The resultant oxygen-deficient Se,O-coordinated Co-based amorphous nanosheets exhibit impressive photocatalytic performance of CO2 to CO with a generation rate of 60.7 µmol g-1  h-1 in the absence of photosensitizer and scavenger, superior to most of the Co-based photocatalysts. This work establishes a correlation between the symmetry-breaking of catalytic sites and CO2 photoreduction performances, opening up a new paradigm in the design of amorphous photocatalysts for CO2 reduction.

6.
Biosens Bioelectron ; 251: 116123, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38359670

ABSTRACT

Breast cancer lung metastases (BCLM) are a major cause of high mortality in patients. The shortage of therapeutic targets and rapid drug screening tools for BCLM is a major challenge at present. Mitochondrial autophagy, which involves the degradation of proteins associated with cancer cell aggressiveness, represents a possible therapeutic approach for the treatment of BCLM. Herein, four fluorescent biosensors with different alkyl chains were designed and synthesized to monitor mitochondrial autophagy. Among them, PMV-12 demonstrated the highest sensitivity to viscosity variance, the least impact on polarity, and the longest imaging time. The introduction of the C12-chain made PMV-12 anchored in the mitochondrial membrane without being disturbed by changes of the mitochondrial membrane potential (MMP), thereby achieving the long-term monitor in situ for mitochondrial autophagy. Mitochondria stained with PMV-12 induced swelling and viscosity increase after treating with apigenin, which indicated that apigenin is a potential mitochondrial autophagy inducer. Apigenin was subsequently verified to inhibit cancer cell invasion by 92%. Furthermore, PMV-12 could monitor the process of BCLM in vivo and evaluate the therapeutic effects of apigenin. This work provides a fluorescent tool for elucidating the role of mitochondrial autophagy in the BCLM process and for anti-metastatic drug development.


Subject(s)
Biosensing Techniques , Breast Neoplasms , Lung Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Apigenin/metabolism , Apigenin/pharmacology , Apigenin/therapeutic use , Autophagy , Lung Neoplasms/pathology , Mitochondria/metabolism , Coloring Agents
7.
Adv Mater ; 36(14): e2310918, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38170168

ABSTRACT

Despite of urgent needs for highly stable and efficient electrochemical water-splitting devices, it remains extremely challenging to acquire highly stable oxygen evolution reaction (OER) electrocatalysts under harsh industrial conditions. Here, a successful in situ synthesis of FeCoNiMnCr high-entropy alloy (HEA) and high-entropy oxide (HEO) heterocatalysts via a Cr-induced spontaneous reconstruction strategy is reported, and it is demonstrated that they deliver excellent ultrastable OER electrocatalytic performance with a low overpotential of 320 mV at 500 mA cm-2 and a negligible activity loss after maintaining at 100 mA cm-2 for 240 h. Remarkably, the heterocatalyst holds outstanding long-term stability under harsh industrial condition of 6 m KOH and 85 °C at a current density of as high as 500 mA cm-2 over 500 h. Density functional theory calculations reveal that the formation of the HEA-HEO heterostructure can provide electroactive sites possessing robust valence states to guarantee long-term stable OER process, leading to the enhancement of electroactivity. The findings of such highly stable OER heterocatalysts under industrial conditions offer a new perspective for designing and constructing efficient high-entropy electrocatalysts for practical industrial water splitting.

8.
Adv Mater ; 36(15): e2310428, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38230871

ABSTRACT

Metal hexacyanoferrates (HCFs) are viewed as promising cathode materials for potassium-ion batteries (PIBs) because of their high theoretical capacities and redox potentials. However, the development of an HCF cathode with high cycling stability and voltage retention is still impeded by the unavoidable Fe(CN)6 vacancies (VFeCN) and H2O in the materials. Here, a repair method is proposed that significantly reduces the VFeCN content in potassium manganese hexacyanoferrate (KMHCF) enabled by the reducibility of sodium citrate and removal of ligand H2O at high temperature (KMHCF-H). The KMHCF-H obtained at 90 °C contains only 2% VFeCN, and the VFeCN is concentrated in the lattice interior. Such an integrated Fe-CN-Mn surface structure of the KMHCF-H cathode with repaired surface VFeCN allows preferential decomposition of potassium bis(fluorosulfonyl)imide (KFSI) in the electrolyte, which constitutes a dense anion-dominated cathode electrolyte interphase (CEI) , inhibiting effectively Mn dissolution into the electrolyte. Consequently, the KMHCF-H cathode exhibits excellent cycling performance for both half-cell (95.2 % at 0.2 Ag-1 after 2000 cycles) and full-cell (99.4 % at 0.1 Ag-1 after 200 cycles). This thermal repair method enables scalable preparation of KMHCF with a low content of vacancies, holding substantial promise for practical applications of PIBs.

9.
Luminescence ; 39(1): e4671, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38286599

ABSTRACT

Copper is a critical element in both human and animal metabolic processes. Its role includes supporting connective tissue cross-linking, as well as iron and lipid metabolism; at the same time, copper is also a toxic heavy metal that can cause harm to both the environment and human health. Glutathione (GSH) is a tripeptide composed of glutamic acid, cysteine, and glycine combined with sulfhydryl groups. Its properties include acting as an antioxidant and facilitating integrative detoxification. GSH is present in both plant and animal cells and has a fundamental role in maintaining living organisms. GSH is the most abundant thiol antioxidant in the human body. It exists in reduced and oxidized forms within cells and provides significant biochemical functions, such as regulating vitamins such as vitamins D, E, and C, and facilitating detoxification. A fluorescent probe has been developed to detect copper ions selectively, sensitively, and rapidly. This report outlines the successful work on creating a peptide probe, TGN (TPE-Trp-Pro-Gly-Cln-His-NH2 ), with specific Cu2+ detection capabilities, and a significant fluorescence recovery occurred with the addition of GSH. This indicates that the probe can detect Cu2+ and GSH concurrently. The detection limit for Cu2+ in the buffer solution was 264 nM (R2 = 0.9992), and the detection limit for GSH using the TGN-Cu2+ complex was 919 nM (R2 = 0.9917). The probe exhibits high cell permeability and low biotoxicity that make it ideal for live cell imaging in biological conditions. This peptide probe has the capability to detect Cu2+ and GSH in biological cells.


Subject(s)
Antioxidants , Copper , Animals , Humans , Copper/chemistry , Ligands , Glutathione , Peptides/chemistry , Fluorescent Dyes/chemistry , Spectrometry, Fluorescence/methods , Vitamins
10.
Proc Natl Acad Sci U S A ; 120(39): e2306841120, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37722061

ABSTRACT

Although direct generation of high-value complex molecules and feedstock by coupling of ubiquitous small molecules such as CO2 and N2 holds great appeal as a potential alternative to current fossil-fuel technologies, suitable scalable and efficient catalysts to this end are not currently available as yet to be designed and developed. To this end, here we prepare and characterize SbxBi1-xOy clusters for direct urea synthesis from CO2 and N2 via C-N coupling. The introduction of Sb in the amorphous BiOx clusters changes the adsorption geometry of CO2 on the catalyst from O-connected to C-connected, creating the possibility for the formation of complex products such as urea. The modulated Bi(II) sites can effectively inject electrons into N2, promoting C-N coupling by advantageous modification of the symmetry for the frontier orbitals of CO2 and N2 involved in the rate-determining catalytic step. Compared with BiOx, SbxBi1-xOy clusters result in a lower reaction potential of only -0.3 V vs. RHE, an increased production yield of 307.97 µg h-1 mg-1cat, and a higher Faraday efficiency (10.9%), pointing to the present system as one of the best catalysts for urea synthesis in aqueous systems among those reported so far. Beyond the urea synthesis, the present results introduce and demonstrate unique strategies to modulate the electronic states of main group p-metals toward their use as effective catalysts for multistep electroreduction reactions requiring C-N coupling.

11.
Adv Mater ; 35(48): e2306577, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37572373

ABSTRACT

Sodium ion batteries (SIBs) suffer from large electrode volume change and sluggish redox kinetics for the relatively large ionic radius of sodium ions, raising a significant challenge to improve their long-term cyclability and rate capacity. Here, it is proposed to apply 2D amorphous iron selenide sulfide nanosheets (a-FeSeS NSs) as an anode material for SIBs and demonstrate that they exhibit remarkable rate capability of 528.7 mAh g-1 at 1 A g-1 and long-life cycle (10 000 cycles) performance (300.4 mAh g-1 ). This performance is much more superior to that of the previously reported Fe-based anode materials, which is attributed to their amorphous structure that alleviates volume expansion of electrode, 2D nature that facilitates electrons/ions transfer, and the S/Se double anions that offer more reaction sites and stabilize the amorphous structure. Such a 2D amorphous strategy provides a fertile platform for structural engineering of other electrode materials, making a more secure energy prospect closer to a reality.

12.
Adv Mater ; 35(40): e2305587, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37545026

ABSTRACT

The electrochemical carbon dioxide reduction reaction (CO2 RR) to formate is of great interest in the field of electrochemical energy. Cu-based material is an appealing electrocatalyst for the CO2 RR. However, retaining Cu2+ under the high cathodic potential of CO2 RR remains a great challenge, leading to low electrocatalytic selectivity, activity, and stability. Herein, inspired by corrosion science, a sacrificial protection strategy to stabilize interfacial crystalline CuO through embedding of active amorphous SnO2 (c-CuO/a-SnO2 ) is reported, which greatly boosts the electrocatalytic sensitivity, activity, and stability for CO2 RR to formate. The as-made hybrid catalyst can achieve superior high selectivity for CO2 RR to formate with a remarkable Faradaic efficiency (FE) of 96.7%, and a superhigh current density of over 1 A cm-2 that far outperforms industrial benchmarks (FE > 90%, current density > 300 mA cm-2 ). In situ X-ray absorption spectroscopy (XAS) and X-ray diffractionexperimental and theoretical calculation results reveal that the broadened s-orbital in interfacial a-SnO2 offers the lower orbital for extra electrons than Cu2+ , which can effectively retain nearby Cu2+ , and the high active interface significantly lowers the energy barrier of the limited step (* CO2 → * HCOO) and enhances the selectivity and activity for CO2 RR to formate.

13.
Nanoscale ; 15(9): 4628-4635, 2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36779225

ABSTRACT

We report the air-sensitivity, atomic structure, and magnetic anisotropy of VI3 single crystals. We find that VI3 nanocrystals exhibit a large MR/MS ratio of around 0.75 and a uniaxial anisotropic constant of an order of 105 erg cc-1 below the Curie temperature. Furthermore, density functional theory calculations reveal that both the monolayer and bulk VI3 are ferromagnetic insulators, and the magnetic moment of the system arises mainly from the d orbital of the V atom. These findings open a feasible avenue to fabricating TEM specimens of air-sensitive layered materials, providing an in-depth comprehensive understanding of a layered ferromagnetic VI3.

14.
Small ; 19(15): e2207742, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36610025

ABSTRACT

In consideration of high specific capacity and low redox potential, lithium metal anodes have attracted extensive attention. However, the cycling performance of lithium metal batteries generally deteriorates significantly under the stringent conditions of high temperature due to inferior heat tolerance of the solid electrolyte interphase (SEI). Herein, controllable SEI nanostructures with excellent thermal stability are established by the (trifluoromethyl)trimethylsilane (TMSCF3 )-induced interface engineering. First, the TMSCF3 regulates the electrolyte decomposition, thus generating an SEI with a large amount of LiF, Li3 N, and Li2 S nanocrystals incorporated. More importantly, the uniform distributed nanocrystals have endowed the SEI with enhanced thermostability according to the density functional theory simulations. Particularly, the sub-angstrom visualization on SEI through a conventional transmission electron microscope (TEM) is realized for the first time and the enhanced tolerance to the heat damage originating from TEM imaging demonstrates the ultrahigh thermostability of SEI. As a result, the highly thermostable interphase facilitates a substantially prolonged lifespan of full cells at a high temperature of 70 °C. As such, this work might inspire the universal interphase design for high-energy alkali-metal-based batteries applicated in a high-temperature environment.

15.
Adv Sci (Weinh) ; 10(5): e2203742, 2023 02.
Article in English | MEDLINE | ID: mdl-36541716

ABSTRACT

Photodynamic therapy (PDT) under hypoxic conditions and drug resistance in chemotherapy are perplexing problems in anti-tumor treatment. In addition, central nervous system neoplasm-targeted nanoplatforms are urgently required. To address these issues, a new multi-functional protein hybrid nanoplatform is designed, consisting of transferrin (TFR) as the multicategory solid tumor recognizer and hemoglobin for oxygen supply (ODP-TH). This protein hybrid framework encapsulates the photosensitizer protoporphyrin IX (PpIX) and chemotherapeutic agent doxorubicin (Dox), which are attached by a glutathione-responsive disulfide bond. Mechanistically, ODP-TH crosses the blood-brain barrier (BBB) and specifically aggregated in hypoxic tumors via protein homology recognition. Oxygen and encapsulated drugs ultimately promote a therapeutic effect by down-regulating the abundance of multidrug resistance gene 1 (MDR1) and hypoxia-inducible factor-1-α (HIF-1α). The results reveal that ODP-TH achieves oxygen transport and protein homology recognition in the hypoxic tumor occupation. Indeed, compared with traditional photodynamic chemotherapy, ODP-TH achieves a more efficient tumor-inhibiting effect. This study not only overcomes the hypoxia-related inhibition in combination therapy by targeted oxygen transport but also achieves an effective treatment of multiple tumors, such as breast cancer and glioma, providing a new concept for the construction of a promising multi-functional targeted and intensive anti-tumor nanoplatform.


Subject(s)
Carcinoma , Photochemotherapy , Female , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/therapy , Carcinoma/drug therapy , Carcinoma/therapy , Hypoxia , Oxygen/pharmacology , Oxygen/therapeutic use , Photosensitizing Agents/chemistry , Photochemotherapy/instrumentation , Photochemotherapy/methods , Nanotechnology/instrumentation , Nanotechnology/methods , Nanomedicine/instrumentation , Nanomedicine/methods
16.
J Environ Public Health ; 2022: 6442241, 2022.
Article in English | MEDLINE | ID: mdl-36254309

ABSTRACT

Herein, porous Co3O4 nanoneedle arrays were synthesized on nickel (Ni) foam (Co3O4 NNs/NF) by one-step hydrothermal method. Some electrochemical methods were used to investigate its nonenzymatic glucose sensing performance in alkaline solution. The results show that the sensitivity of Co3O4 NNs/NF electrode to glucose is 4570 µA mM-1 cm-2. The linear range is 1 µM-0.337 mM, and the detection limit is 0.91 µM (S/N = 3). It also displays good selectivity and repeatability for glucose. The good electrochemical sensing performance of Co3O4 NNs/NF based sensor for glucose can be attributed to interconnected porous structure and large specific surface area of Co3O4.


Subject(s)
Biosensing Techniques , Nickel , Biosensing Techniques/methods , Cobalt , Glucose/chemistry , Nickel/chemistry , Oxides , Porosity
17.
J Adv Res ; 40: 29-44, 2022 09.
Article in English | MEDLINE | ID: mdl-36100332

ABSTRACT

INTRODUCTION: Computer-aided design has become an important tool to develop novel pesticides based on natural lead compounds. Tenuazonic acid (TeA), a typical representative of the natural tetramic acid family, was patented as a potential bioherbicide. However, its herbicidal efficacy is still not up to the ideal standard of commercial products. OBJECTIVES: We aim to find new TeA's derivatives with improved potency. METHODS: Molecular docking was used to build ligand-acceptor interaction models, design and screen new derivatives. Phytotoxicity, oxygen evolution rate, chlorophyll fluorescence and herbicidal efficacy were determined to estimate biological activity of compounds. RESULTS: With the aid of a constructed molecular model of natural lead molecule TeA binding to the QB site in Arabidopsis D1 protein, a series of derivatives differing in the alkyl side chain were designed and ranked according to free energies. All compounds are stabilized by hydrogen bonding interactions between their carbonyl oxygen O2 and D1-Gly256 residue; moreover, hydrogen bond distance is the most important factor for maintaining high binding affinity. Among 54 newly designed derivatives, D6, D13 and D27 with better affinities than TeA were screened out and synthesized to evaluate their photosynthetic inhibitory activity and herbicidal efficacy. Analysis of structure-activity relationship indicated that D6 and D13 with sec-pentyl and sec-hexyl side chains, respectively, were about twice more inhibitory of PSII activity and effective as herbicide than TeA with a sec-butyl side chain. CONCLUSION: D6 and D13 are promising compounds to develop TeA-derived novel PSII herbicides with superior performance.


Subject(s)
Herbicides , Tenuazonic Acid , Herbicides/chemistry , Herbicides/pharmacology , Ligands , Molecular Docking Simulation , Oxygen
18.
Analyst ; 147(19): 4257-4265, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-35997089

ABSTRACT

Cysteine (Cys), a small-molecule biothiol, has recently been identified as a novel Glioblastoma (GBM) biomarker. The highly selective real-time monitoring and fluorescence imaging of Cys levels in vivo is of great significance for the early diagnosis and treatment of GBM. In this work, we reported a highly selective Cys fluorescent probe ZS-C1, based on quinoline according to the mechanism of the conjugate addition cyclization reaction. The Limit of Detection (LOD) of probe ZS-C1 was 1.97 µM, λex = 380 nm; λem = 531 nm. In vitro experiments showed that ZS-C1 could be distinguished from Hcy and GSH significantly, and the fluorescence quantum yield was reduced by 30 times. Further, biological imaging and 3D tumor sphere penetration assay showed that the ZS-C1 could monitor both exogenous and endogenous Cys in the living U87MG cells, and the fluorescence of probe ZS-C1 diffusely distributed inside the U87MG three-dimensional solid cell spheroid (up to 60 µM deep into the solid tumors). This work provided a potential tool for further investigations of Cys in biological samples and critical information for early diagnosis of glioma and guidance for clinical surgery.


Subject(s)
Glioma , Quinolines , Cysteine , Fluorescent Dyes , Glioma/diagnostic imaging , Glutathione , HeLa Cells , Homocysteine , Humans
19.
Analyst ; 147(15): 3534-3541, 2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35792650

ABSTRACT

As a precursor of all reactive oxygen species (ROS), superoxide anions play an important role in organisms. However, excessive superoxide anions can cause various diseases. Thus, it is highly urgent to develop efficient tools for in situ superoxide anion detection. In this work, a novel boric acid-based, mitochondria-targeted fluorescent probe Mito-YX for superoxide anion detection was designed by regulating its intramolecular charge transfer (ICT) effect. The probe exhibited turn-on fluorescence enhancement within 4 min of reaction with the superoxide anion. In addition, Mito-YX also exhibited high selectivity and a low detection limit down to 0.24 µM with good mitochondrial targeting characteristics, which provided a necessary basis for in vivo detection of superoxide anions. What is more, Mito-YX was successfully applied for the in situ monitoring of superoxide anions in living MCF-7 cells, RAW 264.7 cells and a mouse model of lung inflammation stimulated by LPS. This work provided an important and promising tool for rapid in situ diagnosis and research of the progression of pneumonia.


Subject(s)
Fluorescent Dyes , Superoxides , Animals , Fluorescent Dyes/toxicity , Humans , MCF-7 Cells , Mice , Mitochondria , Optical Imaging
20.
Front Chem ; 10: 911170, 2022.
Article in English | MEDLINE | ID: mdl-35646821

ABSTRACT

The detection of dissolved gases in oil is an important method for the analysis of transformer fault diagnosis. In this article, the potential-doped structure of the Ag3 cluster on the HfSe2 monolayer and adsorption behavior of CO and C2H4 upon Ag3-HfSe2 were studied theoretically. Herein, the binding energy, adsorption energy, band structure, density of state (DOS), partial density of state (PDOS), Mulliken charge analysis, and frontier molecular orbital were investigated. The results showed that the adsorption effect on C2H4 is stronger than that on CO. The electrical sensitivity and anti-interference were studied based on the bandgap and adsorption energy of gases. In particular, there is an increase of 55.49% in the electrical sensitivity of C2H4 after the adsorption. Compared to the adsorption energy of different gases, it was found that only the adsorption of the C2H4 system is chemisorption, while that of the others is physisorption. It illustrates the great anti-interference in the detection of C2H4. Therefore, the study explored the potential of HfSe2-modified materials for sensing and detecting CO and C2H4 to estimate the working state of power transformers.

SELECTION OF CITATIONS
SEARCH DETAIL
...