Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Vet Sci ; 11(5)2024 May 07.
Article in English | MEDLINE | ID: mdl-38787175

ABSTRACT

Several trichomonad species have already been identified in pigs, and their pathogenic potential may not be ruled out. To date, however, no information is available regarding the prevalence of trichomonads in pigs in Shanxi Province, North China. In the present study, a total of 362 fecal samples collected from pigs in three representative counties (Qi, Jishan, and Shanyin) in this province were examined for Tetratrichomonas buttreyi, Tritrichomonas foetus, and Pentatrichomonas hominis using a nested polymerase chain reaction (PCR) with primers targeting the small subunit ribosomal RNA (SSU rRNA) gene. The overall prevalence of T. buttreyi was 49.72%, and region and age were found to be significantly associated with T. buttreyi infection, respectively. Only one pig fecal sample from Qi County was found to be positive for T. foetus, and all samples were negative for P. hominis. Molecular evolutionary analysis revealed that some T. buttreyi isolates showed complete genetic identity with those reported previously, and some T. buttreyi isolates and one T. foetus isolate showed minor allelic variations compared with those reported previously. This is the report of the molecular epidemiology of T. foetus and T. buttreyi in pigs in Shanxi Province, North China. These findings not only enrich the knowledge on the distribution of these trichomonad species in pigs in China but also provide baseline information for planning future research and control strategies.

2.
J Med Chem ; 67(10): 7921-7934, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38713486

ABSTRACT

CARM1, belonging to the protein arginine methyltransferase (PRMT) family, is intricately associated with the progression of cancer and is viewed as a promising target for both cancer diagnosis and therapy. However, the number of specific and potent CARM1 inhibitors is limited. We herein discovered a CARM1 inhibitor, iCARM1, that showed better specificity and activity toward CARM1 compared to the known CARM1 inhibitors, EZM2302 and TP-064. Similar to CARM1 knockdown, iCARM1 suppressed the expression of oncogenic estrogen/ERα-target genes, whereas activated type I interferon (IFN) and IFN-induced genes (ISGs) in breast cancer cells. Consequently, iCARM1 potently suppressed breast cancer cell growth both in vitro and in vivo. The combination of iCARM1 with either endocrine therapy drugs or etoposide demonstrated synergistic effects in inhibiting the growth of breast tumors. In summary, targeting CARM1 by iCARM1 effectively suppresses breast tumor growth, offering a promising therapeutic approach for managing breast cancers in clinical settings.


Subject(s)
Breast Neoplasms , Cell Proliferation , Protein-Arginine N-Methyltransferases , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Protein-Arginine N-Methyltransferases/metabolism , Female , Animals , Mice , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Mice, Nude , Mice, Inbred BALB C , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/therapeutic use
3.
Chem Commun (Camb) ; 60(43): 5634-5637, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38716634

ABSTRACT

Rh-catalyzed three-component C(sp3)/C(sp2)-H activation has been achieved through a two-directing group strategy. This protocol provides a convenient and efficient pathway for the construction of diverse 8-alkyl quinoline derivatives in one-pot. Furthermore, mechanistic studies revealed that the first C-H amidation was significantly faster than the sequential C-H alkylation.

4.
Poult Sci ; 103(3): 103430, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38219535

ABSTRACT

Eimeria tenella, an obligate intracellular apicomplexan parasite, is the major causative agent of chicken coccidiosis. Some epidermal growth factor (EGF)-like domain-containing proteins of other members of apicomplexan parasites have been reported to contribute to parasite survival. To date, however, EGF-like domain-containing proteins of E. tenella are not well studied. In this study, a gene fragment that encodes 4 EGF-like domains of E. tenella microneme protein 7 (EGF-EtMIC7) was amplified and expressed using an Escherichia coli expression system. Following generation of polyclonal antibodies that recognize recombinant EGF-EtMIC7 (rEGF-EtMIC7), the expression of EtMIC7 in sporozoites and merozoites was examined. Moreover, its roles in cellular regulation were investigated. The native EtMIC7 in E. tenella sporozoites and merozoites was detected by using Western blot and indirect immunofluorescence assays. rEGF-EtMIC7 could activate Akt, whereas blockade of EGF receptor (EGFR) failed to induce Akt phosphorylation. Compared with the control group, LMH cells treated with rEGF-EtMIC7 showed increased cell proliferation and expressed higher levels of B cell leukemia/lymphoma 2 (BCL-2). These findings contribute to the better understanding of parasite-host interactions at the molecular level during E. tenella infection.


Subject(s)
Eimeria tenella , Merozoites , Animals , Epidermal Growth Factor , Sporozoites , Microneme , Proto-Oncogene Proteins c-akt , Chickens , Transcription Factors
5.
Front Immunol ; 14: 1236812, 2023.
Article in English | MEDLINE | ID: mdl-37593743

ABSTRACT

The subject of this study was to explore the optimum requirements of loach (Paramisgurnus dabryanus) regarding dietary proteins and lipids and discuss the underlying mechanism. We designed nine diets to determine the effects of different levels of dietary crude protein (CP: 30%, 35%, and 40%) and ether extract (EE: 6%, 10%, and 14%) on the growth performance and metabolism of P. dabryanus. In total, 2160 healthy P. dabryanus (5.19 ± 0.01 g) were divided into nine groups with four replications at 60 fish per barrel stocking density. The trial lasted for eight weeks. Serum and liver samples were gathered for metabolomic and transcriptomic analyses. The results showed that the specific growth rate of P. dabryanus in the CP40EE10 group was the fastest and notably higher than that in other groups (P< 0.05). Analysis of the metabolome results found that the mTOR signaling pathway, glycerophospholipid metabolism, D-arginine and D-ornithine metabolism were significantly enriched pathways in the CP40EE10 group compared with the other groups (P< 0.05). Moreover, the transcriptomic analysis of differentially expressed genes (DEGs) showed that the expression of ARG (arginase) involved in protein synthesis was significantly upregulated in the CP40EE10 group compared to the slowest growing group (P< 0.05). Additionally, the expression of SPLA2 (secretory phospholipase A2) involved in lipid metabolism and FBP (fructose-1,6-bisphosphatase) involved in glucose metabolism were all significantly downregulated in the CP30EE6 group compared with the CP40EE10 group (P< 0.05). Furthermore, the analysis of differentially expressed metabolites (DEMs) and DEGs co-enriched in the KEGG pathway revealed that the significantly enriched pathways were arginine and proline metabolism, glycerophospholipid metabolism, and glycolysis/gluconeogenesis in CP40EE10 compared with other groups (P< 0.05). We conclude that including 40% CP and 10% EE in the P. dabryanus diet could result in a better growth rate. We hypothesized from metabolomic and transcriptomic analyses that the CP40EE10 diet might promote the growth of P. dabryanus by promoting protein synthesis, lipid metabolism, and energy production.


Subject(s)
Cypriniformes , Transcriptome , Animals , Cypriniformes/genetics , Arginine , Dietary Proteins , Glycerophospholipids , Lipids
6.
Vet Parasitol Reg Stud Reports ; 43: 100897, 2023 08.
Article in English | MEDLINE | ID: mdl-37451755

ABSTRACT

Toxoplasmosis is a worldwide zoonotic disease caused by infection with the intracellular protozoan parasite Toxoplasma gondii, posing significant economic losses to the livestock industry. As a major livestock province, little is known of the prevalence of T. gondii infection in sheep and cattle in Shanxi Province, North China. In this study, a total of 1962 blood samples from cattle (n = 978) and sheep (n = 984), collected from 11 administrative cities in Shanxi Province, were examined for antibodies against T. gondii by using the indirect enzyme linked immunosorbent assay (ELISA) kits commercially available. The results showed that antibodies to T. gondii were detected in 306 of the 978 cattle serum samples (31.29%, 95% CI 28.38-34.19), ranging from 12.64% to 60.00% among the different cities. The overall seroprevalence of T. gondii in sheep was 17.78% (175/984, 95% CI 15.40-20.17), ranging from 2.22% to 41.11% among the different administrative cities. The T. gondii seroprevalence was associated with the management mode and geographical location. This is the first report of T. gondii seroprevalence in cattle and sheep in Shanxi Province, North China, which provides baseline data to plan future control strategies for T. gondii infection in this province.


Subject(s)
Cattle Diseases , Toxoplasma , Toxoplasmosis, Animal , Animals , Cattle , Sheep , Toxoplasmosis, Animal/parasitology , Seroepidemiologic Studies , Risk Factors , China/epidemiology , Cattle Diseases/epidemiology , Cattle Diseases/parasitology
7.
Front Med (Lausanne) ; 10: 1084129, 2023.
Article in English | MEDLINE | ID: mdl-36744134

ABSTRACT

The largest solid organ of the male genitalia, the prostate gland, is comprised of a variety of cells such as prostate epithelial cells, smooth muscle cells, fibroblasts, and endothelial cells. Prostate diseases, especially prostate cancer and prostatitis, are often accompanied by acute/chronic inflammatory responses or even cell death. Pyroptosis, a cell death distinct from necrosis and apoptosis, which mediate inflammation may be closely associated with the development of prostate disease. Pyroptosis is characterized by inflammasome activation via pattern recognition receptors (PRR) upon recognition of external stimuli, which is manifested downstream by translocation of gasdermin (GSDM) protein to the membrane to form pores and release of inflammatory factors interleukin (IL)-1ß and IL-18, a process that is Caspase-dependent. Over the past number of years, many studies have investigated the role of inflammation in prostate disease and have suggested that pyroptosis may be an important driver. Understanding the precise mechanism is of major consequence for the development of targeted therapeutic strategies. This review summarizes the molecular mechanisms, regulation, and cellular effects of pyroptosis briefly and then discuss the current pyroptosis studies in prostate disease research and the inspiration for us.

8.
Dalton Trans ; 52(7): 1857-1860, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36723102

ABSTRACT

Herein, we report a twisted cubic Cu(I)4Ti(IV)4-oxo cluster stabilized by in situ - formed 2,2'-biphenolate ligands from the oxidative coupling of phenols. The 2,2'-biphenolate-functionalized Cu(I)4Ti(IV)4O4 cluster shows short Cu⋯C contacts and exhibits smaller HOMO-LUMO gaps than those of reported Ti(IV)4O4.

9.
Front Vet Sci ; 9: 1053701, 2022.
Article in English | MEDLINE | ID: mdl-36478946

ABSTRACT

A protein of Eimeria tenella (encoded by the locus ETH_00028350) homologous to Toxoplasma gondii dense granule protein 9, designated as EtHGRA9 hereafter, was reported to be expressed in all life cycle stages of E. tenella. However, no data are currently available regarding its functional properties. In the present study, a recombinant vector harboring a 741 bp gene segment encoding the mature form of EtHGRA9 was constructed and transfected into leghorn male hepatoma (LMH) cells. Then, transcriptomic analysis of the transfected LMH cells was carried out by using a high-throughput RNA-seq technology. The LMH cells overexpressing EtHGRA9 was validated by means of Western blotting as well as indirect immunofluorescence staining. The results demonstrated that the expression of 547 genes (275 upregulated genes and 272 downregulated genes) was altered by EtHGRA9. The quantitative real-time polymerase chain reaction (qRT-PCR) validation of the ten genes with differential expression between the two groups was consistent with the transcriptome analysis. According to pathway enrichment analysis for the obtained differentially expressed genes, seven pathways were significantly affected by EtHGRA9, such as cytokine-cytokine receptor interaction, MAPK signaling pathway, and protein processing in endoplasmic reticulum. Our data reveal several possible roles of EtHGRA9 in immune or inflammatory responses, which paves the way for a better understanding of the molecular interplay between E. tenella and its host.

10.
Biomed Pharmacother ; 149: 112799, 2022 May.
Article in English | MEDLINE | ID: mdl-35279011

ABSTRACT

Lupus nephritis (LN) is an autoimmune disease with multiple system involvement and is also one of the most serious forms of organ damage in systemic lupus erythematosus (SLE), which is mainly caused by the formation and deposition of immune complexes in glomeruli. More than 50% of SLE patients have clinical manifestations of renal damage. At present, the treatment of lupus nephritis is mainly based on glucocorticoids and immunosuppressants. However, due to adverse drug reactions and frequent recurrence or aggravation after drug reduction or withdrawal, the prognosis remains poor; thus, it is still one of the most important causes of end-stage renal failure. Therefore, new treatment strategies are urgently needed. This article aims to review the application of traditional Chinese medicine and natural extracts in the treatment of lupus nephritis to provide the basic mechanisms of treatment and a new treatment strategy with clear effects and high safety performance.


Subject(s)
Lupus Erythematosus, Systemic , Lupus Nephritis , Female , Humans , Kidney , Lupus Nephritis/drug therapy , Male , Medicine, Chinese Traditional , Plant Extracts
11.
Environ Sci Technol ; 56(8): 4795-4805, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35235293

ABSTRACT

Isoprene is the most abundant precursor of global secondary organic aerosol (SOA). The epoxide pathway plays a critical role in isoprene SOA (iSOA) formation, in which isoprene epoxydiols (IEPOX) and/or hydroxymethyl-methyl-α-lactone (HMML) can react with nucleophilic sulfate and water producing isoprene-derived organosulfates (iOSs) and oxygen-containing tracers (iOTs), respectively. This process is complicated and highly influenced by anthropogenic emissions, especially in the polluted urban atmospheres. In this study, we took a 1-year measurement of the paired iOSs and iOTs formed through the IEPOX and HMML pathways at the three urban sites from northern to southern China. The annual average concentrations of iSOA products at the three sites ranged from 14.6 to 36.5 ng m-3. We found that the nucleophilic-addition reaction of isoprene epoxides with water dominated over that with sulfate in the polluted urban air. A simple set of reaction rate constant could not fully describe iOS and iOT formation everywhere. We also found that the IEPOX pathway was dominant over the HMML pathway over urban regions. Using the kinetic data of IEPOX to estimate the reaction parameters of HMML will cause significant underestimation in the importance of HMML pathway. All these findings provide insights into iSOA formation over polluted areas.


Subject(s)
Air Pollutants , Epoxy Compounds , Aerosols/analysis , Butadienes , Hemiterpenes , Pentanes , Sulfates , Water
12.
Ying Yong Sheng Tai Xue Bao ; 33(2): 527-536, 2022 Feb.
Article in Chinese | MEDLINE | ID: mdl-35229527

ABSTRACT

Pollinators provide important ecosystem services for crop production and food security. With the development of agricultural economy and the increasing intensity of land-use, a large number of natural or semi-natural habitats have been converted to croplands. Landscape homogenization and intensive management lead to the decline of wild bee diversity and threaten the sustainable agricultural production. In this study, we investigated the effects of landscape complexity (proportion of semi-natural habitats), local management practices (local flowering plant diversity and soil total nitrogen), and their interactions on diversity of bee pollinators in apple orchard in Changping District, Beijing. A total of 8642 bee individuals were captured, including 5125 honey bees and 3517 wild bees from 5 families, 14 genera, and 49 species. The optimal landscape scale for the response of bee diversity to landscape complexity and local management intensity was 500 m. Within 500 m radius of the site, the abundance of overall bees and wild bees significantly increased with increasing proportion of semi-natural habitats. The landscape complexity interacting with local flowering plant diversity significantly affected the richness of overall bee and wild bee. When the proportion of semi-natural habitats surrounding the apple orchards was low (≤29.9%), we found a positive effect of flowering plant diversity on the richness of overall bee and wild bee, whereas a reversed trend was found when the proportion of semi-natural habitats surrounding the apple orchards was high (>29.9%). In addition, the abundance of honey bees significantly increased with the increase of local flowering plant diversity and soil total nitrogen. The soil total nitrogen interacting with local flowering plant diversity significantly affected the honey bee abundance. At low levels of soil total nitrogen (≤1.9 g·kg-1), there was a positive effect of flowering plant diversity on honey bee abundance; whereas this trend was reversed at high levels of soil total nitrogen (>1.9 g·kg-1). Increasing the proportion of semi-natural habitats in agricultural landscape was beneficial to the increase of wild bee abundance, and flowering plant diversity could promote bee diversity but depending on landscape scale (proportion of semi-natural habitats) and local scale (nitrogen application). Therefore, multi-scale factors should be considered to develop conservation strategies to maintain the diversity of wild bees in agricultural landscape. Maintaining a higher proportion of cultivated land as much as possible is still a long-term requirement for production, while maintaining intermediate landscape complexity, increasing the diversity of flowering plants on the ground, and reducing the application of nitrogen fertilizer would be effective ways to promote the diversity of pollinating bees in apple orchards.


Subject(s)
Malus , Pollination , Agriculture , Animals , Bees , Beijing , Ecosystem , Pollination/physiology
13.
Neural Netw ; 147: 42-52, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34959123

ABSTRACT

Writing style is an abstract attribute in handwritten text. It plays an important role in recognition systems and is not easy to define explicitly. Considering the effect of writing style, a writer adaptation method is proposed to transform a writer-independent recognizer toward a particular writer. This transformation has the potential to significantly increase accuracy. In this paper, under the deep learning framework, we propose a general fast writer adaptation solution. Specifically, without depending on other complex skills, a well designed style extractor network (SEN) trained by identification loss (IDL) is introduced to explicitly extract personalized writer information. The architecture of SEN consists of a stack of convolutional layers followed by a recurrent neural network with gated recurrent units to remove semantic context and retain writer information. Then, the outputs of the GRU are further integrated into a one-dimensional vector that is adopted to represent writing style. Finally, the extracted style information is fed into the writer-independent recognizer to achieve adaptation. Validated on offline handwritten text recognition tasks, the proposed fast sentence-level adaptation achieves remarkable improvements in Chinese and English text recognition tasks. Specifically, in the HETR task, a multi-information fusion network that is equipped with a hybrid attention mechanism and that integrates visual features, context features and writing style is proposed. In addition, under the same condition (only one writer-specific text line used as adaptation data), the proposed solution, without consuming extra time, can significantly outperform the previous multiple-pass decoding method. The code is available at https://github.com/Wukong90/Handwritten-Text-Recognition.


Subject(s)
Algorithms , Neural Networks, Computer , Semantics
14.
J Am Chem Soc ; 143(41): 17162-17169, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34543015

ABSTRACT

Structural interpenetration in metal-organic frameworks (MOFs) significantly impacts on their properties and functionalities. However, understanding the interpenetration on third-order nonlinear optics (NLO) of MOFs have not been reported to date. Herein, we report two 3D porphyrinic MOFs, a 2-fold interpenetrated [Zn2(TPyP)(AC)2] (ZnTPyP-1) and a noninterpenetrated [Zn3(TPyP)(H2O)2(C2O4)2] (ZnTPyP-2), constructed from 5,10,15,20-tetra(4-pyridyl)porphyrin (TPyP(H2)) and Zn(NO3)2 (AC = acetate, C2O4 = oxalate). ZnTPyP-1 achieves excellent optical limiting (OL) performance with a giant nonlinear absorption coefficient (3.61 × 106 cm/GW) and large third-order susceptibility (7.73 × 10-7 esu), which is much better than ZnTPyP-2 and other reported OL materials. The corresponding MOFs nanosheets are dispersed into a polydimethylsiloxane (PDMS) matrix to form highly transparent and flexible MOFs/PDMS glasses for practical OL application. In addition, the OL response optimized by adjusting the MOFs concentration in the PDMS matrix and the type of metalloporphyrin are discussed in the ZnTPyP-1 system. The theoretical calculation confirmed that the abundant π-π interaction from porphyrinic groups in the interpenetrated framework increased the electron delocalization/transfer and boosted the OL performance. This study opens a new avenue to enhance OL performance by the construction of interpenetrated structures and provides a new approach for the preparation of transparent and flexible MOF composites in nonlinear optical applications.

15.
Biomed Res Int ; 2021: 1930706, 2021.
Article in English | MEDLINE | ID: mdl-33575321

ABSTRACT

BACKGROUND: The tumor-infiltrating immune cells are closely associated with the prognosis of gastric cancer (GC). This article is aimed at determining the composition change of immune cells and immune regulatory factors in GC and normal tissues, depicting their prognosis value in GC, and revealing the relationship between them and GC clinical parameters. METHODS: We used CIBERSORT to calculate the proportion of 22 immune cells in the GC or normal tissues; a t-test was applied to assess the expression difference of immune cells and immune regulatory factors in normal and GC tissues. The relationship of the immune cells, immune regulatory factors, and GC patients' clinical characteristics was assessed by univariate analysis. RESULTS: In this study, we found that the proportion of macrophages increased, while plasma cells and monocytes decreased in GC tissues. In these immune fractions, Tregs and naïve B cells were found to be correlated with GC patients' prognosis. Interestingly, the expression of immune regulatory factors was ambiguous with their classical function in GC tissues. For example, TIM-3, FOXP3, and CMTM6 were overexpressed, while CD27 and PD-1 were underexpressed in GC tissues. We also found that IDO1, PD-1, TIGIT, and TIM-3 were highly expressed in high-grade GC tissues, the HERC2 expression level was related to patients' gender, and the TIGIT expression level was sensitive to targeted therapy. Furthermore, our results suggested that the infiltration of Tregs and naive B cells was strongly correlated with the T stage, radiation therapy, targeted molecular therapy, and the expression levels of TIM-3 and FOXP3 in GC. CONCLUSION: The expression pattern of tumor-infiltrating immune cells and immune regulatory factors was systematically depicted in the GC tumor microenvironment, indicating that individualized treatment based on the tumor-infiltrating immune cells and immune regulatory factors may be beneficial to GC patients.


Subject(s)
B-Lymphocytes/immunology , Stomach Neoplasms/immunology , T-Lymphocytes, Regulatory/immunology , Tumor Microenvironment/immunology , Female , Forkhead Transcription Factors/metabolism , Hepatitis A Virus Cellular Receptor 2/metabolism , Humans , Male , Middle Aged , Prognosis , Stomach Neoplasms/metabolism , Stomach Neoplasms/mortality , Stomach Neoplasms/pathology
16.
Inorg Chem ; 60(3): 1885-1892, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33442984

ABSTRACT

Tin oxide based materials have attracted much attention as new sources for nonlinear optical (NLO) devices, while the electronic mechanism behind the structure and nonlinearity is still unclear. In this work, by precisely controlling different functionalization ligands, here a series of binuclear [(nBuSn)2(TEOA)2L2] (L = monocarboxylic acid ligand) complexes have been synthesized and characterized; we also adopted a new method to make the metal clusters and PMMA blend together for NLO testing. Importantly, the electronic structure, static third-order NLO properties, sum over states (SOS) have been studied by both experimental and density function theory (DFT) analysis. The effects for general NLO polarizability under various conditions, including different substitutions ligands and replacement of the metal cores, have been further investigated. The results indicate the static second hyperpolarizabilities (γ) is inversely proportional to the band gap decreases. Notably, the theory predicts that the third-order nonlinear coefficient will double through the synergistic effects of pull-push groups. The hole-electron analysis of the main excited states indicates the simultaneous introduction of pull-push electron groups into the system cause the excitation of the valence layer from LE to LLCT, which also leads to significant increase in the γ value of complex 13. This work demonstrates that an efficient adjustment for the intensity of NLO polarizability can be achieved by regulating the substitutions and the material structures, providing a new potential for the application of tin-oxo clusters in the field of nonlinear optics.

17.
BMC Oral Health ; 20(1): 316, 2020 11 10.
Article in English | MEDLINE | ID: mdl-33172456

ABSTRACT

BACKGROUND: To investigate the effects of Er:YAG laser pre-treatment on the dentin structure and shear bond strength of primary teeth. METHODS: Dentin specimens were prepared using freshly extracted intact primary molars and divided randomly into four groups based on the surface treatment applied. The control and etchant groups received no treatment and conventional acid etching treatment, respectively, while the energy and frequency groups received laser surface treatment with variable energy (50-300 mJ) and frequency (5-30 Hz) parameters. The morphology was observed using scanning electron microscopy. The surface-treated dentin slices were bonded to resin tablets, followed by thermocycle treatment. The shear strength was determined using a universal testing machine and de-bonded surfaces were observed using a stereomicroscope. RESULTS: SEM observation showed that the surface morphology of the dentin slices changed after etching as well as after Er:YAG laser pre-treatment with different energy and frequency values. The dentin tubules opened within a specific energy (50-200 mJ) and frequency (5-20 Hz) range. Beyond this range, the intertubular dentin showed cracks and structural disintegration. Shear strength tests showed no significant changes after acid etching. The shear strength increased significantly (P < 0.05) after Er:YAG laser pre-treatment compared with that of the control group. The shear strength increased within the same energy (50-200 mJ) and frequency (5-20 Hz) range as the tubule opening, but not significantly (P > 0.05). The most common mode of interface failure was adhesive (interface) failure, followed by mixed and resin cohesive failure. CONCLUSIONS: Pre-treatment using Er:YAG laser opens the dentinal tubules without the formation of a smear layer and improves the bonding strength between the primary teeth dentin and the resin composites.


Subject(s)
Dental Bonding , Lasers, Solid-State , Dental Cements , Dentin , Humans , Lasers, Solid-State/therapeutic use , Microscopy, Electron, Scanning , Resin Cements , Shear Strength , Tooth, Deciduous
18.
Ying Yong Sheng Tai Xue Bao ; 31(2): 417-423, 2020 Feb.
Article in Chinese | MEDLINE | ID: mdl-32476333

ABSTRACT

As a natural disturbance agent, soil erosion could affect secondary distribution and species composition of soil seed bank. The composition, storage and distribution pattern of the soil seed banks in five different vegetation recovery areas, including bare ground (1), pine forest land (2-4) and secondary forest (5) in the typical red soil erosion area, were studied to explore the effects of soil erosion on soil seed bank during vegetation restoration. The results showed that a total of 21 species were recorded in the soil seed bank. Species richness was low, and dominated by herbaceous species. The density of soil seed bank varied from 56.7 to 793.3 seeds·m-2 and differed significantly among the sampling plots. Further, the density of soil seed bank decreased obviously with the increasing soil erosion intensity. The seed bank density of 0-2 cm soil layer increased along uphill, middle slope, and downhill. The soil seed banks of severely eroded and strongly eroded plots were mainly distributed in the 5-10 cm soil layer, with almost no seeds in 0-2 cm soil layer on the middle slope and uphill. Soil erosion made the distribution of soil seed bank to deeper soil layer, the accumulation of which will need a long time after vegetation restoration.


Subject(s)
Seed Bank , Soil , Forests , Seeds
19.
Theranostics ; 10(8): 3451-3473, 2020.
Article in English | MEDLINE | ID: mdl-32206101

ABSTRACT

While protein arginine methyltransferases (PRMTs) and PRMT-catalyzed protein methylation have been well-known to be involved in a myriad of biological processes, their functions and the underlying molecular mechanisms in cancers, particularly in estrogen receptor alpha (ERα)-positive breast cancers, remain incompletely understood. Here we focused on investigating PRMT4 (also called coactivator associated arginine methyltransferase 1, CARM1) in ERα-positive breast cancers due to its high expression and the associated poor prognosis. Methods: ChIP-seq and RNA-seq were employed to identify the chromatin-binding landscape and transcriptional targets of CARM1, respectively, in the presence of estrogen in ERα-positive MCF7 breast cancer cells. High-resolution mass spectrometry analysis of enriched peptides from anti-monomethyl- and anti-asymmetric dimethyl-arginine antibodies in SILAC labeled wild-type and CARM1 knockout cells were performed to globally map CARM1 methylation substrates. Cell viability was measured by MTS and colony formation assay, and cell cycle was measured by FACS analysis. Cell migration and invasion capacities were examined by wound-healing and trans-well assay, respectively. Xenograft assay was used to analyze tumor growth in vivo. Results: CARM1 was found to be predominantly and specifically recruited to ERα-bound active enhancers and essential for the transcriptional activation of cognate estrogen-induced genes in response to estrogen treatment. Global mapping of CARM1 substrates revealed that CARM1 methylated a large cohort of proteins with diverse biological functions, including regulation of intracellular estrogen receptor-mediated signaling, chromatin organization and chromatin remodeling. A large number of CARM1 substrates were found to be exclusively hypermethylated by CARM1 on a cluster of arginine residues. Exemplified by MED12, hypermethylation of these proteins by CARM1 served as a molecular beacon for recruiting coactivator protein, tudor-domain-containing protein 3 (TDRD3), to CARM1-bound active enhancers to activate estrogen/ERα-target genes. In consistent with its critical role in estrogen/ERα-induced gene transcriptional activation, CARM1 was found to promote cell proliferation of ERα-positive breast cancer cells in vitro and tumor growth in mice. Conclusions: our study uncovered a "hypermethylation" strategy utilized by enhancer-bound CARM1 in gene transcriptional regulation, and suggested that CARM1 can server as a therapeutic target for breast cancer treatment.


Subject(s)
Breast Neoplasms/metabolism , Enhancer Elements, Genetic , Estrogen Receptor alpha/metabolism , Gene Expression Regulation, Neoplastic , Protein-Arginine N-Methyltransferases/metabolism , Animals , Arginine/metabolism , Breast Neoplasms/genetics , Cell Proliferation , Cell Transformation, Neoplastic , Chromatin Immunoprecipitation Sequencing , Estrogens/metabolism , Female , Gene Knockout Techniques , Humans , MCF-7 Cells , Mediator Complex/metabolism , Methylation , Mice , Mice, Inbred BALB C , Mice, Nude , Protein Binding , Protein-Arginine N-Methyltransferases/genetics , Proteins/metabolism , RNA-Seq , Transcriptional Activation , Xenograft Model Antitumor Assays
20.
J Cancer Res Ther ; 15(7): 1490-1495, 2019.
Article in English | MEDLINE | ID: mdl-31939427

ABSTRACT

CONTEXT: Endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) and positron emission tomography/computed tomography (PET/CT) are the two most extensively used methods for the diagnosis and staging of lung cancer. AIMS: The present study was designed to compare the diagnostic performance of EBUS-TBNA with that of PET/CT in patients with hilar and/or mediastinal lymphadenopathy. SETTINGS AND DESIGN: We compared the accuracy of EBUS-TBNA with that of PET/CT in the diagnosis of hilar and/or mediastinal lymphadenopathy and evaluated the diagnostic utility of EBUS-TBNA in patients with PET/CT false-positive and false-negative findings. METHODS: This study retrospectively analyzed 85 patients with hilar and/or mediastinal lymphadenopathy who underwent EBUS-TBNA and PET/CT between January 2014 and December 2017. The accuracy of EBUS-TBNA histopathology and cytopathology was evaluated and compared with PET/CT scan findings. RESULTS: The diagnostic accuracy of EBUS-TBNA combined with PET/CT was significantly higher than that of the single diagnostic method (P < 0.001). Among PET/CT-negative lymph nodes, 4 of 9 (44.4%) malignant lymph nodes were identified by EBUS-TBNA. Among PET/CT-positive lymph nodes, 43 of 47 (91.5%) benign lymph nodes were diagnosed by EBUS-TBNA. CONCLUSIONS: EBUS-TBNA combined with PET/CT could effectively reduce false-positive and false-negative rates in the diagnosis of hilar and mediastinal lymphadenopathy, which might provide accurate staging, determine optimum therapeutic strategy and improve survival in patients with lung cancer.


Subject(s)
Endoscopic Ultrasound-Guided Fine Needle Aspiration , Lymphadenopathy/diagnostic imaging , Lymphadenopathy/pathology , Mediastinum/diagnostic imaging , Mediastinum/pathology , Positron Emission Tomography Computed Tomography , Endoscopic Ultrasound-Guided Fine Needle Aspiration/methods , Female , Humans , Incidence , Lymph Nodes/diagnostic imaging , Lymph Nodes/pathology , Male , Positron Emission Tomography Computed Tomography/methods , Quality Improvement , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...