Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 159(11)2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37721329

ABSTRACT

The formation of angulon, stemming from the rotor (molecule or impurity), rotating in the quantum many-body field, adds a new member to the quasi-particles' family and has aroused intense interest in multiple research fields. However, the analysis of the coupling strength between the rotor and its hosting environment remains a challenging task, both in theory and experiment. Here, we develop the all-coupling theory of the angulon by introducing a unitary transformation, where the renormalization of the rotational constants for different molecules in the helium nanodroplets is reproduced, getting excellent agreement with the experimental data collected during the past decades. Moreover, the strength of molecule-helium coupling and the effective radius of the solvation shell co-rotating along with the molecular rotor could be estimated qualitatively. This model not only provides significant enlightenment for analyzing the rotational spectroscopy of molecules in the phononic environment, but also provides a new method to study the transfer of the phonon angular momentum in the angulon frame.

2.
J Phys Condens Matter ; 35(12)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36657176

ABSTRACT

The systematical analysis for varieties of defects with different depths and lattice relaxation strengths in metal halide perovskites (MHPs) is a challenging task. Here, we study the energy shifts of the full-configuration defects due to the polaron effect based on the all-coupling variational method in MHPs, where these polaron states are formed stemming from different defect species coupling with the longitudinal optical phonon modes via Fro¨hlich mechanism. We find that the polaron effect results in defect levels varying from tens to several hundreds of meV, which are very close to the correction of defect levels due to the defect-polaron effect, especially for these defects migration proved in the recent experiments in MHPs. These results provide the significant enlightenment not only for analyzing the radiation and non-radiation processes of carriers mediated by defects, but also for optimizing defect effect in the photovoltaic and photoelectric devices based on MHPs materials.

3.
J Phys Chem Lett ; 13(38): 8858-8863, 2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36123602

ABSTRACT

Metal halide perovskites quantum dots (MHPQDs) have aroused enormous interest in the photovoltaic and photoelectric disciplines because of their marvelous properties and size characteristics. However, one of the key problems of how to systematically analyze charge carriers trapped by defects is still a challenging task. Here, we study multiphonon processes of the charge carrier trapping by various defects in MHPQDs based on the well-known Huang-Rhys model, in which a method of a full-configuration defect, including different defect species with variable depth and lattice relaxation strength, is developed by introducing a localization parameter in the quantum defect model. With the help of this method, these fast trapping channels for charge carriers transferring from the quantum dot ground state to different defects are found. Furthermore, the dependence of the trapping time on the radius of quantum dot, the defect depth, and temperature is given. These results not only enrich the knowledge of charge carrier trapping processes by defects, but also bring light to the designs of MHPQDs-based photovoltaic and photoelectric devices.

4.
J Phys Chem Lett ; 13(16): 3732-3739, 2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35445599

ABSTRACT

The self-trapped state (STS) of the interlayer exciton (IX) has aroused enormous interest owing to its significant impact on the fundamental properties of the van der Waals heterostructures (vdWHs). Nevertheless, the microscopic mechanisms of STS are still controversial. Herein, we study the corrections of the binding energies of the IXs stemming from the exciton-interface optical phonon coupling in four kinds of vdWHs and find that these IXs are in the STS for the appropriate ratio of the electron and hole effective masses. We show that these self-trapped IXs could be classified into type I with the increasing binding energy in the tens of millielectronvolts range, which are very agreement with the red-shift of the IX spectra in experiments, and type II with the decreasing binding energy, which provides a possible explanation for the blue-shift and broad line width of the IX's spectra at low temperatures. Moreover, these two types of exciton states could be transformed into each other by adjusting the structural parameters of vdWHs. These results not only provide an in-depth understanding for the self-trapped mechanism but also shed light on the modulations of IXs in vdWHs.

5.
Phys Chem Chem Phys ; 24(8): 5048-5051, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35144279

ABSTRACT

Inelastic electron transfer, regarded as one of the potential mechanisms to explain odorant recognition in atomic-scale processes, is still a matter of intense debate. Here, we study multiphonon processes of electron transfer using the Markvart model and calculate their lifetimes with the values of key parameters widely adopted in olfactory systems. We find that these multiphonon processes are as quick as the single phonon process, which suggests that contributions from different phonon modes of an odorant molecule should be included for electron transfer in olfaction. Meanwhile, the temperature dependence of electron transfer could be analyzed effectively based on the reorganization energy which is expanded into the linewidth of multiphonon processes. Our theoretical results not only enrich the knowledge of the mechanism of olfaction recognition, but also provide insights into quantum processes in biological systems.


Subject(s)
Electrons , Smell , Electron Transport , Odorants , Temperature
6.
J Phys Chem Lett ; 12(45): 11182-11190, 2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34761944

ABSTRACT

Quantum defects have been shown to play an essential role in nonradiative recombination in metal halide perovskites (MHPs). Nonetheless, the processes of charge transfer assisted by defects are still ambiguous. Herein, we theoretically study the nonradiative multiphonon processes among different types of quantum defects in MHPs using Markvart's model for the induced mechanisms of electron-electron and electron-phonon interactions. We find that the charge carrier can transfer between the neighboring levels of the same type of shallow defects by multiphonon processes, but it will be distinctly suppressed with an increase in the defect depth. For the nonradiation multiphonon transitions between donor- and acceptor-like defects, the processes are very fast and not sensitive to the defect depth, which provides a possible explanation for the phenomenon of blinking of photoluminescence spectra. We also discuss the temperature dependence of these multiphonon processes and find that their variational trends depend on the comparison of the Huang-Rhys factor with the emitted phonon number. These theoretical results not only fill some of the gaps in defect-assisted nonradiative processes in the perovskite materials but also provide deeper physical insights into producing higher-performance perovskite-based devices.

8.
J Phys Condens Matter ; 33(23)2021 May 13.
Article in English | MEDLINE | ID: mdl-33827068

ABSTRACT

We propose a theoretical model for studying the effective velocities of polaron spin states in monolayer transition metal dichalcogenides (TMDS) on the substrate. It is found that the effective velocity of polaron shows the splitting with different magnitudes due to the Rashba spin-orbit coupling, which results in the reversed distribution of the effective velocities of polaron spin states. Moreover, the reversed points depend on the truncated wave-vector of optical phonon and can be modulated by the polarity of substrate and the internal distance between monolayer TMDS and substrate. These theoretical results enlighten some simple ways to distinguish and modulate the polaron spin states in two-dimensional heterostructures.

9.
J Phys Condens Matter ; 33(14)2021 Feb 16.
Article in English | MEDLINE | ID: mdl-33494077

ABSTRACT

Quantum defects are essential to understand the non-radiative recombination processes in metal halide perovskites-based photovoltaic devices, in which Huang-Rhys factor, reflecting the coupling strength between the charge carrier and optical phonons, plays a key role in determining the non-radiative recombination via multiphonon processes. Herein, we theoretically present multiphonon Raman scattering intermediated by defects arising from the charge carrier of defect coupled with the longitudinal optical (LO) phonon in the deformation potential and Fröhlich mechanisms, respectively. We find that the Raman scattering shows multiple LO phonon overtones at equal interval LO phonons, where Huang-Rhys factor could be evaluated by the order of the strongest overtone. Meanwhile, we give the combinational multiphonon scattering between two mechanisms. Different types of the combinational modes with the weak scattering intensities provide a possible explanation for the long non-radiative charges-carrier lifetimes in metal halide perovskites.

10.
J Phys Condens Matter ; 32(42): 425005, 2020 Jul 03.
Article in English | MEDLINE | ID: mdl-32619995

ABSTRACT

We study the infrared optical absorption of magnetopolaron resonance states in graphene in the strong magnetic field based on the Huybrechts's model, in which polaron states are formed due to the strong coupling between electrons and surface optical (SO) phonons induced by the polar substrate. We propose the special magnetopolaron states [Formula: see text], namely, the superposition states between one SO phonon and the first-excited Landau level, which split into two branches of coupling modes and give rise to two optical absorption peaks with different intensities. Moreover, their intensities can be sensitively modulated by the magnetic field, the truncated wave-vector of SO phonon, polarity of substrate and internal distance between graphene and substrate. These results indicate that the structure of graphene laying on the polar substrate provide a good platform for exploring the polaron resonance states and magneto-optical transitions by infrared spectroscopy.

11.
J Phys Condens Matter ; 29(48): 485001, 2017 Dec 06.
Article in English | MEDLINE | ID: mdl-29053108

ABSTRACT

We theoretically study the bandgap modulation in monolayer transition metal dichalcogenides (TMDs) originating from the carrier-optical phonon coupling in the Fröhlich polaron model, in which both of the surface optical phonons modes induced by the polar substrate and the intrinsic longitudinal optical phonons modes have been taken into account. We find that the modulated magnitude of the bandgap is in the range of 100-500 meV by altering different polar substrates and tuning the internal distance between TMDs and polar substrate. The large tunability of the bandgap not only provides a possible explanation for the experimental measurements regarding the dielectric environmental sensitivity of the bandgap, but also holds promise for potential applications in optoelectronics and photovoltaics.

12.
J Phys Condens Matter ; 26(39): 395302, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25192437

ABSTRACT

In the frame of Huang-Rhys's lattice relaxation model, we theoretically investigate the electron relaxation assisted by optical phonon resonance scattering among Landau levels with spin-conserving and spin-flip processes in graphene. We not only consider the longitudinal optical (LO) phonon scattering, but also the surface optical (SO) phonon scattering induced by the polar substrate under the graphene. The relaxation rate displays a Gaussian distribution by considering the effect of lattice relaxation that arises from the electron-deformation potential acoustic phonon interaction. We find that the relaxation rate of the spin-conserving process is three orders of magnitude larger than that of the spin-flip process for the same phonon mode. Moreover, the discrepancy of relaxation rates between the SO and LO phonon scattering is at two orders of magnitude for the same process. The opposite temperature dependence of the relaxation rates are also obtained in the resonance energy regime in the present model. In addition, the influences of the strength of Rashba spin-orbital coupling, the dielectric constant of different polar substrates and the distance between the graphene and substrate on the relaxation rates are also discussed quantitatively for the SO phonon scattering. The obtained results could be useful for the graphene-based applications on the mid-infrared and terahertz modulation and spintronic devices.

13.
J Phys Condens Matter ; 24(26): 265302, 2012 Jul 04.
Article in English | MEDLINE | ID: mdl-22677818

ABSTRACT

We investigate the n = 0 Landau level (LL) in monolayer graphene with high magnetic field. We find that the energy gap is opened in the n = 0 LL by the magnetic-field-dependent lattice relaxation originating from the interactions between the electrons (holes) and longitudinal-deformation-acoustic phonon. Both the linear and square-foot dependence of the energy gap on the magnetic field are obtained depending on the choice of the Debye cut-off wave number for the acoustic phonon. The relations of the Huang-Rhys parameter (lattice relaxation strength) and the transition linewidths with the magnetic field are also discussed. Our results agree with the current experiments on graphene in high magnetic field, and provide an alternative explanation for the experimental measurements.

14.
J Phys Condens Matter ; 24(13): 135301, 2012 Apr 04.
Article in English | MEDLINE | ID: mdl-22392819

ABSTRACT

The magnetopolaron is formed via electron-acoustic deformation phonon coupling in the presence of a magnetic field in monolayer graphene. We find that an energy gap (EG) is opened due to the electron-phonon coupling. Both linear and square-root forms for the dependence of the EG on the magnetic field are obtained, which are in agreement with experimental measurements. Furthermore, we suggest that the EG can be estimated through observing the variation of Fermi velocity in cyclotron resonance experiments. The relation of the EG with the Debye cut-off wavenumber is also discussed.


Subject(s)
Electrons , Graphite/chemistry , Magnetic Fields , Phonons , Models, Chemical , Vibration
15.
J Phys Condens Matter ; 23(22): 225303, 2011 Jun 08.
Article in English | MEDLINE | ID: mdl-21593554

ABSTRACT

We theoretically investigate the intraband relaxation of quantum dots in the terahertz regime due to two acoustic phonon scattering by applying a lattice relaxation approach based on the deformation potential coupling between electrons and acoustic phonons. In particular, we find that the relaxation time depends strongly on the ratio of two acoustic phonons. The influences of the energy separation between the ground and first excited state, the quantum dot height, and the lattice temperature on the relaxation time are also discussed. Our theoretical results not only give a reasonable explanation for the current experimental measurement but also provide some insight into two-phonon intraband relaxation in quantum dots.


Subject(s)
Nanotechnology/methods , Physics/methods , Acoustics , Diagnostic Imaging/methods , Electronics , Electrons , Models, Statistical , Quantum Dots , Temperature , Terahertz Radiation
SELECTION OF CITATIONS
SEARCH DETAIL
...