Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 114
Filter
1.
Nat Commun ; 15(1): 3769, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704393

ABSTRACT

Excessive bone marrow adipocytes (BMAds) accumulation often occurs under diverse pathophysiological conditions associated with bone deterioration. Estrogen-related receptor α (ESRRA) is a key regulator responding to metabolic stress. Here, we show that adipocyte-specific ESRRA deficiency preserves osteogenesis and vascular formation in adipocyte-rich bone marrow upon estrogen deficiency or obesity. Mechanistically, adipocyte ESRRA interferes with E2/ESR1 signaling resulting in transcriptional repression of secreted phosphoprotein 1 (Spp1); yet positively modulates leptin expression by binding to its promoter. ESRRA abrogation results in enhanced SPP1 and decreased leptin secretion from both visceral adipocytes and BMAds, concertedly dictating bone marrow stromal stem cell fate commitment and restoring type H vessel formation, constituting a feed-forward loop for bone formation. Pharmacological inhibition of ESRRA protects obese mice against bone loss and high marrow adiposity. Thus, our findings highlight a therapeutic approach via targeting adipocyte ESRRA to preserve bone formation especially in detrimental adipocyte-rich bone milieu.


Subject(s)
Adipocytes , Bone Marrow , Leptin , Osteogenesis , Receptors, Estrogen , Animals , Osteogenesis/genetics , Adipocytes/metabolism , Adipocytes/cytology , Mice , Leptin/metabolism , Leptin/genetics , Bone Marrow/metabolism , Receptors, Estrogen/metabolism , Receptors, Estrogen/genetics , Mesenchymal Stem Cells/metabolism , Obesity/metabolism , Obesity/pathology , Obesity/genetics , ERRalpha Estrogen-Related Receptor , Estrogen Receptor alpha/metabolism , Estrogen Receptor alpha/genetics , Female , Male , Mice, Inbred C57BL , Signal Transduction , Bone Marrow Cells/metabolism , Mice, Knockout
2.
Front Cell Infect Microbiol ; 14: 1386506, 2024.
Article in English | MEDLINE | ID: mdl-38660492

ABSTRACT

Background: Chronic obstructive pulmonary disease (COPD) is a prevalent condition that significantly impacts public health. Unfortunately, there are few effective treatment options available. Mendelian randomization (MR) has been utilized to repurpose existing drugs and identify new therapeutic targets. The objective of this study is to identify novel therapeutic targets for COPD. Methods: Cis-expression quantitative trait loci (cis-eQTL) were extracted for 4,317 identified druggable genes from genomics and proteomics data of whole blood (eQTLGen) and lung tissue (GTEx Consortium). Genome-wide association studies (GWAS) data for doctor-diagnosed COPD, spirometry-defined COPD (Forced Expiratory Volume in one second [FEV1]/Forced Vital Capacity [FVC] <0.7), and FEV1 were obtained from the cohort of FinnGen, UK Biobank and SpiroMeta consortium. We employed Summary-data-based Mendelian Randomization (SMR), HEIDI test, and colocalization analysis to assess the causal effects of druggable gene expression on COPD and lung function. The reliability of these druggable genes was confirmed by eQTL two-sample MR and protein quantitative trait loci (pQTL) SMR, respectively. The potential effects of druggable genes were assessed through the phenome-wide association study (PheWAS). Information on drug repurposing for COPD was collected from multiple databases. Results: A total of 31 potential druggable genes associated with doctor-diagnosed COPD, spirometry-defined COPD, and FEV1 were identified through SMR, HEIDI test, and colocalization analysis. Among them, 22 genes (e.g., MMP15, PSMA4, ERBB3, and LMCD1) were further confirmed by eQTL two-sample MR and protein SMR analyses. Gene-level PheWAS revealed that ERBB3 expression might reduce inflammation, while GP9 and MRC2 were associated with other traits. The drugs Montelukast (targeting the MMP15 gene) and MARIZOMIB (targeting the PSMA4 gene) may reduce the risk of spirometry-defined COPD. Additionally, an existing small molecule inhibitor of the APH1A gene has the potential to increase FEV1. Conclusions: Our findings identified 22 potential drug targets for COPD and lung function. Prioritizing clinical trials that target these identified druggable genes with existing drugs or novel medications will be beneficial for the development of COPD treatments.


Subject(s)
Drug Repositioning , Genome-Wide Association Study , Mendelian Randomization Analysis , Pulmonary Disease, Chronic Obstructive , Quantitative Trait Loci , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/physiopathology , Humans , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide
3.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(3): 236-243, 2024 Mar 15.
Article in Chinese | MEDLINE | ID: mdl-38557374

ABSTRACT

OBJECTIVES: To explore the changes in gut microbiota and levels of short-chain fatty acids (SCFA) in infants with cow's milk protein allergy (CMPA), and to clarify their role in CMPA. METHODS: A total of 25 infants diagnosed with CMPA at Children's Hospital Affiliated to Zhengzhou University from August 2019 to August 2020 were enrolled as the CMPA group, and 25 healthy infants were selected as the control group. Fecal samples (200 mg) were collected from both groups and subjected to 16S rDNA high-throughput sequencing technology and liquid chromatography-mass spectrometry to analyze the changes in gut microbial composition and metabolites. Microbial diversity was analyzed in conjunction with metabolites. RESULTS: Compared to the control group, the CMPA group showed altered gut microbial structure and significantly increased α-diversity (P<0.001). The abundance of Firmicutes, Clostridiales and Bacteroidetes was significantly decreased, while the abundance of Sphingomonadaceae, Clostridiaceae_1 and Mycoplasmataceae was significantly increased in the CMPA group compared to the control group (P<0.001). Metabolomic analysis revealed reduced levels of acetic acid, butyric acid, and isovaleric acid in the CMPA group compared to the control group, and the levels of the metabolites were positively correlated with the abundance of SCFA-producing bacteria such as Faecalibacterium and Roseburia (P<0.05). CONCLUSIONS: CMPA infants have alterations in gut microbial structure, increased microbial diversity, and decreased levels of SCFA, which may contribute to increased intestinal inflammation.


Subject(s)
Gastrointestinal Microbiome , Milk Hypersensitivity , Infant , Child , Female , Animals , Cattle , Humans , Milk Hypersensitivity/diagnosis , Fatty Acids, Volatile , Bacteria/genetics , Butyric Acid , Milk Proteins
4.
Environ Pollut ; 348: 123811, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38531467

ABSTRACT

The relationship between long-term ozone (O3) exposure and readmission for acute exacerbations of chronic obstructive pulmonary disease (AECOPD) remains elusive. In this study, we collected individual-level information on AECOPD hospitalizations from a standardized electronic database in Guangzhou from January 1, 2014, to December 31, 2015. We calculated the annual mean O3 concentration prior to the dates of the index hospitalization for AECOPD using patients' residential addresses. Employing Cox proportional hazards models, we assessed the association between long-term O3 concentration and the risk of AECOPD readmission across several time frames (30 days, 90 days, 180 days, and 365 days). We estimated the disease and economic burden of AECOPD readmissions attributable to O3 using a counterfactual approach. Of the 4574 patients included in the study, 1398 (30.6%) were readmitted during the study period, with 262 (5.7%) readmitted within 30 days. The annual mean O3 concentration was 90.3 µg/m3 (standard deviation [SD] = 8.2 µg/m3). A 10-µg/m3 increase in long-term O3 concentration resulted in a hazard ratio (HR) for AECOPD readmission within 30 days of 1.28 (95% confidence interval [CI], 1.09 to 1.49), with similar results for readmission within 90, 180, and 365 days. Older patients (aged 75 years or above) and males were more susceptible (HR, 1.33; 95% CI, 1.10-1.61 and HR, 1.29; 95% CI, 1.09-1.53, respectively). The population attributable fraction for 30-day readmission due to O3 exposure was 29.0% (95% CI, 28.4%-30.0%), and the attributable mean cost per participant was 362.3 USD (354.5-370.2). Long-term exposure to elevated O3 concentrations is associated with an increased risk of AECOPD readmission, contributing to a significant disease and economic burden.


Subject(s)
Ozone , Pulmonary Disease, Chronic Obstructive , Male , Humans , Patient Readmission , Pulmonary Disease, Chronic Obstructive/epidemiology , Hospitalization , Proportional Hazards Models , Retrospective Studies
6.
Neural Netw ; 172: 106151, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38301339

ABSTRACT

Representation learning on temporal interaction graphs (TIG) aims to model complex networks with the dynamic evolution of interactions on a wide range of web and social graph applications. However, most existing works on TIG either (a) rely on discretely updated node embeddings merely when an interaction occurs that fail to capture the continuous evolution of embedding trajectories of nodes, or (b) overlook the rich temporal patterns hidden in the ever-changing graph data that presumably lead to sub-optimal models. In this paper, we propose a two-module framework named ConTIG, a novel representation learning method on TIG that captures the continuous dynamic evolution of node embedding trajectories. With two essential modules, our model exploits three-fold factors in dynamic networks including latest interaction, neighbor features, and inherent characteristics. In the first update module, we employ a continuous inference block to learn the nodes' state trajectories from time-adjacent interaction patterns using ordinary differential equations. In the second transform module, we introduce a self-attention mechanism to predict future node embeddings by aggregating historical temporal interaction information. Experiment results demonstrate the superiority of ConTIG on temporal link prediction, temporal node recommendation, and dynamic node classification tasks of four datasets compared with a range of state-of-the-art baselines, especially for long-interval interaction prediction.


Subject(s)
Machine Learning
7.
J Thorac Dis ; 16(1): 379-390, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38410578

ABSTRACT

Background: Reference equations for forced expiratory flow at 50% and 75% of forced vital capacity (FVC) (FEF50 and FEF75) in the Chinese population are lacking. It is of great importance to establish equations covering most age groups and to study their applicability in clinical practice. Methods: Using the lambda-mu-sigma (LMS) method, reference equations for FEF50 and FEF75 were constructed based on pulmonary function data from healthy subjects collected from January 2007 to June 2010 at 24 centers throughout China. Differences between the established equations and extraneous equations were compared using standardized means (Z values) and percentage errors (PE). The proportion of small airway dysfunction (SAD) defined by the present equations was calculated. The Fisher precision probability test and the Mann-Whitney test were used to analyze the magnitude of changes in small and large airway indices after bronchodilator inhalation in patients with suspected asthma and chronic obstructive pulmonary disease (COPD). Results: Reference equations for FEF50 and FEF75 were established based on data from 7,115 healthy individuals (aged 4 to 80 years, 50.9% female, height between 95 and 190 cm). The present equations (all Z values were -0.0 and PE ranged from 2.0% to 4.2%) showed advantages over the European Community for Steel and Coal (ECSC) equations in 1993 (with Z values ranging from -0.7 to -0.2 and PE ranged from -23.4% to -4.5%). A total of 4,356 patients with suspected asthma (51.1% female; a mean age of 45.4 years) and 6,558 patients with suspected COPD (10.1% female; a mean age of 65.0 years) were included. The present equations defined 95.7% and 99.9% of SAD in these patients. After bronchodilator inhalation, greater mean improvement rates in small airway indices were observed both in patients with suspected asthma [mean ± standard deviation (SD) =48%±47%] and in patients with suspected COPD (mean ± SD =20%±30%) (P<0.05). Conclusions: The reference equations for FEF50 and FEF75 established in this study should be considered for use in China. Further studies are needed to validate their value in the diagnosis of some chronic respiratory diseases.

8.
Microorganisms ; 12(2)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38399660

ABSTRACT

Staphylococcus aureus can form biofilms on biotic surfaces or implanted materials, leading to biofilm-associated diseases in humans and animals that are refractory to conventional antibiotic treatment. Recent studies indicate that the unique ArlRS regulatory system in S. aureus is a promising target for screening inhibitors that may eradicate formed biofilms, retard virulence and break antimicrobial resistance. In this study, by screening in the library of FDA-approved drugs, tilmicosin was found to inhibit ArlS histidine kinase activity (IC50 = 1.09 µM). By constructing a promoter-fluorescence reporter system, we found that tilmicosin at a concentration of 0.75 µM or 1.5 µM displayed strong inhibition on the expression of the ArlRS regulon genes spx and mgrA in the S. aureus USA300 strain. Microplate assay and confocal laser scanning microscopy showed that tilmicosin at a sub-minimal inhibitory concentration (MIC) had a potent inhibitory effect on biofilms formed by multiple S. aureus strains and a strong biofilm-forming strain of S. epidermidis. In addition, tilmicosin at three-fold of MIC disrupted USA300 mature biofilms and had a strong bactericidal effect on embedded bacteria. Furthermore, in a BioFlux flow biofilm assay, tilmicosin showed potent anti-biofilm activity and synergized with oxacillin against USA300.

10.
Soft Matter ; 20(3): 629-639, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38163997

ABSTRACT

The application of hydrogels in an underwater environment is limited due to their swelling behavior and the existence of a hydration layer. In this study, a hydrogel based on poly(sulfobetaine methacrylate) (PSBMA), tannic acid (TA) and montmorillonite (MMT) was prepared with excellent anti-swelling properties and underwater self-adhesion properties. The PSBMA hydrogel has excellent anti-swelling properties due to the strong electrostatic interaction between charged groups of PSBMA chains. Inspired by marine mussels, tannic acid modified montmorillonite (TA@MMT) was introduced. Natural polyphenol tannic acid, as a catechol donor, provides a large number of catechol groups for hydrogels. Montmorillonite acts as the physical cross-linking point of PSBMA chains through electrostatic interaction to improve the cohesion of the hydrogel. By combining the adhesion mechanism of zwitterions and catechol, the hydrogel maintains adhesion in air and underwater environments. In addition, a strain sensor was prepared based on the PSBMA/TA@MMT hydrogel, which can closely fit the human skin and stably monitor different movements in air and in underwater environments. Through a Bluetooth communication system, long-distance information transmission can be achieved. Therefore, the PSBMA/TA@MMT hydrogel broadens the application prospect of wearable devices in the underwater environment.

11.
Respir Med ; 222: 107527, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38199288

ABSTRACT

BACKGROUND: Clinically important deterioration (CID) is a composite endpoint used to holistically assess the complex progression of chronic obstructive pulmonary disease (COPD). Tiotropium improves lung function and reduces the rate of COPD exacerbations in patients with COPD of Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage 1 (mild) or 2 (moderate). However, whether tiotropium reduces CID risk in patients with mild-to-moderate COPD remains unclear. METHODS: This was a post hoc analysis of the 24-month Tie-COPD study comparing 18 µg tiotropium with placebo in patients with mild-to-moderate COPD. CID was defined as a decrease of ≥100 mL in trough forced expiratory volume in 1 s, an increase of ≥2 unit in COPD Assessment Test (CAT) score, or moderate-to-severe exacerbation. The time to the first occurrence of one of these events was recorded as the time to the first CID. Subgroup analyses were conducted among patients stratified by CAT score, modified Medical Research Council (mMRC) dyspnea score, and GOLD stage at baseline. RESULTS: Of the 841 randomized patients, 771 were included in the full analysis set. Overall, 643 patients (83.4 %) experienced at least one CID event. Tiotropium significantly reduced the CID risk and delayed the time to first CID compared with placebo (adjusted hazard ratio = 0.58, 95 % confidence interval = 0.49-0.68, P < 0.001). Significant reductions in CID risk were also observed in various subgroups, including patients with a CAT score <10, mMRC score <2, and mild COPD. CONCLUSIONS: Tiotropium reduced CID risk in patients with mild-to-moderate COPD, even in patients with fewer respiratory symptoms or mild disease, which highlights tiotropium's effectiveness in treating COPD patients with mild disease. TRIAL REGISTRATION: This study is registered at ClinicalTrials.gov (Tie-COPD, NCT01455129).


Subject(s)
Bronchodilator Agents , Pulmonary Disease, Chronic Obstructive , Humans , Tiotropium Bromide/therapeutic use , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/diagnosis , Forced Expiratory Volume , Treatment Outcome
12.
BMC Infect Dis ; 24(1): 2, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38166702

ABSTRACT

BACKGROUND: In the context of increasing population aging, ongoing drug-resistant pathogens and the COVID-19 epidemic, the changes in the epidemiological and clinical characteristics of patients with pneumonia remain unclear. This study aimed to assess the trends in hospitalization, case fatality, comorbidities, and isolated pathogens of pneumonia-related adult inpatients in Guangzhou during the last decade. METHODS: We retrospectively enrolled hospitalized adults who had doctor-diagnosed pneumonia in the First Affiliated Hospital of Guangzhou Medical University from January 1, 2013 to December 31, 2022. A natural language processing system was applied to automatically extract the clinical data from electronic health records. We evaluated the proportion of pneumonia-related hospitalizations in total hospitalizations, pneumonia-related in-hospital case fatality, comorbidities, and species of isolated pathogens during the last decade. Binary logistic regression analysis was used to assess predictors for patients with prolonged length of stay (LOS). RESULTS: A total of 38,870 cases were finally included in this study, with 70% males, median age of 64 (53, 73) years and median LOS of 7.9 (5.1, 12.8) days. Although the number of pneumonia-related hospitalizations showed an upward trend, the proportion of pneumonia-related hospitalizations decreased from 199.6 per 1000 inpatients in 2013 to 123.4 per 1000 in 2021, and the case fatality decreased from 50.2 per 1000 in 2013 to 23.9 per 1000 in 2022 (all P < 0.05). The most common comorbidities were chronic obstructive pulmonary disease, lung malignancy, cardiovascular diseases and diabetes. The most common pathogens were Pseudomonas aeruginosa, Candida albicans, Acinetobacter baumannii, Stenotrophomonas maltophilia, Klebsiella pneumoniae, and Staphylococcus aureus. Glucocorticoid use during hospitalization (Odd Ratio [OR] = 1.86, 95% Confidence Interval (CI): 1.14-3.06), immunosuppressant use during hospitalization (OR = 1.99, 1.14-3.46), ICU admission (OR = 16.23, 95%CI: 11.25-23.83), receiving mechanical ventilation (OR = 3.58, 95%CI: 2.60-4.97), presence of other underlying diseases (OR = 1.54, 95%CI: 1.15-2.06), and elevated procalcitonin (OR = 1.61, 95%CI: 1.19-2.19) were identified as independent predictors for prolonged LOS. CONCLUSION: The proportion of pneumonia-related hospitalizations and the in-hospital case fatality showed downward trends during the last decade. Pneumonia inpatients were often complicated by chronic underlying diseases and isolated with gram-negative bacteria. ICU admission was a significant predictor for prolonged LOS in pneumonia inpatients.


Subject(s)
Inpatients , Pneumonia , Male , Adult , Humans , Female , Retrospective Studies , Hospitalization , Pneumonia/epidemiology , China/epidemiology
13.
Pharmacol Res ; 199: 106990, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37984506

ABSTRACT

Resistance to temozolomide (TMZ), the frontline chemotherapeutic agent for glioblastoma (GBM), has emerged as a formidable obstacle, underscoring the imperative to identify alternative therapeutic strategies to improve patient outcomes. In this study, we comprehensively evaluated a novel agent, O6-methyl-2'-deoxyguanosine-5'-triphosphate (O6-methyl-dGTP) for its anti-GBM activity both in vitro and in vivo. Notably, O6-methyl-dGTP exhibited pronounced cytotoxicity against GBM cells, including those resistant to TMZ and overexpressing O6-methylguanine-DNA methyltransferase (MGMT). Mechanistic investigations revealed that O6-methyl-dGTP could be incorporated into genomic DNA, disrupting nucleotide pools balance, and inducing replication stress, resulting in S-phase arrest and DNA damage. The compound exerted its anti-tumor properties through the activation of AIF-mediated apoptosis and the parthanatos pathway. In vivo studies using U251 and Ln229 cell xenografts supported the robust tumor-inhibitory capacity of O6-methyl-dGTP. In an orthotopic transplantation model with U87MG cells, O6-methyl-dGTP showcased marginally superior tumor-suppressive activity compared to TMZ. In summary, our research, for the first time, underscores the potential of O6-methyl-dGTP as an effective candidate against GBM, laying a robust scientific groundwork for its potential clinical adoption in GBM treatment regimens.


Subject(s)
Glioblastoma , Polyphosphates , Humans , Glioblastoma/drug therapy , Glioblastoma/metabolism , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Nucleosides/pharmacology , Nucleosides/therapeutic use , Caspases , Cell Line, Tumor , Temozolomide/pharmacology , Temozolomide/therapeutic use , Nucleotides , O(6)-Methylguanine-DNA Methyltransferase/metabolism , O(6)-Methylguanine-DNA Methyltransferase/pharmacology , O(6)-Methylguanine-DNA Methyltransferase/therapeutic use , Deoxyguanosine/pharmacology , Deoxyguanosine/therapeutic use , DNA , Drug Resistance, Neoplasm
14.
Huan Jing Ke Xue ; 44(12): 6869-6879, 2023 Dec 08.
Article in Chinese | MEDLINE | ID: mdl-38098411

ABSTRACT

To investigate the effects of biochar(BC) addition on soil organic carbon(SOC) contents and its fractions under different biochar applications, Eucalyptus waste twigs in Northern Guangxi were used to produce BC at 500℃. Additionally, we sought to clarify and define the carbon sequestration potential of soil and provide a basis for the preparation of biochar from Eucalyptus forest wastes and soil improvement. In a long-term positioning test of biochar application from 1997, six different treatments were selected:0(CK), 0.5%(T1), 1%(T2), 2%(T3), 4%(T4), and 6%(T5). The contents of SOC, light fraction organic carbon(LFOC), heavy fraction organic carbon(HFOC), easily oxidized organic carbon(EOC), dissolved organic carbon(DOC), particulate organic carbon(POC), microbial biomass carbon(MBC), and carbon stock(CS) following the different treatments were measured. The results showed that:① compared to that in the control, biochar application induced an increase in each soil organic carbon fraction with increasing application rate and reached a maximum under the T4 or T5 treatments; with the increase in biochar application, the contents of SOC, DOC, EOC, POC, MBC, and CS increased significantly by 101.62%, 67.46%, 143.03%, 164.78%, 110.88%, and 41.73%, respectively. ② The contents of LFOC and HFOC in the 0-10, 10-20, and 20-30 cm soil layers increased significantly by 41.41%-140.63%, 9.26%-87.04%, and -19.54%-106.90% and 15.32%-78.99%, 15.72%-75.25%, and 89.49%-148.64%, respectively, with the increase in biochar application. The average contents of LFOC and HFOC in the 0-30 cm soil layer also increased gradually. The soil carbon pool of the Eucalyptus forest was dominated by a relatively stable heavy fraction organic carbon. ③ The contents of carbon stock, soil organic carbon, and its fractions decreased with the increase in soil depth. In conclusion, the application of forestry waste biochar for five years could significantly increase the content of SOC and its components, thereby increasing soil organic carbon activity. Therefore, increasing the amount of biochar was an effective measure to enhance the carbon storage, soil stable carbon pool, and soil quality of the Eucalyptus plantation field. This study provides a reference for the resource utilization of forestry waste and improvements in soil fertility of Eucalyptus plantations.


Subject(s)
Carbon , Eucalyptus , Carbon/analysis , Soil , China
15.
Huan Jing Ke Xue ; 44(11): 6235-6247, 2023 Nov 08.
Article in Chinese | MEDLINE | ID: mdl-37973106

ABSTRACT

The objective of this study was to research the characteristics of fractions of organic nitrogen and active nitrogen and their relationship under different biochar applications and to provide a basis for the preparation and practical application of biochar from Eucalyptus forest wastes. In a long-term positioning test of biochar application from 2017, six different treatments were selected:0(CK), 0.5%(T1), 1%(T2), 2%(T3), 4%(T4), and 6%(T5). The contents of soil organic nitrogen components, total nitrogen(TN), dissolved organic nitrogen(DON), and microbial biomass nitrogen(MBN) following the different treatments were measured. The results showed that:① compared with that of the control, with the increase in biochar application, the contents of soil TN, acidolysis of total organic nitrogen(AHON), ammonia nitrogen(AN), amino acid nitrogen(AAN), MBN, DON, and nitrogen storage(NS) increased significantly by 45.48%-156.32%, 44.31%-171.31%, 38.06%-223.37%, 39.42%-163.32%, 36.72%-109%, 23.27%-113.51%, and 29.45%-62.37%, respectively. The contents of soil hydrolyzable unknown nitrogen(HUN) and non-hydrolyzable nitrogen(NHN) also increased significantly by 88.41%-158.71% and 50.24%-139.01%, respectively. The contents of soil amino sugar nitrogen(ASN) decreased by 7.72%-32.73%. The contents of different forms of organic nitrogen fractions in all treatments displayed an order of AN > AAN > NHN > HUN > ASN. Compared with the no biochar treatment, each biochar treatment increased the contents and proportion of AHON in the TN. ② With the exception of HUN, the contents of other soil organic nitrogen components and active nitrogen content decreased with the increase in soil depth. ③ There were significantly positive correlations between TN, MBN, and DON and AHON, NHN, and NS contents. The principal component analysis showed that bulk density and ASN and TN and HUN, AAN, DON, and AHON were closely related, respectively. In conclusion, the application of forestry waste biochar for five years could significantly increase the content of soil organic nitrogen component and active nitrogen, thereby improving the capacity of the soil to supply nitrogen. AHON, AN, and AAN were the main factors contributing to soil active nitrogen content.


Subject(s)
Eucalyptus , Soil , Soil/chemistry , Carbon/analysis , Nitrogen/analysis , China , Charcoal/chemistry
16.
BMJ Open Respir Res ; 10(1)2023 11 30.
Article in English | MEDLINE | ID: mdl-38035712

ABSTRACT

BACKGROUND: The relationship between airway inflammation in chronic obstructive pulmonary disease (COPD) and clinical characteristics remains unclear. This study aimed to investigate the airway inflammatory phenotypes in COPD and their association with clinical characteristics. METHODS: 895 patients with COPD were recruited from Guangdong Province, China in this study. Each patient underwent questionnaire interviews, spirometry testing, CT scans and induced sputum examination. Classification of airway inflammation phenotypes was based on sputum inflammatory cell counts. Covariance analysis was applied to assess associations with airway inflammation phenotypes. RESULTS: In this study, we found that neutrophilic phenotype (NP, 58.0%) was the most common airway inflammation phenotype in patients with COPD, followed by mixed granulocytic phenotype (MGP, 32.6%), eosinophilic phenotype (EP, 5.4%) and paucigranulocytic phenotype (PP, 4.0%). Compared with NP patients, those with MGP exhibited more frequent chronic respiratory symptoms, and a higher proportion of individuals classified under Global Initiative for Chronic Obstructive Lung Disease stages 3 and 4. After adjusting for confounding factors, MGP patients had lower lung function, and more severe emphysema and air trapping. On the contrary, patients with PP had the best pulmonary function and less emphysema and air trapping. CONCLUSIONS: NP was the most common airway inflammation phenotype in patients with COPD. Patients with MGP had more respiratory symptoms, greater loss of lung function, and more severe emphysema and gas trapping compared with those with NP. Meanwhile, PP may be a phenotype of mild damage to lung structure in patients with COPD.


Subject(s)
Emphysema , Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Humans , Cross-Sectional Studies , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Emphysema/diagnostic imaging , Phenotype , Inflammation
17.
Diabetes Metab Syndr ; 17(12): 102907, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37980723

ABSTRACT

AIMS: Glucagon-like peptide 1 (GLP-1) is produced by the L subtype of enteroendocrine cells (EECs). Patients with type 2 diabetes (T2D) exhibit reduced incretin effect, but the pathophysiology and functional change of the L-cells remain unclear. Deciphering the mechanisms of the biological changes in L-cells under T2D conditions may assist in the research of gut-based strategies for T2D therapy. METHODS: We investigated the fasting serum GLP-1 levels and the distribution of colonic L-cells in young and aged participants with and without T2D. Additionally, we established an aged male T2D Wistar rat model subjected to a long-term high-fat and high-fructose (HFHF) diet. Histological investigations and single-cell RNA sequencing (scRNA-seq) analyses were performed to explore the mechanisms underlying functional changes in the colonic EECs. RESULTS: We observed a decline in circulating GLP-1 levels and a reduced number of colonic L-cells in elderly patients with T2D. The mechanisms underlying impaired L-cell formation and disturbed GLP-1 production were revealed using aged T2D rats induced by a long-term HFHF diet. The scRNA-seq results showed that the transcription factors that regulate L-cell commitment, such as Foxa1, were downregulated, and the expression of genes that participate in encoding GLP-1, GLP-1 posttranslational processing, hormone secretion, and nutrient sensing was disturbed. CONCLUSIONS: Taken together, the reduced L-cell lineage commitment and disturbed L-cell functions might be the major cause of the reduced GLP-1 production in aged populations with T2D. Our study provides new insights for identifying novel targets in colonic L-cells for improving endogenous GLP-1 production.


Subject(s)
Diabetes Mellitus, Type 2 , Glucagon-Like Peptide 1 , Humans , Mice , Aged , Male , Rats , Animals , L Cells , Rats, Wistar , Enteroendocrine Cells/metabolism , Hepatocyte Nuclear Factor 3-alpha/metabolism , Hepatocyte Nuclear Factor 3-alpha/pharmacology
18.
Microb Pathog ; 183: 106329, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37659726

ABSTRACT

Cow's milk protein allergy (CMPA), one of the most prevalent food allergies, seriously affects the growth and development of infants and children with the rising incidence and prevalence. The dysbiosis of intestinal flora acts to promote disease including allergic disease. Therefore, studying the role of intestinal flora in allergic diseases holds great promise for developing effective strategies to mitigate the risk of food allergies. This study aims to elucidate the role of disrupted intestinal flora and its metabolites in children with CMPA.16S rDNA sequence analysis was applied to characterize the changes in the composition of intestinal flora. The findings revealed heightened diversity of intestinal flora in CMPA, marked by decreased abundance of Firmicutes and Bacteroidetes, and increased abundance of Proteobacteria and Actinobacteria. Furthermore, metabolite analysis identified a total of 1245 differential metabolites in children with CMPA compared to those in healthy children. Among these, 765 metabolites were down-regulated, while 480 were up-regulated. Notably, there were 10 negative differential metabolites identified as bile acids and derivatives, including second bile acids, such as deoxycholic acid, ursodeoxycholic acid and isoursodexycholic acid. The intestinal barrier was further analyzed and showed that the enterocytes proliferation and the expression of Claudin-1, Claudin-3 and MUC2 were down-regulated with the invasion of biofilm community members in the CMPA group. In summary, these findings provide compelling evidence that food allergies disrupt intestinal flora and its metabolites, consequently damaging the intestinal barrier's integrity to increase intestinal permeability and immune response.


Subject(s)
Gastrointestinal Microbiome , Milk Hypersensitivity , Animals , Cattle , Female , Intestines , Enterocytes , Bile Acids and Salts
19.
New Phytol ; 240(4): 1534-1547, 2023 11.
Article in English | MEDLINE | ID: mdl-37649282

ABSTRACT

Predicting and managing the structure and function of plant microbiomes requires quantitative understanding of community assembly and predictive models of spatial distributions at broad geographic scales. Here, we quantified the relative contribution of abiotic and biotic factors to the assembly of phyllosphere bacterial communities, and developed spatial distribution models for keystone bacterial taxa along a latitudinal gradient, by analyzing 16S rRNA gene sequences from 1453 leaf samples taken from 329 plant species in China. We demonstrated a latitudinal gradient in phyllosphere bacterial diversity and community composition, which was mostly explained by climate and host plant factors. We found that host-related factors were increasingly important in explaining bacterial assembly at higher latitudes while nonhost factors including abiotic environments, spatial proximity and plant neighbors were more important at lower latitudes. We further showed that local plant-bacteria associations were interconnected by hub bacteria taxa to form metacommunity-level networks, and the spatial distribution of these hub taxa was controlled by hosts and spatial factors with varying importance across latitudes. For the first time, we documented a latitude-dependent importance in the driving factors of phyllosphere bacteria assembly and distribution, serving as a baseline for predicting future changes in plant phyllosphere microbiomes under global change and human activities.


Subject(s)
Bacteria , Microbiota , Humans , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Plants/genetics , Plant Leaves/microbiology
20.
Environ Sci Technol ; 57(29): 10838-10848, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37435802

ABSTRACT

Improving the nanofiltration (NF) performance of membrane-based treatment is conducive to promoting environmental water recycling and addressing water resource depletion. Combinations of light, electricity, and heat with traditional techniques of preparing membranes should optimize membrane performance. Interfacial polymerization and photopolymerization were integrated to construct a photopolymerized thin-film composite NF membrane with a ridged surface morphology. Under visible light initiation, 2-acrylamido-2-methyl-1-propanesulfonic acid was crosslinked with the polyamide network. The control effects of light on the membrane surface and physicochemical properties were revealed via infrared thermal images and response surface methodology. To present the diffusion motion of piperazine molecules, molecular dynamics simulations were implemented. Through density functional theory simulations, the crosslinking mechanism of the photoinduced NF network was identified and verified. The surface physicochemical characteristics and perm-selectivity performance were systematically illustrated. The photopolymerized membrane outperformed the pristine in permeability and selective separation competence; without degradation of solute repulsion, the water permeation was enhanced to 33.5 L m-2 h-1 bar-1, 6.6 times that of the initial membrane. In addition, the removal of organic contaminants and antifouling capacities were improved. This work represents a novel lead for applying sustainable resources in constructing high-performance membranes for environmental challenges.


Subject(s)
Electricity , Hot Temperature , Polymerization , Diffusion , Light
SELECTION OF CITATIONS
SEARCH DETAIL
...