Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(1): 924-932, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38145368

ABSTRACT

Selective hydrogenation of cinnamaldehyde (CAL) to cinnamyl alcohol (COL) is difficult due to the intrinsic difficulty with thermodynamically easier hydrogenation of C═C bonds. In this work, Pt-CoxOy hybrid nanoparticles encapsulated in mesoporous silica nanospheres (Pt-CoxOy@mSiO2) were synthesized by a sol-gel method, which showed greatly improved COL selectivity for hydrogenation of CAL. At 80 °C and 1.0 MPa of H2, Pt-CoxOy@mSiO2 achieved a CAL conversion of 98.7% with a COL selectivity of 93.5%. In contrast, Pt@mSiO2 yields 3-phenylpropanol (HCOL) as the major product with HCOL selectivity of 67.2%, while PtCo@mSiO2 yields 3-phenylpropionaldehyde with selectivity of 51.8% under the same conditions. The enhanced catalytic performance of Pt-CoxOy@mSiO2 for hydrogenation of CAL to COL is ascribed to the Pt surface electron deficiency induced by metal-oxide interaction, and the protection of active NPs by silica shells results in good catalytic stability.

SELECTION OF CITATIONS
SEARCH DETAIL