Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 51(19): 10411-10427, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37742082

ABSTRACT

Acetylation is a global post-translational modification that regulates various cellular processes. Bacterial acetylomic studies have revealed extensive acetylation of ribosomal proteins. However, the role of acetylation in regulating ribosome function remains poorly understood. In this study, we systematically profiled ribosomal protein acetylation and identified a total of 289 acetylated lysine residues in 52 ribosomal proteins (r-proteins) from Salmonella Typhimurium. The majority of acetylated lysine residues of r-proteins were found to be regulated by both acetyltransferase Pat and metabolic intermediate acetyl phosphate. Our results show that acetylation plays a critical role in the assembly of the mature 70S ribosome complex by modulating r-proteins binding to rRNA. Moreover, appropriate acetylation is important for the interactions between elongation factors and polysomes, as well as regulating ribosome translation efficiency and fidelity. Dysregulation of acetylation could alter bacterial sensitivity to ribosome-targeting antibiotics. Collectively, our data suggest that the acetylation homeostasis of ribosomes is crucial for their assembly and function. Furthermore, this mechanism may represent a universal response to environmental signals across different cell types.


Subject(s)
Protein Processing, Post-Translational , Ribosomal Proteins , Salmonella typhimurium , Acetylation , Homeostasis , Lysine/metabolism , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Ribosomes/genetics , Ribosomes/metabolism , Salmonella typhimurium/metabolism
2.
Emerg Microbes Infect ; 11(1): 1554-1571, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35603550

ABSTRACT

Adaptation to various stresses during infection is important for Salmonella Typhimurium virulence, while the fitness determinants under infection-relevant stress conditions remain unknown. Here, we simulated conditions Salmonella encountered within the host or in the environment by 15 individual stresses as well as two model cell lines (epithelium and macrophage) to decipher the genes and pathways required for fitness. By high-resolution Tn-seq analysis, a total of 1242 genes were identified as essential for fitness under at least one stress condition. The comparative analysis of fitness determinants in 17 stress conditions indicated the essentiality of genes varied in different mimicking host niches. A total of 12 genes were identified as fitness determinants in all stress conditions, including recB, recC, and xseA (encode three exonuclease subunits necessary for DNA recombination repair) and a novel essential fitness gene yheM. YheM is a putative sulfurtransferase subunit that is responsible for tRNA modification, and our results showed that Salmonella lacking yheM accumulated more aggregates of endogenous protein than wild-type. Moreover, we established a scoring scheme for sRNA essentiality analysis and found STnc2080 of unknown function was essential for resistance to LL-37. In summary, we systematically dissected Salmonella gene essentiality profiling and demonstrated the general and specific adaptive requirements in infection-relevant niches. Our data not only provide valuable insights on how Salmonella responds to environmental stresses during infections but also highlight the potential clinical application of fitness determinants in vaccine development.


Subject(s)
Protein Aggregates , Salmonella typhimurium , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Salmonella typhimurium/metabolism , Virulence/genetics
3.
mBio ; 12(5): e0209921, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34544273

ABSTRACT

The two-component system PhoP/PhoQ is essential for Salmonella enterica serovar Typhimurium virulence. Here, we report that PhoP is methylated extensively. Two consecutive glutamate (E) and aspartate (D)/E residues, i.e., E8/D9 and E107/E108, and arginine (R) 112 can be methylated. Individual mutation of these above-mentioned residues caused impaired phosphorylation and dimerization or DNA-binding ability of PhoP to a different extent and led to attenuated bacterial virulence. With the help of specific antibodies recognizing methylated E8 and monomethylated R112, we found that the methylation levels of E8 or R112 decreased dramatically when bacteria encountered low magnesium, acidic pH, or phagocytosis by macrophages, under which PhoP can be activated. Furthermore, CheR, a bacterial chemotaxis methyltransferase, was identified to methylate R112. Overexpression of cheR decreased PhoP activity but increased PhoP stability. Together, the current study reveals that methylation plays an important role in regulating PhoP activities in response to environmental cues and, consequently, modulates Salmonella virulence. IMPORTANCE Posttranslational modifications (PTMs) play an important role in regulating enzyme activities, protein-protein interactions, or DNA-protein recognition and, consequently, modulate many biological functions. We demonstrated that PhoP, the response regulator of PhoP/PhoQ two-component system, could be methylated on several evolutionally conserved amino acid residues. These amino acid residues were crucial for PhoP phosphorylation or dimerization, DNA-binding ability of PhoP, and Salmonella virulence. Interestingly, methylation negatively regulated the activity of PhoP. A bacterial chemotaxis methyltransferase CheR was involved in PhoP methylation. Methylation of PhoP could stabilize it in an inactive conformation. Our work provides a more informative depiction of PhoP PTM and markedly improves our understanding of the coordinate regulation of bacterial chemotaxis and virulence.


Subject(s)
Bacterial Proteins/metabolism , Methyltransferases/metabolism , Salmonella Infections/microbiology , Salmonella typhimurium/enzymology , Salmonella typhimurium/pathogenicity , Animals , Bacterial Proteins/genetics , Female , Gene Expression Regulation, Bacterial , Humans , Methylation , Methyltransferases/genetics , Mice , Mice, Inbred BALB C , Salmonella typhimurium/genetics , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...