Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 195(5): 623, 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37115430

ABSTRACT

Climate change is one of the primary causes of species redistribution and biodiversity loss, especially for threatened and endemic important plant species. Therefore, it is vital to comprehend "how" and "where" priority medicinal and aromatic plants (MAPs) might be effectively used to address conservation-related issues under rapid climate change. In the present study, an ensemble modelling approach was used to investigate the present and future distribution patterns of Aquilegia fragrans Benth. under climate change in the entire spectrum of Himalayan biodiversity hotspot. The results of the current study revealed that, under current climatic conditions, the northwest states of India (Jammu and Kashmir, Himachal Pradesh and the northern part of Uttarakhand), the eastern and southern parts of Pakistan Himalaya have highly suitable climatic conditions for the growth of A. fragrans. The ensemble model exhibited high forecast accuracy, with temperature seasonality and precipitation seasonality as the main climatic variables responsible for the distribution of the A. fragrans in the biodiversity hotspot. Furthermore, the study predicted that future climate change scenarios will diminish habitat suitability for the species by -46.9% under RCP4.5 2050 and -55.0% under RCP4.5 2070. Likewise, under RCP8.5, the habitat suitability will decrease by -51.7% in 2050 and -94.3% in 2070. The current study also revealed that the western Himalayan area will show the most habitat loss. Some currently unsuitable regions, such as the northern Himalayan regions of Pakistan, will become more suitable under climate change scenarios. Hopefully, the current approach may provide a robust technique and showcases a model with learnings for predicting cultivation hotspots and developing scientifically sound conservation plans for this endangered medicinal plant in the Himalayan biodiversity hotspot.


Subject(s)
Aquilegia , Climate Change , Environmental Monitoring , Ecosystem , Biodiversity
2.
Physiol Mol Biol Plants ; 29(1): 87-91, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36733833

ABSTRACT

Saussurea costus (Asteraceae) commonly known as kuth, is an important medicinal plant with a rich repository of medicinally valuable compounds. During the present study, pharmacologically important sesquiterpene lactones namely costunolide, dehydrocostus lactone, betulinic acid and syringin were isolated from different plant extracts. Furthermore, the elicitation effect of jasmonic acid (JA) and different light regiments on the accumulation of secondary metabolites (costunolide and dehydrocostus lactone) was evaluated using HPLC. There was an increase in amount of costunolide and dehydrocostus lactone compared to control after 96 h of treatment with JA and continuous light. The amount of costunolide after 96 h was maximum 6.47 mg/g DW in response to JA as compared to control which was found to be 1.7 mg/g DW. Similarly, the concentration of dehydrocostus lactone after 96 h showed maximum accumulation of compound 4.7 mg/g DW in response to continuous light. The in vitro response in MS medium augmented with BAP (4 mg/l) produces friable and creamish coloured callus, however, number of days increased from 10 to 22 days with 70% culture response. Also, Agrobacterium rhizogenes strain LBA9402 was found to be most effective strain for the establishment of hairy root cultures among all the strains used. The genomic DNA was used as template in PCR to amplify rolB gene which confirmed the efficient transformation of the roots. Additionally, total metabolite content of in vitro raised hairy roots of S. costus was significantly higher than the field grown plants. The production of secondary metabolites through elicitation and hairy roots can serve as a potential tool for the conservation action programme in S. costus. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-022-01270-9.

3.
J Integr Med ; 20(2): 104-113, 2022 03.
Article in English | MEDLINE | ID: mdl-34996731

ABSTRACT

Aconitum heterophyllum (Patrees) is a critically endangered medicinal herb of the northwestern Himalayas and has enormous pharmacological potential. It is the only nonpoisonous member of the genus Aconitum, and has been used as a medicinal herb since ancient times. A. heterophyllum is an important ingredient in many traditional systems of medicine. Mostly, it is harvested for its roots, and its medicinal properties are due to the presence of diverse bioactive secondary metabolites, commonly known as aconites. Our understanding of the pharmacological properties of this intriguing genus is continuously growing due to its broad chemical diversity. The therapeutic uses identified by traditional medicinal practice are receiving extensive study. Multiple in vitro experimental investigations of A. heterophyllum have reported the analgesic, anti-inflammatory, antiarrhythmic, antiparasitic and anticancer properties, as well as its effects on the central nervous system. In this review, we highlight the classification, distribution, commerce, traditional uses, phytochemistry, pharmacology and conservation measures relevant to this species. Additionally, this review includes the biosynthetic pathways of A. heterophyllum's key constituents, which could be targeted to enhance the expression levels of desired metabolites via genetic interventions. Studying the genomics, transcriptomics, proteomics and metabolomic aspects of this species would be helpful in developing highly designed genotypes and chemotypes of this species to be used in commercial production.


Subject(s)
Aconitum , Plants, Medicinal , Aconitum/chemistry , Aconitum/genetics , Ethnopharmacology , Plant Extracts/chemistry , Plant Roots/chemistry , Plants, Medicinal/chemistry
4.
PLoS One ; 12(6): e0179155, 2017.
Article in English | MEDLINE | ID: mdl-28662128

ABSTRACT

Chalcone synthase constitutes a functionally diverse gene family producing wide range of flavonoids by catalyzing the initial step of the phenylpropanoid pathway. There is a pivotal role of flavonoids in pollen function as they are imperative for pollen maturation and pollen tube growth during sexual reproduction in flowering plants. Here we focused on medicinally important fruit-bearing shrub Grewia asiatica. It is a rich repository of flavonoids. The fruits are highly acclaimed for various putative health benefits. Despite its importance, full commercial exploitation is hampered due to two drawbacks which include short shelf life of its fruits and larger seed volume. To circumvent these constraints, seed abortion is one of the viable options. Molecular interventions tested in a number of economic crops have been to impair male reproductive function by disrupting the chalcone synthase (CHS) gene activity. Against this backdrop the aim of the present study included cloning and characterization of two full-length cDNA clones of GaCHS isoforms from the CHS multigene family. These included GaCHS1 (NCBI acc. KX129910) and GaCHS2 (NCBI acc. KX129911) with an ORF of 1176 and 1170 bp, respectively. GaCHSs were heterologously expressed and purified in E. coli to validate their functionality. Functionality of CHS isoforms was also characterized via enzyme kinetic studies using five different substrates. We observed differential substrate specificities in terms of their Km and Vmax values. Accumulation of flavonoid constituents naringenin and quercetin were also quantified and their relative concentrations corroborated well with the expression levels of GaCHSs. Further, our results demonstrate that GaCHS isoforms show differential expression patterns at different reproductive phenological stages. Transcript levels of GaCHS2 were more than its isoform GaCHS1 at the anthesis stage of flower development pointing towards its probable role in male reproductive maturity.


Subject(s)
Acyltransferases/metabolism , Flavonoids/metabolism , Gene Expression Regulation, Enzymologic , Grewia/metabolism , Isoenzymes/metabolism , Acyltransferases/chemistry , Amino Acid Sequence , Chromatography, High Pressure Liquid , Grewia/classification , Isoenzymes/chemistry , Kinetics , Phylogeny , Sequence Homology, Amino Acid , Spectrometry, Mass, Electrospray Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...