Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Eye Res ; 234: 109593, 2023 09.
Article in English | MEDLINE | ID: mdl-37482282

ABSTRACT

Here we examine the effects of ambient red light on lens-induced myopia and diffuser-induced myopia in tree shrews, small diurnal mammals closely related to primates. Starting at 24 days of visual experience (DVE), seventeen tree shrews were reared in red light (624 ± 10 or 634 ± 10 nm, 527-749 human lux) for 12-14 days wearing either a -5D lens (RL-5D, n = 5) or a diffuser (RLFD, n = 5) monocularly, or without visual restriction (RL-Control, n = 7). Refractive errors and ocular dimensions were compared to those obtained from tree shrews raised in broad-spectrum white light (WL-5D, n = 5; WLFD, n = 10; WL Control, n = 7). The RL-5D tree shrews developed less myopia in their lens-treated eyes than WL-5D tree shrews at the end of the experiment (-1.1 ± 0.9D vs. -3.8 ± 0.3D, p = 0.007). The diffuser-treated eyes of the RLFD tree shrews were near-emmetropic (-0.3 ± 0.6D, vs. -5.4 ± 0.7D in the WLFD group). Red light induced hyperopia in control animals (RL-vs. WL-Control, +3.0 ± 0.7 vs. +1.0 ± 0.2D, p = 0.02), the no-lens eyes of the RL-5D animals, and the no-diffuser eyes of the RLFD animals (+2.5 ± 0.5D and +2.3 ± 0.3D, respectively). The refractive alterations were consistent with the alterations in vitreous chamber depth. The lens-induced myopia developed in red light suggests that a non-chromatic cue could signal defocus to a less accurate extent, although it could also be a result of "form-deprivation" caused by defocus blur. As with previous studies in rhesus monkeys, the ability of red light to promote hyperopia appears to correlate with its ability to retard lens-induced myopia and form-deprivation myopia, the latter of which might be related to non-visual ocular mechanisms.


Subject(s)
Hyperopia , Myopia , Animals , Humans , Hyperopia/etiology , Tupaiidae , Myopia/etiology , Eye , Refraction, Ocular
2.
Optom Vis Sci ; 95(10): 911-920, 2018 10.
Article in English | MEDLINE | ID: mdl-30179995

ABSTRACT

SIGNIFICANCE: In spectrally broad-band light, an emmetropization mechanism in post-natal eyes uses visual cues to modulate the growth of the eye to achieve and maintain near emmetropia. When we restricted available wavelengths to narrow-band blue light, juvenile tree shrews (diurnal dichromatic mammals closely related to primates) developed substantial refractive errors, suggesting that feedback from defocus-related changes in the relative activation of long- and short-wavelength-sensitive cones is essential to maintain emmetropia. PURPOSE: The purpose of this study was to examine the effects of narrow-band ambient blue light on refractive state in juvenile tree shrews that had completed initial emmetropization (decrease from hyperopia toward emmetropia). METHODS: Animals were raised in fluorescent colony lighting until they began blue-light treatment at 24 days of visual experience, at which age they had achieved age-normal low hyperopia (mean ± SEM refractive error, 1.2 ± 0.5 diopters). Arrays of light-emitting diodes placed atop the cage produced wavelengths of 457 (five animals) or 464 nm (five animals), flickered in a pseudo-random pattern (temporally broad band). A third group of five animals was exposed to steady 464-nm blue light. Illuminance on the floor of the cage was 300 to 500 human lux. Noncycloplegic autorefractor measures were made daily for a minimum of 11 days and up to 32 days. Seven age-matched animals were raised in colony light. RESULTS: The refractive state of all blue-treated animals moved outside the 95% confidence limits of the colony-light animals' refractions. Most refractions first moved toward hyperopia. Then the refractive state decreased monotonically and, in some animals, passed through emmetropia, becoming myopic. CONCLUSIONS: From the tree shrew cone absorbance spectra, the narrow-band blue light stimulated both long-wavelength-sensitive and short-wavelength-sensitive cones, but the relative activation would not change with the refractive state. This removed feedback from longitudinal chromatic aberration that may be essential to maintain emmetropia.


Subject(s)
Emmetropia/physiology , Light , Tupaiidae/physiology , Animals , Female , Hyperopia/physiopathology , Male , Myopia/physiopathology , Refraction, Ocular/physiology , Retinal Cone Photoreceptor Cells/physiology
3.
Vision Res ; 146-147: 9-17, 2018 05.
Article in English | MEDLINE | ID: mdl-29655781

ABSTRACT

During postnatal refractive development, an emmetropization mechanism uses refractive error to modulate the growth rate of the eye. Hyperopia (image focused behind the retina) produces what has been described as "GO" signaling that increases growth. Myopia (image focused in front of the retina) produces "STOP" signaling that slows growth. The interaction between GO and STOP conditions is non-linear; brief daily exposure to STOP counteracts long periods of GO. In young tree shrews, long-wavelength (red) light, presented 14 h per day, also appears to produce STOP signals. We asked if red light also shows temporal non-linearity; does brief exposure slow the normal decrease in hyperopia in infant animals? At 11 days after eye opening (DVE), infant tree shrews (n = 5/group) began 13 days of daily treatment (red LEDs, 624 ±â€¯10 or 636 ±â€¯10 nm half peak intensity bandwidth) at durations of 0 h (normal animals, n = 7) or 1, 2, 4, or 7 h. Following each daily red period, colony lighting resumed. A 14 h red group had no colony lights. Refractive state was measured daily; ocular component dimensions at the end of the 13-day red-light period. Even 1 h of red light exposure produced some hyperopia. The average hyperopic shift from normal rose exponentially with duration (time constant 2.5 h). Vitreous chamber depth decreased non-linearly with duration (time constant, 3.3 h). After red treatment was discontinued, refractions in colony lighting recovered toward normal; the initial rate was linearly related to the amount of hyperopia. The red light may produce STOP signaling similar to myopic refractive error.


Subject(s)
Eye/growth & development , Hyperopia/physiopathology , Light , Refraction, Ocular/physiology , Tupaia/physiology , Animals , Animals, Newborn , Disease Models, Animal , Retina/radiation effects , Time Factors
4.
Vision Res ; 140: 55-65, 2017 11.
Article in English | MEDLINE | ID: mdl-28801261

ABSTRACT

In infant tree shrews, exposure to narrow-band long-wavelength (red) light, that stimulates long-wavelength sensitive cones almost exclusively, slows axial elongation and produces hyperopia. We asked if red light produces hyperopia in juvenile and adolescent animals, ages when plus lenses are ineffective. Animals were raised in fluorescent colony lighting (100-300 lux) until they began 13days of red-light treatment at 11 (n=5, "infant"), 35 (n=5, "juvenile") or 95 (n=5, "adolescent") days of visual experience (DVE). LEDs provided 527-749 lux on the cage floor. To control for the higher red illuminance, a fluorescent control group (n=5) of juvenile (35 DVE) animals was exposed to ∼975 lux. Refractions were measured daily; ocular component dimensions at the start and end of treatment and end of recovery in colony lighting. These groups were compared with normals (n=7). In red light, the refractive state of both juvenile and adolescent animals became significantly (P<0.05) hyperopic: juvenile 3.9±1.0 diopters (D, mean±SEM) vs. normal 0.8±0.1D; adolescent 1.6±0.2D vs. normal 0.4±0.1D. The fluorescent control group refractions (0.6±0.3D) were normal. In red-treated juveniles the vitreous chamber was significantly smaller than normal (P<0.05): juvenile 2.67±0.03mmvs. normal 2.75±0.02mm. The choroid was also significantly thicker: juvenile 77±4µmvs. normal 57±3µm (P<0.05). Although plus lenses do not restrain eye growth in juvenile tree shrews, the red light-induced slowed growth and hyperopia in juvenile and adolescent tree shrews demonstrates that the emmetropization mechanism is still capable of restraining eye growth at these ages.


Subject(s)
Aging/physiology , Eye/growth & development , Hyperopia/etiology , Light/adverse effects , Retina/radiation effects , Animals , Axial Length, Eye , Emmetropia , Tupaiidae
5.
Vis Neurosci ; 34: E003, 2017 01.
Article in English | MEDLINE | ID: mdl-28304244

ABSTRACT

We examined the effect of intravitreal injections of D1-like and D2-like dopamine receptor agonists and antagonists and D4 receptor drugs on form-deprivation myopia (FDM) in tree shrews, mammals closely related to primates. In eleven groups (n = 7 per group), we measured the amount of FDM produced by monocular form deprivation (FD) over an 11-day treatment period. The untreated fellow eye served as a control. Animals also received daily 5 µL intravitreal injections in the FD eye. The reference group received 0.85% NaCl vehicle. Four groups received a higher, or lower, dose of a D1-like receptor agonist (SKF38393) or antagonist (SCH23390). Four groups received a higher, or lower, dose of a D2-like receptor agonist (quinpirole) or antagonist (spiperone). Two groups received the D4 receptor agonist (PD168077) or antagonist (PD168568). Refractions were measured daily; axial component dimensions were measured on day 1 (before treatment) and day 12. We found that in groups receiving the D1-like receptor agonist or antagonist, the development of FDM and altered ocular component dimensions did not differ from the NaCl group. Groups receiving the D2-like receptor agonist or antagonist at the higher dose developed significantly less FDM and had shorter vitreous chambers than the NaCl group. The D4 receptor agonist, but not the antagonist, was nearly as effective as the D2-like agonist in reducing FDM. Thus, using intravitreally-administered agents, we did not find evidence supporting a role for the D1-like receptor pathway in reducing FDM in tree shrews. The reduction of FDM by the dopamine D2-like agonist supported a role for the D2-like receptor pathway in the control of FDM. The reduction of FDM by the D4 receptor agonist, but not the D4 antagonist, suggests an important role for activation of the dopamine D4 receptor in the control of axial elongation and refractive development.


Subject(s)
Dopamine Agonists/pharmacology , Myopia/drug therapy , Receptors, Dopamine D1/agonists , Receptors, Dopamine D2/agonists , Receptors, Dopamine D4/agonists , Refraction, Ocular/drug effects , Sensory Deprivation , Animals , Axial Length, Eye/pathology , Disease Models, Animal , Dopamine Antagonists/pharmacology , Intravitreal Injections , Male , Mass Spectrometry , Receptors, Dopamine D1/antagonists & inhibitors , Receptors, Dopamine D4/antagonists & inhibitors , Tupaiidae
6.
Exp Eye Res ; 155: 75-84, 2017 02.
Article in English | MEDLINE | ID: mdl-27979713

ABSTRACT

Shortly after birth, the eyes of most animals (including humans) are hyperopic because the short axial length places the retina in front of the focal plane. During postnatal development, an emmetropization mechanism uses cues related to refractive error to modulate the growth of the eye, moving the retina toward the focal plane. One possible cue may be longitudinal chromatic aberration (LCA), to signal if eyes are getting too long (long [red] wavelengths in better focus than short [blue]) or too short (short wavelengths in better focus). It could be difficult for the short-wavelength sensitive (SWS, "blue") cones, which are scarce and widely spaced across the retina, to detect and signal defocus of short wavelengths. We hypothesized that the SWS cone retinal pathway could instead utilize temporal (flicker) information. We thus tested if exposure solely to long-wavelength light would cause developing eyes to slow their axial growth and remain refractively hyperopic, and if flickering short-wavelength light would cause eyes to accelerate their axial growth and become myopic. Four groups of infant northern tree shrews (Tupaia glis belangeri, dichromatic mammals closely related to primates) began 13 days of wavelength treatment starting at 11 days of visual experience (DVE). Ambient lighting was provided by an array of either long-wavelength (red, 626 ± 10 nm) or short-wavelength (blue, 464 ± 10 nm) light-emitting diodes placed atop the cage. The lights were either steady, or flickering in a pseudo-random step pattern. The approximate mean illuminance (in human lux) on the cage floor was red (steady, 527 lux; flickering, 329 lux), and blue (steady, 601 lux; flickering, 252 lux). Refractive state and ocular component dimensions were measured and compared with a group of age-matched normal animals (n = 15 for refraction (first and last days); 7 for ocular components) raised in broad spectrum white fluorescent colony lighting (100-300 lux). During the 13 day period, the refraction of the normal animals decreased from (mean ± SEM) 5.8 ± 0.7 diopters (D) to 1.5 ± 0.2 D as their vitreous chamber depth increased from 2.77 ± 0.01 mm to 2.80 ± 0.03 mm. Animals exposed to red light (both steady and flickering) remained hyperopic throughout the treatment period so that the eyes at the end of wavelength treatment were significantly hyperopic (7.0 ± 0.7 D, steady; 4.7 ± 0.8 D, flickering) compared with the normal animals (p < 0.01). The vitreous chamber of the steady red group (2.65 ± 0.03 mm) was significantly shorter than normal (p < 0.01). On average, steady blue light had little effect; the refractions paralleled the normal refractive decrease. In contrast, animals housed in flickering blue light increased the rate of refractive decrease so that the eyes became significantly myopic (-2.9 ± 1.3 D) compared with the normal eyes and had longer vitreous chambers (2.93 ± 0.04 mm). Upon return to colony lighting, refractions in all groups gradually returned toward emmetropia. These data are consistent both with the hypothesis that LCA can be an important visual cue for postnatal refractive development, and that short-wavelength temporal flicker provides an important cue for assessing and signaling defocus.


Subject(s)
Eye/growth & development , Eyeglasses , Lighting , Refraction, Ocular/physiology , Refractive Errors/physiopathology , Retina/physiopathology , Animals , Disease Models, Animal , Tupaiidae
7.
Exp Eye Res ; 145: 289-296, 2016 04.
Article in English | MEDLINE | ID: mdl-26836248

ABSTRACT

lntravitreal injection of substances dissolved in a vehicle solution is a common tool used to assess retinal function. We examined the effect of injection procedures (three groups) and vehicle solutions (four groups) on the development of form deprivation myopia (FDM) in juvenile tree shrews, mammals closely related to primates, starting at 24 days of visual experience (about 45 days of age). In seven groups (n = 7 per group), the myopia produced by monocular form deprivation (FD) was measured daily for 12 days during an 11-day treatment period. The FD eye was randomly selected; the contralateral eye served as an untreated control. The refractive state of both eyes was measured daily, starting just before FD began (day 1); axial component dimensions were measured on day 1 and after eleven days of treatment (day 12). Procedure groups: the myopia (treated eye - control eye refraction) in the FD group was the reference. The sham group only underwent brief daily anesthesia and opening of the conjunctiva to expose the sclera. The puncture group, in addition, had a pipette inserted daily into the vitreous. In four vehicle groups, 5 µL of vehicle was injected daily. The NaCl group received 0.85% NaCl. In the NaCl + ascorbic acid group, 1 mg/mL of ascorbic acid was added. The water group received sterile water. The water + ascorbic acid group received water with ascorbic acid (1 mg/mL). We found that the procedures associated with intravitreal injections (anesthesia, opening of the conjunctiva, and puncture of the sclera) did not significantly affect the development of FDM. However, injecting 5 µL of any of the four vehicle solutions slowed the development of FDM. NaCl had a small effect; myopia development in the last 6 days (-0.15 ± 0.08 D/day) was significantly less than in the FD group (-0.55 ± 0.06 D/day). NaCl + Ascorbic acid further slowed the development of FDM on several treatment days. H2O (-0.09 ± 0.05 D/day) and H2O + ascorbic acid (-0.08 ± 0.05 D/day) both almost completely blocked myopia development. The treated eye vitreous chamber elongation, compared with the control eye, in all groups was consistent with the amount of myopia. When FD continued (days 12-16) without injections in the water and water + ascorbic acid groups, the rate of myopia development quickly increased. Thus, it appears the vehicles affected retinal signaling rather than causing damage. The effect of water and water + ascorbic acid may be due to reduced osmolality or ionic concentration near the tip of the injection pipette. The effect of ascorbic acid, compared to NaCl alone, may be due to its reported dopaminergic activity.


Subject(s)
Antioxidants/pharmacology , Ascorbic Acid/pharmacology , Intravitreal Injections/methods , Myopia/drug therapy , Ophthalmic Solutions/pharmacology , Pharmaceutical Vehicles/pharmacology , Sodium Chloride/pharmacology , Animals , Axial Length, Eye/drug effects , Disease Models, Animal , Myopia/physiopathology , Refraction, Ocular/drug effects , Sensory Deprivation , Tupaiidae
SELECTION OF CITATIONS
SEARCH DETAIL
...