Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Opt Express ; 32(12): 21042-21060, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38859469

ABSTRACT

The backscattering of ultraviolet and visible light by a model organic (squalane) aerosol droplet (1.0

2.
J Phys Chem A ; 127(42): 8922-8934, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37830513

ABSTRACT

Neutron reflectometry has been used to study the radical initiated oxidation of a monolayer of the lipid 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) at the air-solution interface by aqueous-phase hydroxyl, sulfate, and nitrate radicals. The oxidation of organic films at the surface of atmospheric aqueous aerosols can influence the optical properties of the aerosol and consequently can impact Earth's radiative balance and contribute to modern climate change. The amount of material at the air-solution interface was found to decrease on exposure to aqueous-phase radicals which was consistent with a multistep degradation mechanism, i.e., the products of reaction of the DSPC film with aqueous radicals were also surface active. The multistep degradation mechanism suggests that lipid molecules in the thin film degrade to form progressively shorter chain surface active products and several reactive steps are required to remove the film from the air-solution interface. Bimolecular rate constants for oxidation via the aqueous phase OH radical cluster around 1010 dm3 mol-1 s-1. Calculations to determine the film lifetime indicate that it will take ∼4-5 days for the film to degrade to 50% of its initial amount in the atmosphere, and therefore attack by aqueous radicals on organic films could be atmospherically important relative to typical atmospheric aerosol lifetimes.

3.
Acc Chem Res ; 56(19): 2555-2568, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37688543

ABSTRACT

ConspectusAerosols are ubiquitous in the atmosphere. Outdoors, they take part in the climate system via cloud droplet formation, and they contribute to indoor and outdoor air pollution, impacting human health and man-made environmental change. In the indoor environment, aerosols are formed by common activities such as cooking and cleaning. People can spend up to ca. 90% of their time indoors, especially in the western world. Therefore, there is a need to understand how indoor aerosols are processed in addition to outdoor aerosols.Surfactants make significant contributions to aerosol emissions, with sources ranging from cooking to sea spray. These molecules alter the cloud droplet formation potential by changing the surface tension of aqueous droplets and thus increasing their ability to grow. They can also coat solid surfaces such as windows ("window grime") and dust particles. Such surface films are more important indoors due to the higher surface-to-volume ratio compared to the outdoor environment, increasing the likelihood of surface film-pollutant interactions.A common cooking and marine emission, oleic acid, is known to self-organize into a range of 3-D nanostructures. These nanostructures are highly viscous and as such can impact the kinetics of aerosol and film aging (i.e., water uptake and oxidation). There is still a discrepancy between the longer atmospheric lifetime of oleic acid compared with laboratory experiment-based predictions.We have created a body of experimental and modeling work focusing on the novel proposition of surfactant self-organization in the atmosphere. Self-organized proxies were studied as nanometer-to-micrometer films, levitated droplets, and bulk mixtures. This access to a wide range of geometries and scales has resulted in the following main conclusions: (i) an atmospherically abundant surfactant can self-organize into a range of viscous nanostructures in the presence of other compounds commonly encountered in atmospheric aerosols; (ii) surfactant self-organization significantly reduces the reactivity of the organic phase, increasing the chemical lifetime of these surfactant molecules and other particle constituents; (iii) while self-assembly was found over a wide range of conditions and compositions, the specific, observed nanostructure is highly sensitive to mixture composition; and (iv) a "crust" of product material forms on the surface of reacting particles and films, limiting the diffusion of reactive gases to the particle or film bulk and subsequent reactivity. These findings suggest that hazardous, reactive materials may be protected in aerosol matrixes underneath a highly viscous shell, thus extending the atmospheric residence times of otherwise short-lived species.

4.
Curr Protoc ; 3(8): e854, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37555795

ABSTRACT

Plant organelles are associated with each other through tethering proteins at membrane contact sites (MCS). Methods such as total internal reflection fluorescence (TIRF) optical tweezers allow us to probe organelle interactions in live plant cells. Optical tweezers (focused infrared laser beams) can trap organelles that have a different refractive index to their surrounding medium (cytosol), whilst TIRF allows us to simultaneously image behaviors of organelles in the thin region of cortical cytoplasm. However, few MCS tethering proteins have so far been identified and tested in a quantitative manner. Automated routines (such as setting trapping laser power and controlling the stage speed and distance) mean we can quantify organelle interactions in a repeatable and reproducible manner. Here we outline a series of protocols which describe laser calibrations required to collect robust data sets, generation of fluorescent plant material (Nicotiana tabacum, tobacco), how to set up an automated organelle trapping routine, and how to quantify organelle interactions (particularly organelle interactions with the endoplasmic reticulum). TIRF-optical tweezers enable quantitative testing of putative tethering proteins to reveal their role in plant organelle associations at MCS. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Microscope system set-up and stability Basic Protocol 2: Generation of transiently expressed fluorescent tobacco tissue by Agrobacterium-mediated infiltration Basic Protocol 3: Setting up an automated organelle trapping routine Basic Protocol 4: Quantifying organelle interactions.


Subject(s)
Microscopy , Optical Tweezers , Endoplasmic Reticulum/metabolism , Lasers , Plants , Nicotiana
5.
ACS Appl Nano Mater ; 5(8): 11699-11706, 2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36062063

ABSTRACT

Optical trapping enables the real-time manipulation and observation of morphological evolution of individual particles during reaction chemistry. Here, optical trapping was used in combination with Raman spectroscopy to conduct airborne assembly and kinetic experiments. Micro-droplets of alkoxysilane were levitated in air prior to undergoing either acid- or base-catalyzed sol-gel reaction chemistry to form silica particles. The evolution of the reaction was monitored in real-time; Raman and Mie spectroscopies confirmed the in situ formation of silica particles from alkoxysilane droplets as the product of successive hydrolysis and condensation reactions, with faster reaction kinetics in acid catalysis. Hydrolysis and condensation were accompanied by a reduction in droplet volume and silica formation. Two airborne particles undergoing solidification could be assembled into unique 3D structures such as dumb-bell shapes by manipulating a controlled collision. Our results provide a pipeline combining spectroscopy with optical microscopy and nanoscale FIB-SEM imaging to enable chemical and structural insights, with the opportunity to apply this methodology to probe structure formation during reactive inkjet printing.

6.
Phys Chem Chem Phys ; 24(10): 5813-5822, 2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35226003

ABSTRACT

Sulfuric acid is shown to form a core-shell particle on a micron-sized, optically-trapped spherical silica bead. The refractive indices of the silica and sulfuric acid, along with the shell thickness and bead radius were determined by reproducing Mie scattered optical white light as a function of wavelength in Mie spectroscopy. Micron-sized silica aerosols (silica beads were used as a proxy for atmospheric silica minerals) were levitated in a mist of sulfuric acid particles; continuous collection of Mie spectra throughout the collision of sulfuric acid aerosols with the optically trapped silica aerosol demonstrated that the resulting aerosol particle had a core-shell morphology. Contrastingly, the collision of aqueous sulfuric acid aerosols with optically trapped polystyrene aerosol resulted in a partially coated system. The light scattering from the optically levitated aerosols was successfully modelled to determine the diameter of the core aerosol (±0.003 µm), the shell thickness (±0.0003 µm) and the refractive index (±0.007). The experiment demonstrated that the presence of a thin film rapidly changed the light scattering of the original aerosol. When a 1.964 µm diameter silica aerosol was covered with a film of sulfuric acid 0.287 µm thick, the wavelength dependent Mie peak positions resembled sulfuric acid. Thus mineral aerosol advected into the stratosphere would likely be coated with sulfuric acid, with a core-shell morphology, and its light scattering properties would be effectively indistinguishable from a homogenous sulfuric acid aerosol if the film thickness was greater than a few 100 s of nm for UV-visible wavelengths.

7.
Plant J ; 107(6): 1771-1787, 2021 09.
Article in English | MEDLINE | ID: mdl-34250673

ABSTRACT

Upon immune activation, chloroplasts switch off photosynthesis, produce antimicrobial compounds and associate with the nucleus through tubular extensions called stromules. Although it is well established that chloroplasts alter their position in response to light, little is known about the dynamics of chloroplast movement in response to pathogen attack. Here, we report that during infection with the Irish potato famine pathogen Phytophthora infestans, chloroplasts accumulate at the pathogen interface, associating with the specialized membrane that engulfs the pathogen haustorium. The chemical inhibition of actin polymerization reduces the accumulation of chloroplasts at pathogen haustoria, suggesting that this process is partially dependent on the actin cytoskeleton. However, chloroplast accumulation at haustoria does not necessarily rely on movement of the nucleus to this interface and is not affected by light conditions. Stromules are typically induced during infection, embracing haustoria and facilitating chloroplast interactions, to form dynamic organelle clusters. We found that infection-triggered stromule formation relies on BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1)-mediated surface immune signaling, whereas chloroplast repositioning towards haustoria does not. Consistent with the defense-related induction of stromules, effector-mediated suppression of BAK1-mediated immune signaling reduced stromule formation during infection. On the other hand, immune recognition of the same effector stimulated stromules, presumably via a different pathway. These findings implicate chloroplasts in a polarized response upon pathogen attack and point to more complex functions of these organelles in plant-pathogen interactions.


Subject(s)
Chloroplasts/microbiology , Host-Pathogen Interactions/physiology , Nicotiana/microbiology , Phytophthora infestans/pathogenicity , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/microbiology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Chloroplasts/drug effects , Chloroplasts/immunology , Dinitrobenzenes/pharmacology , Light , Microscopy, Confocal , Optical Tweezers , Plant Diseases/microbiology , Plant Immunity , Plant Leaves/drug effects , Plant Leaves/microbiology , Plants, Genetically Modified , Reactive Oxygen Species/metabolism , Sulfanilamides/pharmacology , Thiazolidines/pharmacology , Nicotiana/drug effects , Nicotiana/genetics , Nicotiana/immunology
8.
J Phys Chem A ; 125(5): 1184-1197, 2021 Feb 11.
Article in English | MEDLINE | ID: mdl-33529035

ABSTRACT

A covalently linked bichromophore, embracing 6,13-bis(triisopropylsilylethinyl)pentacene (TIPS-pentacene) terminals bridged by a rigid fluorene spacer, generates a relatively high yield (i.e., 65 ± 6%) of the spin-correlated, triplet biexciton upon illumination in toluene. Under the same conditions, the extent of fluorescence quenching relative to the parent TIPS-pentacene approaches 97% and is insensitive to temperature. The biexciton, having overall singlet spin multiplicity, undergoes internal conversion in competition to spin decorrelation. These latter processes occur on the relatively slow time scale of a hundred or so nanoseconds, possibly reflecting the restricted level of electronic communication between the terminals. Spin decorrelation leads to evolution of an independent triplet pair with an overall quantum yield of 0.50 ± 0.06 and a lifetime of 8 ± 2 µs in deaerated toluene. Photoacoustic calorimetry (PAC) indicates three separate enthalpy changes: a very fast step associated with intramolecular singlet exciton fission to form the correlated triplet biexciton, a fast step essentially reflecting spin decorrelation, and a slow step associated with relaxation of the independent triplet pair. Analysis of the PAC data, in conjunction with the transient absorption results, establishes excitation energies for both spin-correlated and independent triplet pairs. Polar solvent enhances both fluorescence quenching and triplet formation at the expense of radiationless decay while temperature effects have been recorded for all important intermediate species.

9.
Faraday Discuss ; 226: 364-381, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33284926

ABSTRACT

Cooking emissions account for a significant proportion of the organic aerosols emitted into the urban environment and high pollution events have been linked to an increased organic content on urban particulate matter surfaces. We present a kinetic study on surface coatings of self-assembled (semi-solid) oleic acid-sodium oleate cooking aerosol proxies undergoing ozonolysis. We found clear film thickness-dependent kinetic behaviour and measured the effect of the organic phase on the kinetics for this system. In addition to the thickness-dependent kinetics, we show that significant fractions of unreacted proxy remain after extensive ozone exposure and that this effect scales approximately linearly with film thickness, suggesting that a late-stage inert reaction product may form and inhibit reaction progress - effectively building up an inert crust. We determine this by using a range of simultaneous analytical techniques; most notably Small-Angle X-ray Scattering (SAXS) has been used for the first time to measure the reaction kinetics of films of a wide range of thicknesses from ca. 0.59 to 73 µm with films <10 µm thick being of potential atmospheric relevance. These observations have implications for the evolution of particulate matter in the urban environment, potentially extending the atmospheric lifetimes of harmful aerosol components and affecting the local urban air quality and climate.


Subject(s)
Microscopy , Ozone , Aerosols , Cities , Cooking , Kinetics , Scattering, Small Angle , X-Ray Diffraction , X-Rays
10.
Phys Chem Chem Phys ; 22(48): 28032-28044, 2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33367378

ABSTRACT

Organic films that form on atmospheric particulate matter change the optical and cloud condensation nucleation properties of the particulate matter and consequently have implications for modern climate and climate models. The organic films are subject to attack from gas-phase oxidants present in ambient air. Here we revisit in greater detail the oxidation of a monolayer of oleic acid by gas-phase ozone at the air-water interface as this provides a model system for the oxidation reactions that occur at the air-water interface of aqueous atmospheric aerosol. Experiments were performed on monolayers of oleic acid at the air-liquid interface at atmospherically relevant ozone concentrations to investigate if the viscosity of the sub-phase influences the rate of the reaction and to determine the effect of the presence of a second component within the monolayer, stearic acid, which is generally considered to be non-reactive towards ozone, on the reaction kinetics as determined by neutron reflectometry measurements. Atmospheric aerosol can be extremely viscous. The kinetics of the reaction were found to be independent of the viscosity of the sub-phase below the monolayer over a range of moderate viscosities, , demonstrating no involvement of aqueous sub-phase oxidants in the rate determining step. The kinetics of oxidation of monolayers of pure oleic acid were found to depend on the surface coverage with different behaviour observed above and below a surface coverage of oleic acid of ∼1 × 1018 molecule m-2. Atmospheric aerosol are typically complex mixtures, and the presence of an additional compound in the monolayer that is inert to direct ozone oxidation, stearic acid, did not significantly change the reaction kinetics. It is demonstrated that oleic acid monolayers at the air-water interface do not leave any detectable material at the air-water interface, contradicting the previous work published in this journal which the authors now believe to be erroneous. The combined results presented here indicate that the kinetics, and thus the atmospheric chemical lifetime for unsaturated surface active materials at the air-water interface to loss by reaction with gas-phase ozone, can be considered to be independent of other materials present at either the air-water interface or in the aqueous sub-phase.

11.
Front Chem ; 8: 576175, 2020.
Article in English | MEDLINE | ID: mdl-33195066

ABSTRACT

In this study the application of porous carbon microparticles for the transport of a sparingly soluble material into cells is demonstrated. Carbon offers an intrinsically sustainable platform material that can meet the multiple and complex requirements imposed by applications in biology and medicine. Porous carbon microparticles are attractive as they are easy to handle and manipulate and combine the chemical versatility and biocompatibility of carbon with a high surface area due to their highly porous structure. The uptake of fluorescently labeled microparticles by cancer (HeLa) and normal human embryonic Kidney (HEK 293) cells was monitored by confocal fluorescence microscopy. In this way the influence of particle size, surface functionalization and the presence of transfection agent on cellular uptake were studied. In the presence of transfection agent both large (690 nm) and small microparticles (250 nm) were readily internalized by both cell lines. However, in absence of the transfection agent the uptake was influenced by particle size and surface PEGylation with the smaller nanoparticle size being delivered. The ability of microparticles to deliver a fluorescein dye model cargo was also demonstrated in normal (HEK 293) cell line. Taken together, these results indicate the potential use of these materials as candidates for biological applications.

12.
J Phys Chem A ; 124(46): 9617-9625, 2020 Nov 19.
Article in English | MEDLINE | ID: mdl-33164512

ABSTRACT

Polystyrene beads are often used as test particles in aerosol science. Here, a contact-less technique is reported for determining the refractive index of a solid aerosol particle as a function of wavelength and temperature (20-234 °C) simultaneously. Polystyrene beads with a diameter of 2 µm were optically trapped in air in the central orifice of a ceramic heating element, and Mie spectroscopy was used to determine the radius and refractive index (to precisions of 0.8 nm and 0.0014) of eight beads as a function of heating and cooling. Refractive index, n, as a function of wavelength, λ (0.480-0.650 µm), and temperature, T, in centigrade, was found to be n = 1.5753 - (1.7336 × 10-4)T + (9.733 × 10-3)λ-2 in the temperature range 20 < T < 100 °C and n = 1.5877 - (2.9739 × 10-4)T + (9.733 × 10-3)λ-2 in the temperature range 100 < T < 234 °C. The technique represents a step change in measuring the refractive index of materials across an extended range of temperature and wavelength in an absolute manner and with high precision.

13.
Commun Biol ; 3(1): 161, 2020 04 03.
Article in English | MEDLINE | ID: mdl-32246085

ABSTRACT

Mitochondria are highly pleomorphic, undergoing rounds of fission and fusion. Mitochondria are essential for energy conversion, with fusion favouring higher energy demand. Unlike fission, the molecular components involved in mitochondrial fusion in plants are unknown. Here, we show a role for the GTPase Miro2 in mitochondria interaction with the ER and its impacts on mitochondria fusion and motility. Mutations in AtMiro2's GTPase domain indicate that the active variant results in larger, fewer mitochondria which are attached more readily to the ER when compared with the inactive variant. These results are contrary to those in metazoans where Miro predominantly controls mitochondrial motility, with additional GTPases affecting fusion. Synthetically controlling mitochondrial fusion rates could fundamentally change plant physiology by altering the energy status of the cell. Furthermore, altering tethering to the ER could have profound effects on subcellular communication through altering the exchange required for pathogen defence.


Subject(s)
Arabidopsis Proteins/metabolism , Endoplasmic Reticulum/enzymology , Microfilament Proteins/metabolism , Mitochondria/enzymology , Mitochondrial Dynamics , Nicotiana/enzymology , Plant Epidermis/enzymology , Plant Leaves/enzymology , Plants, Genetically Modified/enzymology , Arabidopsis Proteins/genetics , Endoplasmic Reticulum/genetics , Gene Expression Regulation, Plant , Microfilament Proteins/genetics , Mitochondria/genetics , Mutation , Plant Epidermis/cytology , Plant Epidermis/genetics , Plant Leaves/genetics , Plants, Genetically Modified/genetics , Signal Transduction , Nicotiana/genetics
14.
Nanoscale ; 11(42): 19884-19894, 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31599311

ABSTRACT

The controlled surface functionalisation of polystyrene beads (200 nm) with a lipoic acid derivative is used to assemble composites with between 4 to 20% loadings of citrate stabilised gold nanoparticles (13 nm-30 nm), which exhibit variable optical properties arising from interactions of the nanoparticle surface plasmon resonance (SPR). The decrease in average interparticle distance at higher loadings results in a red-shift in the SPR wavelength, which is well described by a universal ruler equation. The composite particles are shown to act as good SERS substrates for the standard analyte 4-mercaptophenol. The direct assessment of the SERS activity for individual composite particles solution is achieved by Raman optical tweezer measurements on 5.3 µm composite particles. These measurements show an increase in performance with increasing AuNP size. Importantly, the SERS activity of the individual particles compares well with the bulk measurements of samples deposited on a surface, indicating that the SERS activity arises primarily from the composite and not due to composite-composite interactions. In both studies the optimum SERS response is obtained with 30 nm AuNPs.

15.
ACS Nano ; 13(4): 3858-3866, 2019 Apr 23.
Article in English | MEDLINE | ID: mdl-30794379

ABSTRACT

Block copolymer self-assembly has enabled the creation of a range of solution-phase nanostructures with applications from optoelectronics and biomedicine to catalysis. However, to incorporate such materials into devices a method that facilitates their precise manipulation and deposition is desirable. Herein we describe how optical tweezers can be used to trap, manipulate, and pattern individual cylindrical micelles and larger hybrid micellar materials. Through the combination of TIRF imaging and optical trapping we can precisely control the three-dimensional motion of individual cylindrical block copolymer micelles in solution, enabling the creation of customizable arrays. We also demonstrate that dynamic holographic assembly enables the creation of ordered customizable arrays of complex hybrid block copolymer structures. By creating a program which automatically identifies, traps, and then deposits multiple assemblies simultaneously we have been able to dramatically speed up this normally slow process, enabling the fabrication of arrays of hybrid structures containing hundreds of assemblies in minutes rather than hours.

16.
J Am Chem Soc ; 140(32): 10242-10249, 2018 08 15.
Article in English | MEDLINE | ID: mdl-30032598

ABSTRACT

The development of long-lived luminescent nanoparticles for lifetime imaging is of wide interest as luminescence lifetime is environmentally sensitive detection independent of probe concentration. We report novel iridium-coated gold nanoparticles as probes for multiphoton lifetime imaging with characteristic long luminescent lifetimes based on iridium luminescence in the range of hundreds of nanoseconds and a short signal on the scale of picoseconds based on gold allowing multichannel detection. The tailor-made IrC6 complex forms stable, water-soluble gold nanoparticles (AuNPs) of 13, 25, and 100 nm, bearing 1400, 3200, and 22 000 IrC6 complexes per AuNP, respectively. The sensitivity of the iridium signal on the environment of the cell is evidenced with an observed variation of lifetimes. Clusters of iridium nanoparticles show lifetimes from 450 to 590 ns while lifetimes of 660 and 740 ns are an average of different points in the cytoplasm and nucleus. Independent luminescence lifetime studies of the nanoparticles in different media and under aggregation conditions postulate that the unusual long lifetimes observed can be attributed to interaction with proteins rather than nanoparticle aggregation. Total internal reflection fluorescence microscopy (TIRF), confocal microscopy studies and 3D luminescence lifetime stacks confirm the presence of bright, nonaggregated nanoparticles inside the cell. Inductively coupled plasma mass spectrometry (ICPMS) analysis further supports the presence of the nanoparticles in cells. The iridium-coated nanoparticles provide new nanoprobes for lifetime detection with dual channel monitoring. The combination of the sensitivity of the iridium signal to the cell environment together with the nanoscaffold to guide delivery offer opportunities for iridium nanoparticles for targeting and tracking in in vivo models.


Subject(s)
Iridium/chemistry , Metal Nanoparticles/chemistry , Coordination Complexes , Gold/chemistry , HeLa Cells , Humans , Luminescence , Optical Imaging , Surface-Active Agents
17.
Anal Chem ; 90(15): 8838-8844, 2018 08 07.
Article in English | MEDLINE | ID: mdl-29956916

ABSTRACT

Raman spectroscopy is a powerful tool for investigating chemical composition. Coupling Raman spectroscopy with optical microscopy (Raman microspectroscopy) and optical trapping (Raman tweezers) allows microscopic length scales and, hence, femtolitre volumes to be probed. Raman microspectroscopy typically uses UV/visible excitation lasers, but many samples, including organic molecules and complex tissue samples, fluoresce strongly at these wavelengths. Here we report the development and application of dispersive Raman microspectroscopy designed around a near-infrared continuous wave 1064 nm excitation light source. We analyze microparticles (1-5 µm diameter) composed of polystyrene latex and from three real-world pressurized metered dose inhalers (pMDIs) used in the treatment of asthma: salmeterol xinafoate (Serevent), salbutamol sulfate (Salamol), and ciclesonide (Alvesco). For the first time, single particles are captured, optically levitated, and analyzed using the same 1064 nm laser, which permits a convenient nondestructive chemical analysis of the true aerosol phase. We show that particles exhibiting overwhelming fluorescence using a visible laser (514.5 nm) can be successfully analyzed with 1064 nm excitation, irrespective of sample composition and irradiation time. Spectra are acquired rapidly (1-5 min) with a wavelength resolution of 2 nm over a wide wavenumber range (500-3100 cm-1). This is despite the microscopic sample size and low Raman scattering efficiency at 1064 nm. Spectra of individual pMDI particles compare well to bulk samples, and the Serevent pMDI delivers the thermodynamically preferred crystal form of salmeterol xinafoate. 1064 nm dispersive Raman microspectroscopy is a promising technique that could see diverse applications for samples where fluorescence-free characterization is required with high spatial resolution.


Subject(s)
Albuterol/chemistry , Anti-Allergic Agents/chemistry , Bronchodilator Agents/chemistry , Optical Tweezers , Pregnenediones/chemistry , Salmeterol Xinafoate/chemistry , Spectrum Analysis, Raman/instrumentation , Aerosols/administration & dosage , Aerosols/chemistry , Albuterol/administration & dosage , Anti-Allergic Agents/administration & dosage , Asthma/drug therapy , Bronchodilator Agents/administration & dosage , Equipment Design , Fluorescence , Humans , Metered Dose Inhalers , Particle Size , Pregnenediones/administration & dosage , Salmeterol Xinafoate/administration & dosage
18.
Phys Chem Chem Phys ; 18(44): 30385-30393, 2016 Nov 09.
Article in English | MEDLINE | ID: mdl-27781216

ABSTRACT

Organic aerosols (OAs) play important roles in multiple atmospheric processes, including climate change, and can impact human health. The physico-chemical properties of OAs are important for all these processes and can evolve through reactions with various atmospheric components, including oxidants. The dynamic nature of these reactions makes it challenging to obtain a true representation of their composition and surface chemistry. Here we investigate the microscopic viscosity of the model OA composed of squalene, undergoing chemical aging. We employ Fluorescent Lifetime Imaging Microscopy (FLIM) in conjunction with viscosity sensitive probes termed molecular rotors, in order to image the changes in microviscosity in real time during oxidation with ozone and hydroxyl radicals, which are two key oxidising species in the troposphere. We also recorded the Raman spectra of the levitated particles to follow the reactivity during particle ozonolysis. The levitation of droplets was achieved via optical trapping that enabled simultaneous levitation and measurement via FLIM or Raman spectroscopy and allowed the true aerosol phase to be probed. Our data revealed a very significant increase in viscosity of the levitated squalene droplets upon ozonolysis, following their transformation from the liquid to solid phase that was not observable when the oxidation was carried out on coverslip mounted droplets. FLIM imaging with sub-micron spatial resolution also revealed spatial heterogeneity in the viscosity distribution of oxidised droplets. Overall, a combination of molecular rotors, FLIM and optical trapping is able to provide powerful insights into OA chemistry and the microscopic structure that enables the dynamic monitoring of microscopic viscosity in aerosol particles in their true phase.

19.
Inorg Chem ; 55(11): 5623-33, 2016 Jun 06.
Article in English | MEDLINE | ID: mdl-27219675

ABSTRACT

Luminescent, mixed metal d-f complexes have the potential to be used for dual (magnetic resonance imaging (MRI) and luminescence) in vivo imaging. Here, we present dinuclear and trinuclear d-f complexes, comprising a rigid framework linking a luminescent Ir center to one (Ir·Ln) or two (Ir·Ln2) lanthanide metal centers (where Ln = Eu(III) and Gd(III), respectively). A range of physical, spectroscopic, and imaging-based properties including relaxivity arising from the Gd(III) units and the occurrence of Ir(III) → Eu(III) photoinduced energy-transfer are presented. The rigidity imposed by the ligand facilitates high relaxivities for the Gd(III) complexes, while the luminescence from the Ir(III) and Eu(III) centers provide luminescence imaging capabilities. Dinuclear (Ir·Ln) complexes performed best in cellular studies, exhibiting good solubility in aqueous solutions, low toxicity after 4 and 18 h, respectively, and punctate lysosomal staining. We also demonstrate the first example of oxygen sensing in fixed cells using the dyad Ir·Gd, via two-photon phosphorescence lifetime imaging (PLIM).


Subject(s)
Iridium/chemistry , Lanthanum/chemistry , Molecular Probes , Oxygen/analysis , Cell Line, Tumor , Humans , Luminescence , Spectrophotometry, Ultraviolet
20.
Langmuir ; 32(15): 3580-6, 2016 Apr 19.
Article in English | MEDLINE | ID: mdl-26982629

ABSTRACT

Measurements of the ultralow interfacial tension and surfactant film bending rigidity for micron-sized heptane droplets in bis(2-ethylhexyl) sodium sulfosuccinate-NaCl aqueous solutions were performed in a microfluidic device through the analysis of thermally driven droplet interface fluctuations. The Fourier spectrum of the stochastic droplet interface displacement was measured through bright-field video microscopy and a contour analysis technique. The droplet interfacial tension, together with the surfactant film bending rigidity, was obtained by fitting the experimental results to the prediction of a capillary wave model. Compared to existing methods for ultralow interfacial tension measurements, this contactless, nondestructive, all-optical approach has several advantages, such as fast measurement, easy implementation, cost-effectiveness, reduced amount of liquids, and integration into lab-on-a-chip devices.

SELECTION OF CITATIONS
SEARCH DETAIL