Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 356(6345): 1397-1401, 2017 06 30.
Article in English | MEDLINE | ID: mdl-28619718

ABSTRACT

The success of new therapies hinges on our ability to understand their molecular and cellular mechanisms of action. We modified BET bromodomain inhibitors, an epigenetic-based therapy, to create functionally conserved compounds that are amenable to click chemistry and can be used as molecular probes in vitro and in vivo. We used click proteomics and click sequencing to explore the gene regulatory function of BRD4 (bromodomain containing protein 4) and the transcriptional changes induced by BET inhibitors. In our studies of mouse models of acute leukemia, we used high-resolution microscopy and flow cytometry to highlight the heterogeneity of drug activity within tumor cells located in different tissue compartments. We also demonstrate the differential distribution and effects of BET inhibitors in normal and malignant cells in vivo. This study provides a potential framework for the preclinical assessment of a wide range of drugs.


Subject(s)
Benzodiazepines/therapeutic use , Click Chemistry , Drug Delivery Systems , Epigenomics , Leukemia/drug therapy , Animals , Benzodiazepines/pharmacology , Cells, Cultured , Disease Models, Animal , Leukemia/pathology , Mice , Precision Medicine , Tissue Distribution , Transcription Factors/antagonists & inhibitors
2.
Nat Struct Mol Biol ; 23(7): 673-81, 2016 07.
Article in English | MEDLINE | ID: mdl-27294782

ABSTRACT

Targeted therapies against disruptor of telomeric silencing 1-like (DOT1L) and bromodomain-containing protein 4 (BRD4) are currently being evaluated in clinical trials. However, the mechanisms by which BRD4 and DOT1L regulate leukemogenic transcription programs remain unclear. Using quantitative proteomics, chemoproteomics and biochemical fractionation, we found that native BRD4 and DOT1L exist in separate protein complexes. Genetic disruption or small-molecule inhibition of BRD4 and DOT1L showed marked synergistic activity against MLL leukemia cell lines, primary human leukemia cells and mouse leukemia models. Mechanistically, we found a previously unrecognized functional collaboration between DOT1L and BRD4 that is especially important at highly transcribed genes in proximity to superenhancers. DOT1L, via dimethylated histone H3 K79, facilitates histone H4 acetylation, which in turn regulates the binding of BRD4 to chromatin. These data provide new insights into the regulation of transcription and specify a molecular framework for therapeutic intervention in this disease with poor prognosis.


Subject(s)
Gene Expression Regulation, Leukemic , Histones/genetics , Leukemia, Biphenotypic, Acute/genetics , Methyltransferases/genetics , Nuclear Proteins/genetics , Transcription Factors/genetics , Acetylation , Animals , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , Cell Cycle Proteins , Cell Proliferation , Chromatin/chemistry , Chromatin/metabolism , Clinical Trials as Topic , Disease Models, Animal , Female , Histone-Lysine N-Methyltransferase , Histones/metabolism , Humans , Leukemia, Biphenotypic, Acute/metabolism , Leukemia, Biphenotypic, Acute/pathology , Male , Methyltransferases/antagonists & inhibitors , Methyltransferases/metabolism , Mice , Mice, Inbred C57BL , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/metabolism , Primary Cell Culture , Protein Binding , Proteomics/methods , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction , T-Lymphocytes/metabolism , T-Lymphocytes/pathology , Transcription Factors/antagonists & inhibitors , Transcription Factors/metabolism , Transcription, Genetic
3.
Mol Oncol ; 9(6): 1106-19, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25732226

ABSTRACT

Nuclear Factor kappa B (NF-κB) signaling is frequently deregulated in a variety of cancers and is constitutively active in estrogen receptor negative (ER-) breast cancer subtypes. These molecular subtypes of breast cancer are associated with poor overall survival. We focused on mechanisms of NF-κB regulation by microRNAs (miRNAs), which regulate eukaryotic gene expression at the post-transcriptional level. In a previous genome-wide miRNA screen, we had identified miR-30c-2-3p as one of the strongest negative regulators of NF-κB signaling. Here we have uncovered the underlying molecular mechanisms and its consequences in breast cancer. In vitro results show that miR-30c-2-3p directly targets both TNFRSF1A-associated via death domain (TRADD), an adaptor protein of the TNFR/NF-κB signaling pathway, and the cell cycle protein Cyclin E1 (CCNE1). Ectopic expression of miR-30c-2-3p downregulated essential cytokines IL8, IL6, CXCL1, and reduced cell proliferation as well as invasion in MDA-MB-231 breast cancer cells. RNA interference (RNAi) induced silencing of TRADD phenocopied the effects on invasion and cytokine expression caused by miR-30c-2-3p, while inhibition of CCNE1 phenocopied the effects on cell proliferation. We further confirmed the tumor suppressive role of this miRNA using a dataset of 781 breast tumors, where higher expression was associated with better survival in breast cancer patients. In summary we have elucidated the mechanism by which miR-30c-2-3p negatively regulates NF-κB signaling and cell cycle progression in breast cancer.


Subject(s)
Breast Neoplasms/metabolism , Cell Cycle , Cyclin E/metabolism , MicroRNAs/metabolism , NF-kappa B/metabolism , Oncogene Proteins/metabolism , RNA, Neoplasm/metabolism , Signal Transduction , TNF Receptor-Associated Death Domain Protein/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Cyclin E/genetics , Female , Humans , MicroRNAs/genetics , NF-kappa B/genetics , Oncogene Proteins/genetics , RNA, Neoplasm/genetics , TNF Receptor-Associated Death Domain Protein/genetics
4.
Int J Cancer ; 136(5): 1013-23, 2015 Mar 01.
Article in English | MEDLINE | ID: mdl-25046773

ABSTRACT

Gastrointestinal stromal tumors (GISTs) have distinct gene expression patterns according to localization, genotype and aggressiveness. DNA methylation at CpG dinucleotides is an important mechanism for regulation of gene expression. We performed targeted DNA methylation analysis of 1.505 CpG loci in 807 cancer-related genes in a cohort of 76 GISTs, combined with genome-wide mRNA expression analysis in 22 GISTs, to identify signatures associated with clinicopathological parameters and prognosis. Principal component analysis revealed distinct DNA methylation patterns associated with anatomical localization, genotype, mitotic counts and clinical follow-up. Methylation of a single CpG dinucleotide in the non-CpG island promoter of SPP1 was significantly correlated with shorter disease-free survival. Hypomethylation of this CpG was an independent prognostic parameter in a multivariate analysis compared to anatomical localization, genotype, tumor size and mitotic counts in a cohort of 141 GISTs with clinical follow-up. The epigenetic regulation of SPP1 was confirmed in vitro, and the functional impact of SPP1 protein on tumorigenesis-related signaling pathways was demonstrated. In summary, SPP1 promoter methylation is a novel and independent prognostic parameter in GISTs, and might be helpful in estimating the aggressiveness of GISTs from the intermediate-risk category.


Subject(s)
Biomarkers, Tumor/genetics , DNA Methylation , Gastrointestinal Stromal Tumors/genetics , Gene Expression Profiling , Osteopontin/genetics , CpG Islands , Epigenesis, Genetic , Follow-Up Studies , Gastrointestinal Stromal Tumors/mortality , Genome, Human , Genotype , Humans , Oligonucleotide Array Sequence Analysis , Prognosis , Promoter Regions, Genetic/genetics , Survival Rate
5.
PLoS One ; 9(7): e101473, 2014.
Article in English | MEDLINE | ID: mdl-24983248

ABSTRACT

Tamoxifen is the standard adjuvant endocrine therapy for estrogen-receptor positive premenopausal breast cancer patients. However, tamoxifen resistance is frequently observed under therapy. A tamoxifen resistant cell line has been generated from the estrogen receptor positive mamma carcinoma cell line MCF-7 and was analyzed for putative differences in the aldehyde defence system and accumulation of advanced glycation end products (AGE). In comparison to wt MCF-7 cells, these tamoxifen resistant cells were more sensitive to the dicarbonyl compounds glyoxal and methylglyoxal and displayed increased caspase activity, p38-MAPK- and IκBα-phosphorylation. However, mRNA accumulation of the aldehyde- and AGE-defence enzymes glyoxalase-1 and -2 (GLO1, GLO2) as well as fructosamine-3-kinase (FN3K) was not significantly altered. Tamoxifen resistant cells contained less free sulfhydryl-groups (glutathione) suggesting that the increased sensitivity towards the dicarbonyls was due to a higher sensitivity towards reactive oxygen species which are associated with dicarbonyl stress. To further analyse, if these data are of more general importance, key experiments were replicated with tamoxifen resistant MCF-7 cell lines from two independent sources. These cell lines were also more sensitive to aldehydes, especially glyoxal, but were different in their cellular signalling responses to the aldehydes. In conclusion, glyoxalases and other aldehyde defence enzymes might represent a promising target for the therapy of tamoxifen resistant breast cancers.


Subject(s)
Antineoplastic Agents, Hormonal , Breast Neoplasms/drug therapy , Drug Resistance, Neoplasm/drug effects , Pyruvaldehyde/pharmacology , Tamoxifen , Breast Neoplasms/enzymology , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Humans , I-kappa B Kinase/metabolism , Neoplasm Proteins/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
6.
J Pathol ; 233(4): 368-79, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24752803

ABSTRACT

Tamoxifen is an endocrine therapy which is administered to up to 70% of all breast cancer patients with oestrogen receptor alpha (ERα) expression. Despite the initial response, most patients eventually acquire resistance to the drug. MicroRNAs (miRNAs) are a class of small non-coding RNAs which have the ability to post-transcriptionally regulate genes. Although the role of a few miRNAs has been described in tamoxifen resistance at the single gene/target level, little is known about how concerted actions of miRNAs targeting biological networks contribute to resistance. Here we identified the miRNA cluster, C19MC, which harbours around 50 mature miRNAs, to be up-regulated in resistant cells, with miRNA-519a being the most highly up-regulated. We could demonstrate that miRNA-519a regulates tamoxifen resistance using gain- and loss-of-function testing. By combining functional enrichment analysis and prediction algorithms, we identified three central tumour-suppressor genes (TSGs) in PI3K signalling and the cell cycle network as direct target genes of miR-519a. Combined expression of these target genes correlated with disease-specific survival in a cohort of tamoxifen-treated patients. We identified miRNA-519a as a novel oncomir in ER+ breast cancer cells as it increased cell viability and cell cycle progression as well as resistance to tamoxifen-induced apoptosis. Finally, we could show that elevated miRNA-519a levels were inversely correlated with the target genes' expression and that higher expression of this miRNA correlated with poorer survival in ER+ breast cancer patients. Hence we have identified miRNA-519a as a novel oncomir, co-regulating a network of TSGs in breast cancer and conferring resistance to tamoxifen. Using inhibitors of such miRNAs may serve as a novel therapeutic approach to combat resistance to therapy as well as proliferation and evasion of apoptosis in breast cancer.


Subject(s)
Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Drug Resistance, Neoplasm/physiology , Estrogen Receptor alpha/metabolism , Genes, Tumor Suppressor/physiology , MicroRNAs/physiology , Tamoxifen/therapeutic use , Antineoplastic Agents, Hormonal/pharmacology , Antineoplastic Agents, Hormonal/therapeutic use , Apoptosis/drug effects , Biomarkers, Tumor/physiology , Breast Neoplasms/pathology , Cell Cycle/genetics , Cell Cycle/physiology , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic/physiology , Humans , In Vitro Techniques , MicroRNAs/genetics , Pharmacogenetics , Phosphatidylinositol 3-Kinases/physiology , Signal Transduction/drug effects , Signal Transduction/physiology , Tamoxifen/pharmacology
7.
Mol Syst Biol ; 8: 570, 2012 Feb 14.
Article in English | MEDLINE | ID: mdl-22333974

ABSTRACT

The EGFR-driven cell-cycle pathway has been extensively studied due to its pivotal role in breast cancer proliferation and pathogenesis. Although several studies reported regulation of individual pathway components by microRNAs (miRNAs), little is known about how miRNAs coordinate the EGFR protein network on a global miRNA (miRNome) level. Here, we combined a large-scale miRNA screening approach with a high-throughput proteomic readout and network-based data analysis to identify which miRNAs are involved, and to uncover potential regulatory patterns. Our results indicated that the regulation of proteins by miRNAs is dominated by the nucleotide matching mechanism between seed sequences of the miRNAs and 3'-UTR of target genes. Furthermore, the novel network-analysis methodology we developed implied the existence of consistent intrinsic regulatory patterns where miRNAs simultaneously co-regulate several proteins acting in the same functional module. Finally, our approach led us to identify and validate three miRNAs (miR-124, miR-147 and miR-193a-3p) as novel tumor suppressors that co-target EGFR-driven cell-cycle network proteins and inhibit cell-cycle progression and proliferation in breast cancer.


Subject(s)
Breast Neoplasms/genetics , Carcinoma/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Genes, erbB-1/physiology , MicroRNAs/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Carcinoma/metabolism , Carcinoma/pathology , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks/physiology , High-Throughput Screening Assays , Humans , Metabolic Networks and Pathways/genetics , MicroRNAs/physiology , Models, Biological , Protein Binding/genetics , Proteomics/methods , Transcriptome/genetics , Transcriptome/physiology , Tumor Cells, Cultured
8.
Mol Cell Biol ; 32(3): 633-51, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22144583

ABSTRACT

MicroRNA-200c (miR-200c) has been shown to suppress epithelial-mesenchymal transition (EMT), which is attributed mainly to targeting of ZEB1/ZEB2, repressors of the cell-cell contact protein E-cadherin. Here we demonstrated that modulation of miR-200c in breast cancer cells regulates cell migration, cell elongation, and transforming growth factor ß (TGF-ß)-induced stress fiber formation by impacting the reorganization of cytoskeleton that is independent of the ZEB/E-cadherin axis. We identified FHOD1 and PPM1F, direct regulators of the actin cytoskeleton, as novel targets of miR-200c. Remarkably, expression levels of FHOD1 and PPM1F were inversely correlated with the level of miR-200c in breast cancer cell lines, breast cancer patient samples, and 58 cancer cell lines of various origins. Furthermore, individual knockdown/overexpression of these target genes phenocopied the effects of miR-200c overexpression/inhibition on cell elongation, stress fiber formation, migration, and invasion. Mechanistically, targeting of FHOD1 by miR-200c resulted in decreased expression and transcriptional activity of serum response factor (SRF), mediated by interference with the translocation of the SRF coactivator mycocardin-related transcription factor A (MRTF-A). This finally led to downregulation of the expression and phosphorylation of the SRF target myosin light chain 2 (MLC2) gene, required for stress fiber formation and contractility. Thus, miR-200c impacts on metastasis by regulating several EMT-related processes, including a novel mechanism involving the direct targeting of actin-regulatory proteins.


Subject(s)
Breast Neoplasms/pathology , Fetal Proteins/metabolism , MicroRNAs/metabolism , Nuclear Proteins/metabolism , Phosphoprotein Phosphatases/metabolism , Breast Neoplasms/metabolism , Cardiac Myosins/biosynthesis , Cell Line, Tumor , Cell Movement , DNA-Binding Proteins/metabolism , Down-Regulation , Female , Formins , Gene Expression Regulation, Neoplastic , Humans , Myosin Light Chains/biosynthesis , Neoplasm Invasiveness , Oncogene Proteins, Fusion/metabolism , Serum Response Factor/biosynthesis , Stress Fibers/metabolism , Trans-Activators , Transforming Growth Factor beta/metabolism
9.
BMC Clin Pathol ; 8: 2, 2008 Feb 18.
Article in English | MEDLINE | ID: mdl-18282279

ABSTRACT

BACKGROUND: S100P is a Ca2+ binding protein overexpressed in a variety of cancers, and thus, has been considered a potential tumor biomarker. Very little has been studied about its normal expression and functions. METHODS: We examined S100P expression in normal human tissues by quantitative reverse transcription polymerase chain reaction and immunohistochemistry. S100P protein expression was also studied in a series of tumors, consisting of 74 ovarian, 11 pancreatic, 56 gastric, 57 colorectal, 89 breast and 193 prostate carcinomas using a novel anti-S100P monoclonal antibody. RESULTS: Among the normal tissues, the highest S100P mRNA levels were observed in the placenta and esophagus. Moderate signals were also detected in the stomach, duodenum, large intestine, prostate and leukocytes. At the protein level, the highest reactions for S100P were seen in the placenta and stomach. Immunostaining of tumor specimens showed that S100P protein is expressed in all the tumor categories included in the study, being most prevalent in gastric tumors. CONCLUSION: Based on our observations, S100P is widely expressed in both normal and malignant tissues. The high expression in some tumors suggests that it may represent a potential target molecule for future diagnostic and therapeutic applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...