Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Adv ; 9(45): eadi2364, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37939186

ABSTRACT

Drug-resistant Plasmodium falciparum parasites have swept across Southeast Asia and now threaten Africa. By implementing a P. falciparum genetic cross using humanized mice, we report the identification of key determinants of resistance to artemisinin (ART) and piperaquine (PPQ) in the dominant Asian KEL1/PLA1 lineage. We mapped k13 as the central mediator of ART resistance in vitro and identified secondary markers. Applying bulk segregant analysis, quantitative trait loci mapping using 34 recombinant haplotypes, and gene editing, our data reveal an epistatic interaction between mutant PfCRT and multicopy plasmepsins 2/3 in mediating high-grade PPQ resistance. Susceptibility and parasite fitness assays implicate PPQ as a driver of selection for KEL1/PLA1 parasites. Mutant PfCRT enhanced susceptibility to lumefantrine, the first-line partner drug in Africa, highlighting a potential benefit of opposing selective pressures with this drug and PPQ. We also identified that the ABCI3 transporter can operate in concert with PfCRT and plasmepsins 2/3 in mediating multigenic resistance to antimalarial agents.


Subject(s)
Malaria, Falciparum , Parasites , Animals , Mice , Plasmodium falciparum/genetics , Malaria, Falciparum/drug therapy , Malaria, Falciparum/genetics , Malaria, Falciparum/parasitology , Drug Resistance/genetics , Drug Resistance, Multiple , Genomics
2.
N Engl J Med ; 389(13): 1191-1202, 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37754284

ABSTRACT

BACKGROUND: Although the clinical efficacy of antimalarial artemisinin-based combination therapies in Africa remains high, the recent emergence of partial resistance to artemisinin in Plasmodium falciparum on the continent is troubling, given the lack of alternative treatments. METHODS: In this study, we used data from drug-efficacy studies conducted between 2016 and 2019 that evaluated 3-day courses of artemisinin-based combination therapy (artesunate-amodiaquine or artemether-lumefantrine) for uncomplicated malaria in Eritrea to estimate the percentage of patients with day-3 positivity (i.e., persistent P. falciparum parasitemia 3 days after the initiation of therapy). We also assayed parasites for mutations in Pfkelch13 as predictive markers of partial resistance to artemisinin and screened for deletions in hrp2 and hrp3 that result in variable performance of histidine rich protein 2 (HRP2)-based rapid diagnostic tests for malaria. RESULTS: We noted an increase in the percentage of patients with day-3 positivity from 0.4% (1 of 273) in 2016 to 1.9% (4 of 209) in 2017 and 4.2% (15 of 359) in 2019. An increase was also noted in the prevalence of the Pfkelch13 R622I mutation, which was detected in 109 of 818 isolates before treatment, from 8.6% (24 of 278) in 2016 to 21.0% (69 of 329) in 2019. The odds of day-3 positivity increased by a factor of 6.2 (95% confidence interval, 2.5 to 15.5) among the patients with Pfkelch13 622I variant parasites. Partial resistance to artemisinin, as defined by the World Health Organization, was observed in Eritrea. More than 5% of the patients younger than 15 years of age with day-3 positivity also had parasites that carried Pfkelch13 R622I. In vitro, the R622I mutation conferred a low level of resistance to artemisinin when edited into NF54 and Dd2 parasite lines. Deletions in both hrp2 and hrp3 were identified in 16.9% of the parasites that carried the Pfkelch13 R622I mutation, which made them potentially undetectable by HRP2-based rapid diagnostic tests. CONCLUSIONS: The emergence and spread of P. falciparum lineages with both Pfkelch13-mediated partial resistance to artemisinin and deletions in hrp2 and hrp3 in Eritrea threaten to compromise regional malaria control and elimination campaigns. (Funded by the Bill and Melinda Gates Foundation and others; Australian New Zealand Clinical Trials Registry numbers, ACTRN12618001223224, ACTRN12618000353291, and ACTRN12619000859189.).


Subject(s)
Antimalarials , Artemether, Lumefantrine Drug Combination , Drug Resistance , Malaria, Falciparum , Plasmodium falciparum , Humans , Amodiaquine/administration & dosage , Amodiaquine/pharmacology , Amodiaquine/therapeutic use , Antimalarials/pharmacology , Antimalarials/therapeutic use , Artemether, Lumefantrine Drug Combination/pharmacology , Artemether, Lumefantrine Drug Combination/therapeutic use , Artemisinins/administration & dosage , Artemisinins/pharmacology , Artemisinins/therapeutic use , Drug Resistance/genetics , Eritrea/epidemiology , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Malaria, Falciparum/genetics , Malaria, Falciparum/parasitology , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Prevalence
3.
ACS Infect Dis ; 9(10): 2036-2047, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37712594

ABSTRACT

The Plasmodium proteasome is a promising antimalarial drug target due to its essential role in all parasite lifecycle stages. Furthermore, proteasome inhibitors have synergistic effects when combined with current first-line artemisinin and related analogues. Linear peptides that covalently inhibit the proteasome are effective at killing parasites and have a low propensity for inducing resistance. However, these scaffolds generally suffer from poor pharmacokinetics and bioavailability. Here we describe the development of covalent, irreversible, macrocyclic inhibitors of the Plasmodium falciparum proteasome. We identified compounds with excellent potency and low cytotoxicity; however, the first generation suffered from poor microsomal stability. Further optimization of an existing macrocyclic scaffold resulted in an irreversible covalent inhibitor carrying a vinyl sulfone electrophile that retained high potency and low cytotoxicity and had acceptable metabolic stability. Importantly, unlike the parent reversible inhibitor that selected for multiple mutations in the proteasome, with one resulting in a 5,000-fold loss of potency, the irreversible analogue only showed a 5-fold loss in potency for any single point mutation. Furthermore, an epoxyketone analogue of the same scaffold retained potency against a panel of known proteasome mutants. These results confirm that macrocycles are optimal scaffolds to target the malarial proteasome and that the use of a covalent electrophile can greatly reduce the ability of the parasite to generate drug resistance mutations.

4.
bioRxiv ; 2023 Jun 03.
Article in English | MEDLINE | ID: mdl-37398288

ABSTRACT

Drug-resistant Plasmodium falciparum parasites have swept across Southeast Asia and now threaten Africa. By implementing a P. falciparum genetic cross using humanized mice, we report the identification of key determinants of resistance to artemisinin (ART) and piperaquine (PPQ) in the dominant Asian KEL1/PLA1 lineage. We mapped k13 as the central mediator of ART resistance and identified secondary markers. Applying bulk segregant analysis, quantitative trait loci mapping and gene editing, our data reveal an epistatic interaction between mutant PfCRT and multicopy plasmepsins 2/3 in mediating high-grade PPQ resistance. Susceptibility and parasite fitness assays implicate PPQ as a driver of selection for KEL1/PLA1 parasites. Mutant PfCRT enhanced susceptibility to lumefantrine, the first-line partner drug in Africa, highlighting a potential benefit of opposing selective pressures with this drug and PPQ. We also identified that the ABCI3 transporter can operate in concert with PfCRT and plasmepsins 2/3 in mediating multigenic resistance to antimalarial agents.

5.
Cell Chem Biol ; 30(5): 470-485.e6, 2023 05 18.
Article in English | MEDLINE | ID: mdl-36963402

ABSTRACT

The Plasmodium falciparum proteasome constitutes a promising antimalarial target, with multiple chemotypes potently and selectively inhibiting parasite proliferation and synergizing with the first-line artemisinin drugs, including against artemisinin-resistant parasites. We compared resistance profiles of vinyl sulfone, epoxyketone, macrocyclic peptide, and asparagine ethylenediamine inhibitors and report that the vinyl sulfones were potent even against mutant parasites resistant to other proteasome inhibitors and did not readily select for resistance, particularly WLL that displays covalent and irreversible binding to the catalytic ß2 and ß5 proteasome subunits. We also observed instances of collateral hypersensitivity, whereby resistance to one inhibitor could sensitize parasites to distinct chemotypes. Proteasome selectivity was confirmed using CRISPR/Cas9-edited mutant and conditional knockdown parasites. Molecular modeling of proteasome mutations suggested spatial contraction of the ß5 P1 binding pocket, compromising compound binding. Dual targeting of P. falciparum proteasome subunits using covalent inhibitors provides a potential strategy for restoring artemisinin activity and combating the spread of drug-resistant malaria.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Plasmodium , Humans , Antimalarials/pharmacology , Antimalarials/chemistry , Proteasome Endopeptidase Complex/metabolism , Plasmodium/metabolism , Artemisinins/chemistry , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/chemistry
6.
J Infect Dis ; 227(10): 1121-1126, 2023 05 12.
Article in English | MEDLINE | ID: mdl-36478252

ABSTRACT

The lack of a long-term in vitro culture method has severely restricted the study of Plasmodium vivax, in part because it limits genetic manipulation and reverse genetics. We used the recently optimized Plasmodium cynomolgi Berok in vitro culture model to investigate the putative P. vivax drug resistance marker MDR1 Y976F. Introduction of this mutation using clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9 (CRISPR-Cas9) increased sensitivity to mefloquine, but had no significant effect on sensitivity to chloroquine, amodiaquine, piperaquine, and artesunate. To our knowledge, this is the first reported use of CRISPR-Cas9 in P. cynomolgi, and the first reported integrative genetic manipulation of this species.


Subject(s)
Antimalarials , Plasmodium cynomolgi , Mefloquine/pharmacology , Antimalarials/pharmacology , Chloroquine/pharmacology , Plasmodium vivax/genetics , Drug Resistance/genetics , Drug Resistance, Multiple/genetics , Plasmodium falciparum
7.
Curr Opin Microbiol ; 69: 102193, 2022 10.
Article in English | MEDLINE | ID: mdl-36007459

ABSTRACT

Multidrug-resistant Plasmodium falciparum parasites are a major threat to public health in intertropical regions. Understanding the mechanistic basis, origins, and spread of resistance can inform strategies to mitigate its impact and reduce the global burden of malaria. The recent emergence in Africa of partial resistance to artemisinins, the core component of first-line combination therapies, is particularly concerning. Here, we review recent advances in elucidating the mechanistic basis of artemisinin resistance, driven primarily by point mutations in P. falciparum Kelch13, a key regulator of hemoglobin endocytosis and parasite response to artemisinin-induced stress. We also review resistance to partner drugs, including piperaquine and mefloquine, highlighting a key role for plasmepsins 2/3 and the drug and solute transporters P. falciparum chloroquine-resistance transporter and P. falciparum multidrug-resistance protein-1.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Antimalarials/pharmacology , Antimalarials/therapeutic use , Artemisinins/pharmacology , Artemisinins/therapeutic use , Drug Resistance/genetics , Humans , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Plasmodium falciparum/genetics , Protozoan Proteins/genetics
8.
Parasitol Int ; 89: 102589, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35470066

ABSTRACT

The absence of a routine continuous in vitro cultivation method for Plasmodium vivax, an important globally distributed parasite species causing malaria in humans, has restricted investigations to field and clinical sampling. Such a method has recently been developed for the Berok strain of P. cynomolgi, a parasite of macaques that has long been used as a model for P. vivax, as these two parasites are nearly indistinguishable biologically and are genetically closely related. The availability of the P. cynomolgi Berok in routine continuous culture provides for the first time an opportunity to conduct a plethora of functional studies. However, the initial cultivation protocol proved unsuited for investigations requiring extended cultivation times, such as reverse genetics and drug resistance. Here we have addressed some of the critical obstacles to this, and we propose a set of modifications that help overcome them.


Subject(s)
Malaria, Vivax , Malaria , Parasites , Plasmodium cynomolgi , Animals , Macaca/parasitology , Malaria/parasitology , Malaria, Vivax/parasitology , Plasmodium vivax
10.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Article in English | MEDLINE | ID: mdl-34548400

ABSTRACT

The Plasmodium falciparum proteasome is a potential antimalarial drug target. We have identified a series of amino-amide boronates that are potent and specific inhibitors of the P. falciparum 20S proteasome (Pf20S) ß5 active site and that exhibit fast-acting antimalarial activity. They selectively inhibit the growth of P. falciparum compared with a human cell line and exhibit high potency against field isolates of P. falciparum and Plasmodium vivax They have a low propensity for development of resistance and possess liver stage and transmission-blocking activity. Exemplar compounds, MPI-5 and MPI-13, show potent activity against P. falciparum infections in a SCID mouse model with an oral dosing regimen that is well tolerated. We show that MPI-5 binds more strongly to Pf20S than to human constitutive 20S (Hs20Sc). Comparison of the cryo-electron microscopy (EM) structures of Pf20S and Hs20Sc in complex with MPI-5 and Pf20S in complex with the clinically used anti-cancer agent, bortezomib, reveal differences in binding modes that help to explain the selectivity. Together, this work provides insights into the 20S proteasome in P. falciparum, underpinning the design of potent and selective antimalarial proteasome inhibitors.


Subject(s)
Boron Compounds/pharmacology , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Proteasome Endopeptidase Complex/chemistry , Proteasome Inhibitors/pharmacology , Administration, Oral , Animals , Boron Compounds/administration & dosage , Boron Compounds/chemistry , Catalytic Domain , Humans , Malaria, Falciparum/enzymology , Malaria, Falciparum/parasitology , Mice , Mice, Inbred NOD , Mice, SCID , Models, Molecular , Plasmodium falciparum/enzymology , Proteasome Inhibitors/administration & dosage , Proteasome Inhibitors/chemistry
11.
Elife ; 102021 07 19.
Article in English | MEDLINE | ID: mdl-34279219

ABSTRACT

The emergence of mutant K13-mediated artemisinin (ART) resistance in Plasmodium falciparum malaria parasites has led to widespread treatment failures across Southeast Asia. In Africa, K13-propeller genotyping confirms the emergence of the R561H mutation in Rwanda and highlights the continuing dominance of wild-type K13 elsewhere. Using gene editing, we show that R561H, along with C580Y and M579I, confer elevated in vitro ART resistance in some African strains, contrasting with minimal changes in ART susceptibility in others. C580Y and M579I cause substantial fitness costs, which may slow their dissemination in high-transmission settings, in contrast with R561H that in African 3D7 parasites is fitness neutral. In Cambodia, K13 genotyping highlights the increasing spatio-temporal dominance of C580Y. Editing multiple K13 mutations into a panel of Southeast Asian strains reveals that only the R561H variant yields ART resistance comparable to C580Y. In Asian Dd2 parasites C580Y shows no fitness cost, in contrast with most other K13 mutations tested, including R561H. Editing of point mutations in ferredoxin or mdr2, earlier associated with resistance, has no impact on ART susceptibility or parasite fitness. These data underline the complex interplay between K13 mutations, parasite survival, growth and genetic background in contributing to the spread of ART resistance.


Subject(s)
Artemisinins/pharmacology , Drug Resistance/drug effects , Drug Resistance/genetics , Mutation , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Africa , Antimalarials/pharmacology , Asia , Cambodia , Humans , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Molecular Epidemiology
12.
Nat Commun ; 11(1): 4813, 2020 09 23.
Article in English | MEDLINE | ID: mdl-32968076

ABSTRACT

Artemisinins have revolutionized the treatment of Plasmodium falciparum malaria; however, resistance threatens to undermine global control efforts. To broadly explore artemisinin susceptibility in apicomplexan parasites, we employ genome-scale CRISPR screens recently developed for Toxoplasma gondii to discover sensitizing and desensitizing mutations. Using a sublethal concentration of dihydroartemisinin (DHA), we uncover the putative transporter Tmem14c whose disruption increases DHA susceptibility. Screens performed under high doses of DHA provide evidence that mitochondrial metabolism can modulate resistance. We show that disrupting a top candidate from the screens, the mitochondrial protease DegP2, lowers porphyrin levels and decreases DHA susceptibility, without significantly altering parasite fitness in culture. Deleting the homologous gene in P. falciparum, PfDegP, similarly lowers heme levels and DHA susceptibility. These results expose the vulnerability of heme metabolism to genetic perturbations that can lead to increased survival in the presence of DHA.


Subject(s)
Antimalarials/pharmacology , Artemisinins/pharmacology , Drug Resistance/genetics , Genetic Testing/methods , Heme/genetics , Heme/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats , Gene Knockout Techniques , Humans , Malaria, Falciparum/drug therapy , Membrane Transport Proteins/metabolism , Mutation , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Toxoplasma/drug effects , Toxoplasma/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...