Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 307
Filter
1.
Cytometry A ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722042

ABSTRACT

To achieve high-sensitivity cell measurements (<1 in 105 cells) by flow cytometry (FCM), the minimum number of acquired cells must be considered and conventional immunophenotyping protocols fall short of these numbers. The bulk lysis (BL) assay is a standardized erythrocyte lysing approach that allows the analysis of the millions of cells required for high-sensitivity measurable residual disease (MRD) detection. However, this approach has been associated with significant cell loss, along with potential over or underestimates of rare cells when using this method. The aim of this study was to evaluate bulk lysis protocols and compare them with minimal sample perturbation (MSP) protocols, which are reported to better preserve the native cellular state and avoid significant cell loss due to washing steps. To achieve this purpose, we first generated an MRD model by spiking fresh peripheral blood with K562 cells, stably expressing EGFP, at known percentages of EGFP positive cells to leukocytes. Samples were then prepared with BL and MSP protocols and analyzed using FCM. For all percentages of K562 cells established and evaluated, a significant decrease of this population was detected in BL samples compared with MSP samples, even at low K562 cell percentages. Significant decreases for non-necrotic cells were also observed in BL samples relative to MSP samples. In conclusion, the evaluation of the potential effects of BL protocols in obtaining the final count is of great interest, especially for over- or under-estimation of target cells, as in the case of measurable residual disease. Since conventional flow cytometry or minimal sample perturbation assays fall short in obtaining the minimum numbers required to reach high sensitivity measurements, significant efforts may be needed to improve bulk lysis solution reagents.

2.
ACS Mater Lett ; 6(5): 1906-1912, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38726044

ABSTRACT

Single crystal X-ray diffraction (SCXRD) is arguably the most definitive method for molecular structure determination, but it is often challenged by compounds that are liquids or oils at room temperature or do not form crystals adequate for analysis. Our laboratory previously reported a simple, cost-effective, single-step crystallization method based on guanidinium organosulfonate (GS) hydrogen bonded frameworks for structure determination of a wide range of encapsulated guest molecules, including assignment of the absolute configuration of chiral centers. Herein, we expand on those results and report a head-to-head comparison of the GS method with adamantoid "molecular chaperones", which have been reported to be useful hosts for structure determination. Inclusion compounds limited to only two GS hosts are characterized by low R1 values and Flack parameters, infrequent disorder of the host and guest, and manageable disorder when it does exist. The structures of some target molecules that were not included or resolved using the adamantoid chaperones were successfully included and resolved by the GS hosts, and vice versa. Of the 32 guests attempted by the GS method, 31 inclusion compounds afforded successful guest structure solutions, a 97% success rate. The GS hosts and adamantoid chaperones are complementary with respect to guest inclusion, arguing that both should be employed in the arsenal of methods for structure determination. Furthermore, the low cost of organosulfonate host components promises an accessible route to molecular structure determination for a wide range of users.

3.
Cryst Growth Des ; 24(8): 3483-3490, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38659662

ABSTRACT

During the past three decades, the ability of guanidinium arenesulfonate host frameworks to encapsulate a wide range of guests has been amply demonstrated, with more than 700 inclusion compounds realized. Herein, we report crystalline inclusion compounds based on a new aliphatic host, guanidinium cyclohexanemonosulfonate, which surprisingly exhibits four heretofore unobserved architectures, as described by the projection topologies of the organosulfonate residues above and below hydrogen-bonded guanidinium sulfonate sheets. The inclusion compounds adopt a layer motif of guanidinium sulfonate sheets interleaved with guest molecules, resembling a mille-feuille pastry. The aliphatic character of this remarkably simple host, combined with access to greater architectural diversity and adaptability, enables the host framework to accommodate a wide range of guests and promises to expand the utility of guanidinium organosulfonate hosts.

4.
Chem Mater ; 36(5): 2432-2440, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38495899

ABSTRACT

Many long-lasting insecticidal bed nets for protection against disease vectors consist of poly(ethylene) fibers in which insecticide is incorporated during manufacture. Insecticide molecules diffuse from within the supersaturated polymers to surfaces where they become bioavailable to insects and often crystallize, a process known as blooming. Recent studies revealed that contact insecticides can be highly polymorphic. Moreover, insecticidal activity is polymorph-dependent, with forms having a higher crystal free energy yielding faster insect knockdown and mortality. Consequently, the crystallographic characterization of insecticide crystals that form on fibers is critical to understanding net function and improving net performance. Structural characterization of insecticide crystals on bed net fiber surfaces, let alone their polymorphs, has been elusive owing to the minute size of the crystals, however. Using the highly polymorphous compound ROY (5-methyl-2-[(2-nitrophenyl)-amino]thiophene-3-carbonitrile) as a proxy for insecticide crystallization, we investigated blooming and crystal formation on the surface of extruded poly(ethylene) fibers containing ROY. The blooming rates, tracked from the time of extrusion, were determined by UV-vis spectroscopy after successive washes. Six crystalline polymorphs (of the 13 known) were observed on poly(ethylene) fiber surfaces, and they were identified and characterized by Raman microscopy, scanning electron microscopy, and 3D electron diffraction. These observations reveal that the crystallization and phase behavior of polymorphs forming on poly(ethylene) fibers is complex and dynamic. The characterization of blooming and microcrystals underscores the importance of bed net crystallography for the optimization of bed net performance.

5.
Chemistry ; 30(27): e202400501, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38433109

ABSTRACT

The ability of an octanuclear cubic coordination cage to catalyse a nucleophilic aromatic substitution reaction on a cavity-bound guest was studied with 2,4-dinitrofluorobenzene (DNFB) as the guest/substrate. It was found that DNFB undergoes a catalysed reaction with hydroxide ions within the cavity of the cubic cage (in aqueous buffer solution, pH 8.6). The rate enhancement of kcat/kuncat was determined to be 22, with cavity binding of the guest being required for catalysis to occur. The product, 2,4-dinitrophenolate (DNP), remained bound within the cavity due to electrostatic stabilisation and exerts two apparently contradictory effects: it initially auto-catalyses the reaction when present at low concentrations, but at higher concentrations inhibits catalysis when a pair of DNP guests block the cavity. When encapsulated, the UV/Vis absorption spectrum of DNP is red-shifted when compared to the spectrum of free DNP in aqueous solution. Further investigations using other aromatic guests determined that a similar red-shift on cavity binding also occurred for 4-nitrophenolate (4NP) at pH 8.6. The red-shift was used to determine the stoichiometry of guest binding of DNP and 4NP within the cage cavity, which was confirmed by structural analysis with X-ray crystallography; and was also used to perform catalytic kinetic studies in the solution-state.

6.
Int J Mol Sci ; 25(4)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38396682

ABSTRACT

Leukemic stem cells (LSCs) possess similar characteristics to normal hematopoietic stem cells, including self-renewal capacity, quiescence, ability to initiate leukemia, and drug resistance. These cells play a significant role in leukemia relapse, persisting even after apparent remission. LSCs were first described in 1994 by Lapidot et al. Although they have been extensively studied in acute leukemia, more LSC research is still needed in chronic lymphocytic leukemia (CLL) to understand if reduced apoptosis in mature cells should still be considered as the major cause of this disease. Here, we provide new evidence suggesting the existence of stem-like cell populations in CLL, which may help to understand the disease as well as to develop effective treatments. In this study, we identified a potential leukemic stem cell subpopulation using the tetraploid CLL cell line I83. This subpopulation is characterized by diploid cells that were capable of generating the I83 tetraploid population. Furthermore, we adapted a novel flow cytometry analysis protocol to detect CLL subpopulations with stem cell properties in peripheral blood samples and primary cultures from CLL patients. These cells were identified by their co-expression of CD19 and CD5, characteristic markers of CLL cells. As previously described, increased alkaline phosphatase (ALP) activity is indicative of stemness and pluripotency. Moreover, we used this method to investigate the potential synergistic effect of curcumin in combination with fludarabine and ibrutinib to deplete this subpopulation. Our results confirmed the effectiveness of this ALP-based analysis protocol in detecting and monitoring leukemic stem-like cells in CLL. This analysis also identified limitations in eradicating these populations using in vitro testing. Furthermore, our findings demonstrated that curcumin significantly enhanced the effects of fludarabine and ibrutinib on the leukemic fraction, exhibiting synergistic effects (combination drug index, CDI 0.97 and 0.37, respectively). Our results lend support to the existence of potential stem-like populations in CLL cell lines, and to the idea that curcumin could serve as an effective adjuvant in therapies aimed at eliminating these populations and improving treatment efficacy.


Subject(s)
Adenine/analogs & derivatives , Curcumin , Leukemia, Lymphocytic, Chronic, B-Cell , Piperidines , Vidarabine/analogs & derivatives , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Curcumin/pharmacology , Curcumin/therapeutic use , Tetraploidy
7.
J Immunol Methods ; 527: 113649, 2024 04.
Article in English | MEDLINE | ID: mdl-38395105

ABSTRACT

While the single-platform flow cytometric CD34+ cell counting method is the preferred choice to predict the yield of mobilized peripheral blood stem cells, most flow cytometers lack the ability of hematology counter analyzers to perform volumetric counting. However, one of the problems using reference microbeads is the vanishing counting bead phenomenon. This phenomenon results in a drop in microbeads concentration and reduces the total and relative number of beads in calibration procedures. In the last years, flow cytometers including a volumetric system to quantify cells have been developed and may represent a promising alternative to enumerate CD34+ cells avoiding the use of beads. In this study we have used a direct true volumetric counting of CD34+ cells under continuous flow pump to overcome potential drawbacks with impact in rare cell analysis. To confirm this hypothesis, we have compared the results of CD34+ cell enumeration using non-volumetric vs. volumetric systems with FC500 (Beckman Coulter) and Attune NxT (ThermoFisher) flow cytometers, respectively, in mobilized peripheral blood samples. No statistically significant differences were observed between measurements of CD34+ cells using beads, when the FC500 and Attune NxT absolute counting values were compared, or when CD34+ counts were compared on the Attune NxT, either using or not using beads. Linear regressions to study the relationship between volumetric and non-volumetric CD34+ counts confirmed the accuracy of each method. Bland-Altman test showed agreement between both methods. Our data showed that CD34+ cell enumeration using a volumetric system is comparable with current counting systems. This method represents an alternative with the advantage of the simplification of sample preparation and the reduction of the analysis subjectivity.


Subject(s)
Flow Cytometry , Flow Cytometry/methods , Cell Count , Linear Models , Antigens, CD34 , Microspheres
8.
Nat Commun ; 15(1): 1722, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38409240

ABSTRACT

Crimean-Congo hemorrhagic fever virus (CCHFV) is a WHO priority pathogen. Antibody-based medical countermeasures offer an important strategy to mitigate severe disease caused by CCHFV. Most efforts have focused on targeting the viral glycoproteins. However, glycoproteins are poorly conserved among viral strains. The CCHFV nucleocapsid protein (NP) is highly conserved between CCHFV strains. Here, we investigate the protective efficacy of a CCHFV monoclonal antibody targeting the NP. We find that an anti-NP monoclonal antibody (mAb-9D5) protected female mice against lethal CCHFV infection or resulted in a significant delay in mean time-to-death in mice that succumbed to disease compared to isotype control animals. Antibody protection is independent of Fc-receptor functionality and complement activity. The antibody bound NP from several CCHFV strains and exhibited robust cross-protection against the heterologous CCHFV strain Afg09-2990. Our work demonstrates that the NP is a viable target for antibody-based therapeutics, providing another direction for developing immunotherapeutics against CCHFV.


Subject(s)
Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Female , Animals , Mice , Hemorrhagic Fever Virus, Crimean-Congo/metabolism , Nucleocapsid Proteins/metabolism , Antibodies, Monoclonal , Hemorrhagic Fever, Crimean/prevention & control , Glycoproteins/metabolism , Antibodies, Viral
9.
Curr Protoc ; 3(12): e944, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38100257

ABSTRACT

The programmed cell death protein 1/programmed cell death protein ligand 1 (PD-1/PD-L1) axis is one of the most widely recognized targets for cancer immunotherapy. Importantly, PD-L1 conformational changes can hinder target binding when living cells are used. Antibody affinity, equilibrium binding, association and dissociation rates, and other affinity-related constants are fundamental to ensure target saturation. Here, PD-L1 changes in conformation and their potential impact on PD-L1 function and mutation are explored. Specifically, we present detailed flow cytometry procedures to analyze PD-L1 reactivity in myeloid-derived suppressor cells (MDSCs). This approach can also be used to study the contribution of protein conformational changes in living cells. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Sample preparation for PD-L1+ myeloid-derived suppressor cells detection by flow cytometry Basic Protocol 2: Protocol preparation, sample acquisition, and gating strategy for flow cytometric screening of PD-L1+ myeloid-derived suppressor cells in patients with lung cancer Support Protocol 1: Bioinformatic tools for the analysis of flow cytometric data.


Subject(s)
Lung Neoplasms , Myeloid-Derived Suppressor Cells , Humans , B7-H1 Antigen/metabolism , Flow Cytometry , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Myeloid-Derived Suppressor Cells/metabolism , Immunotherapy/methods
10.
Inorg Chem ; 62(39): 16101-16113, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37721399

ABSTRACT

In this study, we report the synthesis and characterization of some heteroleptic Cr(III) complexes of the form [Cr(Phen)2L](OTf)3, where Phen = 1,10-phenanthroline and L is either 2,2'-bipyridine (bpy) or its derivatives, such as 4,4'-dimethyl-2,2'-bipyridine (4,4'-DMB), 4,4'-dimethoxy-2,2'-bipyridine (4,4'-DMOB), 4,4'-ditert-butyl-2,2'-bipyridine (4,4'-dtbpy), 5,5'-dimethyl-2,2'-bipyridine (5,5'-DMB), 4,4'-dimethoxycarbonyl-2,2'-bipyridine (4,4'-dmcbpy) or 1,10-phenanthroline derivatives, such as 5-methyl-1,10-phenanthroline (5-Me-Phen) and 4,7-dimethyl-1,10-phenanthroline (4,7-DMP). Heteroleptic complexes were prepared in two stages via the intermediate [Cr(Phen)2(CF3SO3)2](CF3SO3) and five examples have been crystallographically characterized. Steady-state absorption and luminescence emission characteristics of these complexes were measured in 1 M HCl solutions. The luminescence quantum yield of these complexes was found to be the lowest for [Cr(Phen)2(4,4'-dmcbpy)](OTf)3 and the highest for [Cr(Phen)2(4,4'-DMB)](OTf)3 with values of 0.31 × 10-2 and 1.48 × 10-2, respectively. The calculated excited state energy, E0-0, was found to vary within the narrow range of 163.1-165.0 kJ mol-1 across the series. Transient absorption spectra in degassed, air-equilibrated, and oxygen-saturated 1 M HCl aqueous solutions were also measured at different time decays and demonstrated no significant differences, indicating the absence of any ion-separated species in the excited state. Excited-state decay traces at the wavelength of maximum absorption were used to calculate oxygen quenching rate constants, kq, which were found to be in the range 3.26-5.27 × 107 M-1 s-1. Singlet oxygen luminescence photosensitized by these complexes was observed in D2O, and its luminescence intensity at 1270 nm was used for the determination of singlet oxygen quantum yields for these complexes, which were in the range of 0.20-0.44, while the fraction of the excited 2E state quenched by oxygen was in the range of 0.22-0.68, and the efficiency of singlet oxygen production was in the range of 0.44-0.90. The mechanism by which the excited 2E state is quenched by oxygen is explained by a spin statistical model that predicts the balance between charge transfer and noncharge transfer deactivation pathways, which was represented by the parameter pCT that was found to vary from 0.35 to 0.68 for this series of Cr(III) complexes.

11.
Chem Commun (Camb) ; 59(79): 11811-11814, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37721711

ABSTRACT

We demonstrate how different modes of guest binding with a Co8L12 cubic cage can be determined using ESI-MS. High stoichiometry guest binding was observed, with the guests preferentially binding externally, but internal guest inclusion was also seen at higher guest loading.

12.
Bioorg Med Chem Lett ; 94: 129432, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37591319

ABSTRACT

Nucleoside and nucleobase analogs capable of interfering with nucleic acid synthesis have played essential roles in fighting infectious diseases. However, many of these agents are associated with important and potentially lethal off-target intracellular effects that limit their use. Based on the previous discovery of base-modified 2'-deoxyuridines, which showed high anticancer activity while exhibiting lower toxicity toward rapidly dividing normal human cells compared to antimetabolite chemotherapeutics, we hypothesized that a similar modification of the N4-hydroxycytidine (NHC) molecule would provide novel antiviral compounds with diminished side effects. This presumption is due to the substantial structural difference with natural cytidine leading to less recognizability by host cell enzymes. Among the 42 antimetabolite species that have been synthesized and screened against VEEV, one hit compound was identified. The structural features of the modifying moiety were similar to those of the anticancer lead 2'-deoxyuridine derivative reported previously, providing an opportunity to pursue further structure-activity relationship (SAR) studies directed to lead improvement, and obtain insight into the mechanism of action, which can lead to identifying drug candidates against a broad spectrum of RNA viral infections.


Subject(s)
Encephalitis Virus, Venezuelan Equine , Animals , Humans , Antimetabolites , Antiviral Agents/pharmacology , Deoxyuridine , Horses , Immunosuppressive Agents
13.
ACS Appl Mater Interfaces ; 15(30): 36052-36060, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37486195

ABSTRACT

The multivalent presentation of glycans leads to enhanced binding avidity to lectins due to the cluster glycoside effect. Most materials used as scaffolds for multivalent glycan arrays, such as polymers or nanoparticles, have intrinsic dispersity: meaning that in any sample, a range of valencies are presented and it is not possible to determine which fraction(s) are responsible for binding. The intrinsic dispersity of many multivalent glycan scaffolds also limits their reproducibility and predictability. Here we make use of the structurally programmable nature of self-assembled metal coordination cages, with polyhedral metal-ion cores supporting ligand arrays of predictable sizes, to assemble a 16-membered library of perfectly monodisperse glycoclusters displaying valencies from 2 to 24 through a careful choice of ligand/metal combinations. Mono- and trisaccharides are introduced into these clusters, showing that the synthetic route is tolerant of biologically relevant glycans, including sialic acids. The cluster series demonstrates increased binding to a range of lectins as the number of glycans increases. This strategy offers an alternative to current glycomaterials for control of the valency of three-dimensional (3-D) glycan arrays, and may find application across sensing, imaging, and basic biology.


Subject(s)
Lectins , Nanoparticles , Ligands , Reproducibility of Results , Polysaccharides
14.
Dalton Trans ; 52(34): 11802-11814, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37272072

ABSTRACT

The host-guest chemistry of O,O'-diisopropyl fluorophosphate (DFP), a phosphonofluoridate G-series chemical warfare agent simulant, was investigated in the presence of a number of octanuclear cubic coordination cage hosts. The aim was to demonstrate cage-catalysed hydrolysis of DFP at near neutral pH: however, two octanuclear coordination cages, HPEG (containing water-solubilising PEG groups) and HW (containing water-solubilising hydroxymethyl groups), were actually found to increase the lifetime of DFP in aqueous buffer solution (pH 8.7). Crystallographic analysis of DFP with a structurally related host cage revealed that DFP binds to windows in the cage surface, not in the internal cavity. The phosphorus-fluorine bond is directed into the cavity rather than towards the external environment, with the cage/DFP association protecting DFP from hydrolysis. Initial studies with the chemical warfare agent (CWA) sarin (GB) with HPEG cage in a buffered solution also showed a drastically reduced rate of hydrolysis for sarin when bound in the host cage. The ability of these cages to inhibit hydrolysis of these P-F bond containing organophosphorus guests, by encapsulation, may have applications in forensic sample preservation and analysis.

15.
ACS Infect Dis ; 9(7): 1396-1407, 2023 07 14.
Article in English | MEDLINE | ID: mdl-37311068

ABSTRACT

The development of safe and potent insecticides remains an integral part of a multifaceted strategy to effectively control human-disease-transmitting insect vectors. Incorporating fluorine can dramatically alter the physiochemical properties and bioavailability of insecticides. For example, 1,1,1-trichloro-2,2-bis(4-fluorophenyl)ethane (DFDT)─a difluoro congener of trichloro-2,2-bis(4-chlorophenyl)ethane (DDT)─was demonstrated previously to be 10-fold less toxic to mosquitoes than DDT in terms of LD50 values, but it exhibited a 4-fold faster knockdown. Described herein is the discovery of fluorine-containing 1-aryl-2,2,2-trichloro-ethan-1-ols (FTEs, for fluorophenyl-trichloromethyl-ethanols). FTEs, particularly per-fluorophenyl-trichloromethyl-ethanol (PFTE), exhibited rapid knockdown not only against Drosophila melanogaster but also against susceptible and resistant Aedes aegypti mosquitoes, major vectors of Dengue, Zika, yellow fever, and Chikungunya viruses. The R enantiomer of any chiral FTE, synthesized enantioselectively, exhibited faster knockdown than its corresponding S enantiomer. PFTE does not prolong the opening of mosquito sodium channels that are characteristic of the action of DDT and pyrethroid insecticides. In addition, pyrethroid/DDT-resistant Ae. aegypti strains having enhanced P450-mediated detoxification and/or carrying sodium channel mutations that confer knockdown resistance were not cross-resistant to PFTE. These results indicate a mechanism of PFTE insecticidal action distinct from that of pyrethroids or DDT. Furthermore, PFTE elicited spatial repellency at concentrations as low as 10 ppm in a hand-in-cage assay. PFTE and MFTE were found to possess low mammalian toxicity. These results suggest the substantial potential of FTEs as a new class of compounds for controlling insect vectors, including pyrethroid/DDT-resistant mosquitoes. Further investigations of FTE insecticidal and repellency mechanisms could provide important insights into how incorporation of fluorine influences the rapid lethality and mosquito sensing.


Subject(s)
Aedes , Fluorine Compounds , Insecticides , Pyrethrins , Zika Virus Infection , Zika Virus , Animals , Humans , Insecticides/pharmacology , Fluorine/pharmacology , DDT/pharmacology , Fluorine Compounds/pharmacology , Drosophila melanogaster , Insecticide Resistance/genetics , Pyrethrins/pharmacology , Mammals
16.
Dalton Trans ; 52(25): 8818, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37313744

ABSTRACT

Correction for 'Disentangling contributions to guest binding inside a coordination cage host: analysis of a set of isomeric guests with differing polarities' by Cristina Mozaceanu et al., Dalton Trans., 2022, 51, 15263-15272, https://doi.org/10.1039/D2DT02623F.

17.
Malar J ; 22(1): 129, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37081532

ABSTRACT

BACKGROUND: Controlling malaria-transmitting Anopheles mosquitoes with pyrethroid insecticides is becoming increasingly challenging because of widespread resistance amongst vector populations. The development of new insecticides and insecticidal formulations is time consuming and costly, however. A more active crystalline form of deltamethrin, prepared by heating the commercial crystalline form, previously was reported to be 12-times faster acting against susceptible North American Anopheles quadrimaculatus mosquitoes. Herein the potential for heat-activated deltamethrin dispersed on chalk to overcome various resistance mechanisms amongst five West African Anopheles strains is investigated, and its long-term sustained lethality evaluated. METHODS: The more active deltamethrin form was generated in a commercial dust containing deltamethrin by heating the material as purchased. Tarsal contact bioassays were conducted to investigate its efficacy, potency, and speed of action against resistant Anopheles populations compared to the commercially available form of deltamethrin dust. RESULTS: In all cases, D-Fense Dust heated to generate the more active form of deltamethrin was substantially more effective than the commercially available formulation. 100% of both Banfora M and Kisumu populations were knocked down 10 min post-exposure with no recovery afterwards. Gaoua-ara and Tiefora strains exhibited 100% knockdown within 15 min, and the VK7 2014 strain exhibited 100% knockdown within 20 min. In all cases, 100% mortality was observed 24 h post-exposure. Conversely, the commercial formulation (unheated) resulted in less than 4% mortality amongst VK7 2014, Banfora, and Gaoua-ara populations by 24 h, and Tiefora and Kisumu mosquitoes experienced 14 and 47% mortality by 24 h, respectively. The heat-activated dust maintained comparable efficacy 13 months after heating. CONCLUSIONS: The heat-activated form of commercial deltamethrin D-Fense Dust outperformed the material as purchased, dramatically increasing efficacy against all tested pyrethroid-resistant strains. This increase in lethality was retained for 13 months of storage under ambient conditions in the laboratory. Higher energy forms of commonly used insecticides may be employed to overcome various resistance mechanisms seen in African Anopheles mosquitoes through more rapid uptake of insecticide molecules from their respective solid surfaces. That is, resistant mosquitoes can be killed with an insecticide to which they are resistant without altering the molecular composition of the insecticide.


Subject(s)
Anopheles , Insecticides , Pyrethrins , Animals , Insecticides/pharmacology , Insecticide Resistance , Mosquito Control/methods , Mosquito Vectors , Pyrethrins/pharmacology , Nitriles/pharmacology
18.
Dalton Trans ; 52(14): 4456-4461, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-36917490

ABSTRACT

A molecule of luminol bound as guest inside a Co8 coordination cage host undergoes oxidation by H2O2 to generate chemiluminescence by a process in which the Co(II) ions in the cage superstructure activate the H2O2: accordingly the cage not only co-locates the reactants but also acts as a redox partner in the catalysis. The luminescence from oxidation of the cavity-bound luminol can transfer its excitation energy to surface-bound fluorescein molecules in an unusual example of Chemiluminescence Resonance Energy Transfer (CRET).

19.
MethodsX ; 10: 102057, 2023.
Article in English | MEDLINE | ID: mdl-36851978

ABSTRACT

Plastic pollution is a global problem. Animals and humans can ingest and inhale plastic particles, with uncertain health consequences. Nanoplastics (NPs) are particles ranging from 1 nm to 1000 nm that result from the erosion or breakage of larger plastic debris, and can be highly polydisperse in physical properties and heterogeneous in composition. Potential effects of NPs exposure may be associated with alterations in the xenobiotic metabolism, nutrients absorption, energy metabolism, cytotoxicity, and behavior. In humans, no data on NPs absorptions has been reported previously. Given that their detection relies significantly on environmental exposure, we have prospectively studied the presence of NPs in human peripheral blood (PB). Specifically, we have used fluorescence techniques and nanocytometry, together with the staining of the lipophilic dye Nile Red (NR), to demonstrate that NPs can be accurately detected using flow cytometry.•Potential effects of nanoplastics exposure.•Fluorescence techniques and nanocytometry.•Accurate detection using flow cytometry.

20.
Analyst ; 148(1): 105-113, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36412489

ABSTRACT

Fast-scan cyclic voltammetry (FSCV) with micron-sized carbon sensors is a promising approach for monitoring the fast dynamics of serotonin (5-HT) neuromodulatory signals in the brain. However, sensor performance using FSCV can be compromised by complex chemical reactions associated with the reduction and oxidation of 5-HT, posing considerable challenges to detection of 5-HT in vivo. Herein we describe the use of engineered graphitic sensors to characterize the complex electrochemistry of 5-HT under a wide range of measurement conditions, with the aim of optimizing the FSCV conditions for in vivo quantitative 5-HT detection. These measurements reveal that water plays a significant role in driving side reactions during low-voltage FSCV measurements, leading to the observation of a well-defined secondary redox couple we associated with the redox reaction of tryptamine 4,5-dione. Remarkably, these side reactions can persist subsequent to the primary redox events associated with 5-HT. Furthermore, the results reveal a critical deviation from this ideal redox behavior if the FSCV anodic limit exceeds +0.8 V, which can be attributed to the generation of radical species from water oxidation. These new insights could lead to new FSCV protocols for more reliable 5-HT detection.


Subject(s)
Graphite , Serotonin , Electrochemistry/methods , Carbon/chemistry , Electrodes
SELECTION OF CITATIONS
SEARCH DETAIL
...