Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Biomater Sci Eng ; 8(12): 5101-5109, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36374748

ABSTRACT

The addition of poly(ethylene glycol) (PEG) to biomolecules and biomaterials is a well-established approach to modify their properties for therapeutic applications. For biomaterials, the approach is typically to blend or electrospray the synthetic polymer with the biomaterial. Effective surface modification approaches such as surface-initiated polymer brushes are challenging since the harsh solvents required for brush synthesis may destroy the biomaterial. Herein, we describe the PEGylation of collagen fibers by surface-initiated PEG brushes using a living anionic grafting-from mechanism. This brush synthesis is done in the absence of solvents to minimize the degradation of the native collagen structure. We quantify the effect the brush synthesis has on the native structure of the collagen fiber using differential scanning calorimetry (DSC) and find that even at long reaction times a significant fraction of the native structure remains. Dynamic mechanical analysis indicates the collagen undergoes only modest structural degradation, while adhesion studies find a significant improvement of antifouling properties. Further, our approach opens the way for further chemistry, as the growing polymer chain is a potassium alkoxy group that can be functionalized by termination or by subsequent reaction by a wide variety of molecules.


Subject(s)
Polyethylene Glycols , Polymers , Solvents , Polyethylene Glycols/chemistry , Biocompatible Materials , Collagen
2.
Langmuir ; 37(31): 9378-9384, 2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34323491

ABSTRACT

A chromatographic approach for separating exfoliated graphene from natural flake graphite is presented. Graphene is an extremely strong, electrically and thermally conductive two-dimensional hexagonal array of carbon atoms with the potential to transform applications such as supercapacitors, composites, biosensors, ultra-thin touchscreens, and solar cells. However, many of these applications require the use of exfoliated graphene, and the current cost of this material can be prohibitive. The most cost-effective source of graphene is exfoliated graphite, and numerous approaches have been proposed for exfoliating graphite to graphene. Solution approaches are the most common, with graphite often exfoliated by extended sonication treatment followed by separation of graphene from graphite using centrifugation. This time-consuming approach results in low concentrations of small lateral dimension graphene, often in high-boiling-point organic solvents or containing stabilizers. In this study, a chromatographic approach is used in combination with a solvent interface trapping method of graphite exfoliation to isolate graphene. The interface trapping exfoliation approach uses a hydrophobic/hydrophilic solvent interface to spontaneously exfoliate graphite and form a graphene-stabilized water-in-oil emulsion. This emulsion contains both graphene and graphite, and when added to water-wet glass beads, graphene adsorbs onto the glass surface, leaving graphite in the hydrophobic mobile phase, where it is removed by washing with an additional oil phase. The efficiency of this scalable approach to separation is demonstrated by Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, and Tyndall effect scattering.

3.
J Mater Chem B ; 8(45): 10392-10406, 2020 12 07.
Article in English | MEDLINE | ID: mdl-33112356

ABSTRACT

Bombyx mori silk fibroin is a fibrous protein whose tunable properties and biocompatibility have resulted in its utility in a wide-variety of applications, including as drug delivery vehicles, wound dressings, and tissue engineering scaffolds. Control of protein and cell attachment is vital to the performance of biomaterials, but silk fibroin is mostly hydrophobic and interacts nonspecifically with cells and proteins. Silk functionalised with hydrophilic polymers reduces attachment, but the low number of reactive sites makes achieving a uniform conjugation a persistent challenge. This work presents a new approach to grow brush-like polymers from the surface of degradable silk films, where the films were enriched with hydroxyl groups, functionalised with an initiator, and finally reacted with acrylate monomers using atom transfer radical polymerisation. Two different routes to hydroxyl enrichment were investigated, one involving reaction with ethylene oxide (EO) and the other using a two-step photo-catalysed oxidation reaction. Both routes increased surface hydrophilicity, and hydrophilic monomers containing either uncharged (poly(ethylene glycol), PEG) pendant groups or zwitterionic pendant groups were polymerised from the surfaces. The initial processing of the films to induce beta sheet structures was found to impact the success of the polymerizations. Compared to the EO modified or unmodified silk surfaces, the oxidation reaction resulted in more polymer conjugation and the surfaces appear more uniform. Mesenchymal stem cell and protein attachment were the lowest on polymers grown from oxidised surfaces. PEG-containing brush-like polymers displayed lower protein attachment than surfaces conjugated with PEG using a previously reported "grafting to" method, but polymers containing zwitterionic side chains displayed both the lowest contact angles and the lowest cell and protein attachment. This finding may arise from the interactions of the zwitterionic pendant groups through their permanent dipoles and is an important finding because PEG is susceptible to oxidative damage that can reduce efficacy over time. These modified silk materials with lower cell and protein attachments are envisioned to find utility when enhanced diffusion around surfaces is required, such as in drug delivery implants.


Subject(s)
Bombyx/chemistry , Fibroins/chemistry , Polyethylene Glycols/chemistry , Tissue Scaffolds/chemistry , Animals , Cell Adhesion , Cell Line , Humans , Hydrophobic and Hydrophilic Interactions , Polymerization , Serum Albumin, Bovine/isolation & purification
4.
Langmuir ; 36(35): 10421-10428, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32794716

ABSTRACT

Ion partitioning behavior in electrolyte solutions plays an important role in drug delivery and therapeutics, protein folding, materials science, filtration, and energy applications such as supercapacitors. Here, we show that the segregation of ions in solutions also plays an important role in the exfoliation of natural flake graphite to pristine graphene. Polarizable anions such as iodide and acetate segregate to the interfacial region of the aqueous phase during solvent interfacial trapping exfoliation of graphene. Ordered water layers and accumulated charges near the graphene surface aid in separating graphene sheets from bulk graphite, and, more importantly, reduce the reversibility of the exfoliation event. The observed phenomenon results not only in the improved stability of graphene-stabilized emulsions but also in a low-cost and environmentally friendly way of enhancing the production of graphene.

5.
ACS Appl Mater Interfaces ; 12(26): 29692-29699, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32492330

ABSTRACT

Spontaneously exfoliated pristine graphene is used as a surfactant to template the formation of electrically conductive filters for the adsorption of an organic dye from water. In contrast to other reported graphene-based adsorption materials, our system provides a continuous approach to water treatment rather than a batch approach, and uses pristine graphene instead of the more costly and environmentally challenging graphene oxide. The use of self-assembled graphene also results in our filters being electrically conductive, providing a convenient route to clean the filters by resistive heating. An investigation of the mechanism of formation and filtration by these filters, templated by self-assembled two-dimensional pristine graphene, is presented. The thermodynamically driven exfoliation of natural flake graphite at a high-energy monomer/water interface produces water-in-oil emulsions stabilized by a thin layer of overlapping graphene sheets. Subsequent polymerization of the continuous monomer phase produces polymer foams with cells lined by graphene. With a combination of acoustic spectroscopy and electron microscopy, the effects of graphite concentration and temperature are studied, as is the correlation between droplet size and the size of the cells in the final polymer foam.

6.
J Colloid Interface Sci ; 493: 365-370, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28126609

ABSTRACT

Graphene oxide (GO) is a two-dimensional material with a hydrophobic carbon lattice functionalized with hydrophilic oxygen groups on the edges and basal plane. Its hydrophobic/hydrophilic nature allows it to behave as a surfactant, stabilizing emulsions of oil in water. In the investigation described here, we study GO's emulsifying ability by using it to template the polymerization of polystyrene while tuning the hydrophobicity and degree of oxidation of the GO sheets. SEM, TGA, optical microscopy, acoustic spectroscopy, and digital image analysis are used to characterize the system. The size of the GO templated PS spheres is found to be a function of the amount of GO in the system, with too little GO resulting in PS spheres with no GO shell. Increasing the hydrophobicity of the sheets is shown to lead to the formation of inverse emulsions, while increasing the graphitic character of the GO results in distorted styrene droplets as the GO sheets become more planar and less able to conform to a smoothly curving interface.

SELECTION OF CITATIONS
SEARCH DETAIL
...