ABSTRACT
With the aim of discovering new anticancer agents, we have designed and synthesized novel 6-hydroxy-benzo[d][1,3]oxathiol-2-one Schiff bases. The synthesis started with the selective nitration at 5-position of 6-hydroxybenzo[d][1,3]oxathiol-2-one (1) leading to the nitro derivative 2. The nitro group of 2 was reduced to give the amino intermediate 3. Schiff bases 4a-r were obtained from coupling reactions between 3 and various benzaldehydes and heteroaromatic aldehydes. All the new compounds were fully identified and characterized by NMR (1H and 13C) and specifically for 4q by X-ray crystallography. The in vitro cytotoxicity of the compounds was evaluated against cancer cell lines (ACP-03, SKMEL-19 and HCT-116) by using MTT assay. Schiff bases 4b and 4o exhibited promising cytotoxicity against ACP-03 and SKMEL-19, respectively, with IC50 values lower than 5 µM. This class of compounds can be considered as a good starting point for the development of new lead molecules in the fight against cancer.
Subject(s)
Antineoplastic Agents/chemical synthesis , Lactones/chemical synthesis , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Drug Screening Assays, Antitumor , Humans , Inhibitory Concentration 50 , Lactones/pharmacology , Mice , NIH 3T3 Cells , Schiff Bases/chemical synthesis , Schiff Bases/pharmacologyABSTRACT
Infrared Fourier Transform investigation of several metal tris-complexes of 1,3-dithiole-2-thione-4,5-dithiolate (dmit) ligand have been recorded within a theoretical-experimental investigation of the vibrational molecular spectra of crystalline [NEt4]2[Sn(dmit)3] and [NEt4][Sb(dmit)3] compounds. For the [Sn(dmit)3]-2 anion we recorded as well the Raman Fourier Transform spectra. Ab initio calculations have been carried with several ECPs, basis sets and methodologies (RHF and DFT) in order to assess family and methodological errors precisely. Geometry optimization and subsequent hessian calculation lead to the vibration frequencies reported. These calculated frequencies and intensities assisted the fundamental, overtones and combinations bands assignments. Remarkable agreement has been found between the experimental geometries and frequencies to those here calculated. Besides the bands traditionally studied for the dmit compounds, as CC and CS stretchings, also the region below 500 cm(-1) was evaluated, allowing to characterize several modes involving angular deformation of the dmit as the MS stretching of these octahedral distorted systems.