Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Plant Mol Biol ; 112(4-5): 279-291, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37326800

ABSTRACT

A long-held goal of synthetic biology has been the transfer of a bacterial nitrogen-fixation pathway into plants to reduce the use of chemical fertiliser on crops such as rice, wheat and maize. There are three classes of bacterial nitrogenase, named after their metal requirements, containing either a MoFe-, VFe- or FeFe-cofactor, that converts N2 gas to ammonia. Relative to the Mo-nitrogenase the Fe-nitrogenase is not as efficient for catalysis but has less complex genetic and metallocluster requirements, features that may be preferable for engineering into crops. Here we report the successful targeting of bacterial Fe-nitrogenase proteins, AnfD, AnfK, AnfG and AnfH, to plant mitochondria. When expressed as a single protein AnfD was mostly insoluble in plant mitochondria, but coexpression of AnfD with AnfK improved its solubility. Using affinity-based purification of mitochondrially expressed AnfK or AnfG we were able to demonstrate a strong interaction of AnfD with AnfK and a weaker interaction of AnfG with AnfDK. This work establishes that the structural components of the Fe-nitrogenase can be engineered into plant mitochondria and form a complex, which will be a requirement for function. This report outlines the first use of Fe-nitrogenase proteins within a plant as a preliminary step towards engineering an alternative nitrogenase into crops.


Subject(s)
Azotobacter vinelandii , Nitrogenase , Nitrogenase/genetics , Nitrogenase/metabolism , Azotobacter vinelandii/genetics , Azotobacter vinelandii/metabolism , Iron , Nitrogen Fixation , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
2.
J Chem Inf Model ; 59(11): 4844-4854, 2019 11 25.
Article in English | MEDLINE | ID: mdl-31613613

ABSTRACT

Noble gases are chemically inert, and it was therefore thought they would have little effect on biology. Paradoxically, it was found that they do exhibit a wide range of biological effects, many of which are target-specific and potentially useful and some of which have been demonstrated in vivo. The underlying mechanisms by which useful pharmacology, such as tissue and neuroprotection, anti-addiction effects, and analgesia, is elicited are relatively unexplored. Experiments to probe the interactions of noble gases with specific proteins are more difficult with gases than those with other chemicals. It is clearly impractical to conduct the large number of gas-protein experiments required to gain a complete picture of noble gas biology. Given the simplicity of atoms as ligands, in silico methods provide an opportunity to gain insight into which noble gas-protein interactions are worthy of further experimental or advanced computational investigation. Our previous validation studies showed that in silico methods can accurately predict experimentally determined noble gas binding sites in X-ray structures of proteins. Here, we summarize the largest reported in silico reverse docking study involving 127 854 protein structures and the five nonradioactive noble gases. We describe how these computational screening methods are implemented, summarize the main types of interactions that occur between noble gases and target proteins, describe how the massive data set that this study generated can be analyzed (freely available at group18.csiro.au), and provide the NDMA receptor as an example of how these data can be used to understand the molecular pharmacology underlying the biology of the noble gases. We encourage chemical biologists to access the data and use them to expand the knowledge base of noble gas pharmacology, and to use this information, together with more efficient delivery systems, to develop "atomic drugs" that can fully exploit their considerable and relatively unexplored potential in medicine.


Subject(s)
Noble Gases/metabolism , Proteins/metabolism , Animals , Binding Sites , Databases, Protein , Drug Discovery , Humans , Molecular Docking Simulation , Protein Binding , Proteins/chemistry , Proteome/chemistry , Proteome/metabolism , Thermodynamics
3.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 3): 710-20, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25760618

ABSTRACT

Atrazine chlorohydrolase (AtzA) was discovered and purified in the early 1990s from soil that had been exposed to the widely used herbicide atrazine. It was subsequently found that this enzyme catalyzes the first and necessary step in the breakdown of atrazine by the soil organism Pseudomonas sp. strain ADP. Although it has taken 20 years, a crystal structure of the full hexameric form of AtzA has now been obtained. AtzA is less well adapted to its physiological role (i.e. atrazine dechlorination) than the alternative metal-dependent atrazine chlorohydrolase (TrzN), with a substrate-binding pocket that is under considerable strain and for which the substrate is a poor fit.


Subject(s)
Bacterial Proteins/chemistry , Hydrolases/chemistry , Pseudomonas/enzymology , Soil Microbiology , Crystallography, X-Ray , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL