Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(19): 25280-25293, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38712718

ABSTRACT

Composite laminates utilizing autoclave-grade carbon fiber-reinforced plastic (CFRP) prepreg were manufactured using a polymer nanoporous network (NPN) interlayer that generates capillary pressure in lieu of pressure from an autoclave. The polymer nanofiber NPN film is integrated into the interlaminar region and is shown to eliminate voids in a vacuum-bag-only (VBO) curing process. After a preliminary investigation of the effect of NPN thickness on the interlaminar region and performance, an 8 µm thick polymer NPN was selected for a scaled manufacturing demonstration. Combining the polymer NPN with "out-of-oven" (OoO) electrothermal heating of a carbon nanotube (CNT)-heated tool, a 0.6 × 0.6 m void-free plate is successfully manufactured. OoO cure enables an accelerated cure cycle, which reduces the cure time by 35% compared to the manufacturer-recommended cure cycle (MRCC). X-ray microcomputed tomography (µ-CT) reveals that the laminates are void-free and of identical quality to autoclave-cured specimens. An array of mechanical tests including tension, compression, open-hole compression (OHC), tension-bearing (bolt-bearing), and compression after impact, reveal that the accelerated NPN-cured composites were broadly equivalent, with some instances of improved properties, relative to the autoclave-cured parts, e.g., OHC strength increased by 5%. With reduced capital costs, energy consumption, and increased throughput, the facile polymer NPN-enabled out-of-autoclave (OoA) fabrication method is shown to be a practical and attractive alternative to conventional autoclave fabrication.

2.
Article in English | MEDLINE | ID: mdl-38624137

ABSTRACT

The Mode I, Mode II, and mixed-mode interlaminar failure behavior of a thin-ply (54 gsm) carbon fiber-epoxy laminated composite reinforced by 20 µm tall z-direction-aligned carbon nanotubes (CNTs), comprising ∼50 billion CNT fibers per cm2, is analyzed following J-integral-based data reduction methods. The inclusion of aligned CNTs in the ply interfaces provides enhanced crack resistance, resulting in sustained crack deflection from the reinforced interlaminar region to the intralaminar region of the adjacent plies, i.e., the CNTs drive the crack from the interlaminar region into the plies. The CNTs do not appreciably increase the interlaminar thickness or laminate weight and preserve the intralaminar microfiber morphology. Improvements of 34 and 62% on the Mode I and Mode II initiation fracture toughness, respectively, are observed. This type of interlaminar nanoreinforcement effectively drives crack propagation from the interface to within the ply where the crack propagates parallel to the interlaminar region, providing new insight into previously reported strength and fatigue performance increases. These findings extend to industries where lightweight and durable materials are critical for improving the structural efficiency.

3.
ACS Appl Mater Interfaces ; 15(32): 38750-38758, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37535803

ABSTRACT

Semiconductor packaging based on an epoxy molding compound (EMC) currently has several disadvantages including warpage, limited processing area, and variability that all negatively affect cost and production yield. We propose a facile EMC molding process method using a flash electro-thermal carbon fiber heating (FE-CH) device based on carbon fiber-based papers to manufacture an EMC molded to a copper substrate (EMC/Cu bi-layer package) via Joule heating, and using this device, a modified cure cycle that combines the conventional cure cycle (CCC) with rapid cooling was performed using FE-CH to reduce the curvature of the EMC/Cu bi-layer package. Compared to the conventional hot press process, which uses 3.17 MW of power, the FE-CH process only uses 32.87 kW, resulting in a power consumption reduction of over 100 times when following the CCC. Furthermore, the FE-CH-cured EMC/Cu bi-layer package exhibits mechanical properties equivalent to those of a hot press-cured specimen, including the degree of cure, elastic modulus, curvature, bonding temperature, residual strain, and peel strength. The modified cure cycle using the FE-CH results in a 31% reduction in residual strain, a 32% reduction in curvature, and a 47% increase in peel strength compared to the CCC, indicating that this new process method is very promising for reducing a semiconductor package's price by reducing the process cost and warpage.

5.
ACS Appl Mater Interfaces ; 15(13): 17029-17044, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36958023

ABSTRACT

The excellent intrinsic properties of aligned nanofibers, such as carbon nanotubes (CNTs), and their ability to be easily formed into multifunctional 3D architectures motivate their use for a variety of commercial applications, such as batteries, chemical sensors for environmental monitoring, and energy harvesting devices. While controlling nanofiber adhesion to the growth substrate is essential for bulk-scale manufacturing and device performance, experimental approaches and models to date have not addressed tuning the CNT array-substrate adhesion strength with thermal processing conditions. In this work, facile "one-pot" thermal postgrowth processing (at temperatures Tp = 700-950 °C) is used to study CNT-substrate pull-off strength for millimeter-tall aligned CNT arrays. CNT array pull-off from the flat growth substrate (Fe/Al2O3/SiO2/Si wafers) via tensile testing shows that the array fails progressively, similar to the response of brittle microfiber bundles in tension. The pull-off strength evolves nonmonotonically with Tp in three regimes, first increasing by 10 times through Tp = 800 °C due to graphitization of disordered carbon at the CNT-catalyst interface, and then decreasing back to a weak interface through Tp = 950 °C due to diffusion of the Fe catalyst into the substrate, Al2O3 crystallization, and substrate cracking. Failure is observed to occur at the CNT-catalyst interface below 750 °C, and the CNTs themselves break during pull-off after higher Tp processing, leaving residual CNTs on the substrate. Morphological and chemical analyses indicate that the Fe catalyst remains on the substrate after pull-off in all regimes. This work provides new insights into the interfacial interactions responsible for nanofiber-substrate adhesion and allows tuning to increase or decrease array strength for applications such as advanced sensors, energy devices, and nanoelectromechanical systems (NEMS).

6.
ACS Appl Mater Interfaces ; 15(8): 11024-11032, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36696132

ABSTRACT

Semiconductor packaging continues to reduce in thickness following the overall thinning of electronic devices such as smartphones and tablets. As the package becomes thinner, the warpage of the semiconductor package becomes more important due to the reduced bending stiffness and driven by thermal residual stresses and thermal expansion mismatch during the epoxy molding compound (EMC) curing to create the package. To address this packaging reliability issue, in this study, we developed a modified cure cycle that adds a rapid cooling step to the conventional cure cycle (CCC) to enhance the reliability of the EMC molded to a copper substrate (EMC/Cu bi-layer package) by lowering the bonding temperature of the EMC/Cu bi-layer package. Modeling of the package via Timoshenko theory including effective cure shrinkage allowed the rapid cooling step to be quantified and confirmed via experiments. The modified cure cycle resulted in a 26% reduction in residual strain, a 27% reduction in curvature, and a 40% increase in peel strength compared to the CCC, suggesting that this is an effective new method for managing warping effects in such packaged structures.

7.
ACS Nano ; 16(11): 18178-18186, 2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36314378

ABSTRACT

Boron nitride nanotubes (BNNTs) possess a broad range of applications because of several engineering-relevant properties, including high specific strength and stiffness, thermal stability, and transparency to visible light. The morphology of these nanoscale fibers must be controlled to maximize such properties, which can be achieved by synthesizing long aligned arrays of crystalline hexagonal boron nitride (hBN) nanotubes. Herein, we synthesize high-quality millimeter length, vertically aligned (VA-) BNNTs using free-standing carbon nanotube (CNT) arrays as scaffolds. In addition to high optical transparency of the VA-BNNTs, we also demonstrate several micro- and macrostructures of BNNTs via patterning and/or postprocessing of the arrays, including engineering of either disconnected or interconnected tubes in VA-, horizontally aligned (HA-), or coherently buckled BNNTs. The internanotube spacings and interconnections between aligned BNNT can thus be tailored to create BN macrostructures with complex shapes and advantaged morphologies for hierarchical materials and devices.

8.
ACS Appl Mater Interfaces ; 14(6): 8361-8372, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35119271

ABSTRACT

We present carbon nanotube (CNT)-reinforced polypropylene random copolymer (PPR) nanocomposites for the additive manufacturing of self-sensing piezoresistive materials via fused filament fabrication. The PPR/CNT feedstock filaments were synthesized through high shear-induced melt blending with controlled CNT loading up to 8 wt % to enable three-dimensional (3D) printing of nanoengineered PPR/CNT composites. The CNTs were found to enhance crystallinity (up to 6%) in PPR-printed parts, contributing to the overall CNT-reinforcement effect that increases both stiffness and strength (increases of 56% in modulus and 40% in strength at 8 wt % CNT loading). Due to electrical conductivity (∼10-4-10-1 S/cm with CNT loading) imparted to the PPR by the CNT network, multifunctional in situ strain and damage sensing in 3D-printed CNT/PPR bulk composites and lattice structures are revealed. A useful range of gauge factors (k) is identified for strain sensing (ks = 10.1-17.4) and damage sensing (kd = 20-410) across the range of CNT loadings for the 0° print direction. Novel auxetic re-entrant and S-unit cell lattices are printed, with multifunctionality demonstrated as strain- and damage-sensing in tension. The PPR/CNT multifunctional nanocomposite lattices demonstrated here exhibit tunable strain and damage sensitivity and have application in biomedical engineering for the creation of self-sensing patient-specific devices such as orthopedic braces, where the ability to sense strain (and stress) can provide direct information for optimization of brace design/fit over the course of treatment.

9.
Adv Mater ; 34(11): e2107817, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34800056

ABSTRACT

Four-dimensional quantitative characterization of heterogeneous materials using in situ synchrotron radiation computed tomography can reveal 3D sub-micrometer features, particularly damage, evolving under load, leading to improved materials. However, dataset size and complexity increasingly require time-intensive and subjective semi-automatic segmentations. Here, the first deep learning (DL) convolutional neural network (CNN) segmentation of multiclass microscale damage in heterogeneous bulk materials is presented, teaching on advanced aerospace-grade composite damage using ≈65 000 (trained) human-segmented tomograms. The trained CNN machine segments complex and sparse (<<1% of volume) composite damage classes to ≈99.99% agreement, unlocking both objectivity and efficiency, with nearly 100% of the human time eliminated, which traditional rule-based algorithms do not approach. The trained machine is found to perform as well or better than the human due to "machine-discovered" human segmentation error, with machine improvements manifesting primarily as new damage discovery and segmentation augmentation/extension in artifact-rich tomograms. Interrogating a high-level network hyperparametric space on two material configurations, DL is found to be a disruptive approach to quantitative structure-property characterization, enabling high-throughput knowledge creation (accelerated by two orders of magnitude) via generalizable, ultrahigh-resolution feature segmentation.

10.
ACS Appl Mater Interfaces ; 13(24): 28583-28592, 2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34110139

ABSTRACT

Bundling of single-walled carbon nanotubes (SWCNTs) significantly undermines their superior thermal and electrical properties. Realizing stable, homogeneous, and surfactant-free dispersion of SWCNTs in solvents and composites has long been regarded as a key challenge. Here, we report amine-containing aromatic and cyclohexane molecules, which are common chain extenders (CEs) for epoxy curing in industry, can be used to effectively disperse CNTs. We achieve single-tube-level dispersion of SWCNTs in CE solvents, as demonstrated by the strong chirality-dependent absorption and photoluminescence emission. The SWCNT-CE dispersion remains stable under ambient conditions for months. The excellent dispersibility and stability are attributed to the formation of an n-type charge-transfer complex through the NH-π interaction between the amine group of CEs and the delocalized π bond of SWCNTs, which is confirmed by the negative Seebeck coefficient of the CE-functionalized SWCNT films, the red shift of the G band in the Raman spectra, and the NH-π peak in X-ray photoelectron spectroscopy. The high dispersibility of CEs significantly improves the electrical and thermal transport of macroscale CNT assemblies. The sheet resistance of the CE-dispersed SWCNT thin films reaches 161 Ω sq-1 at 80.8% optical transmittance after functional modification by HNO3. Moreover, the CEs cross-link CNTs and epoxy molecules, forming a pathway for phonon transport in CNT/epoxy nanocomposites. The thermal conductivity of the CE-CNT-epoxy composite is enhanced by 1850% compared with the original epoxy, which is the highest enhancement reported to date for CNT/epoxy nanocomposites. The CE-based NH-π interaction provides a new paradigm for the effective and stable dispersion of SWCNTs in a facile and scalable process.

11.
Nanoscale ; 13(1): 261-271, 2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33331843

ABSTRACT

The advantageous intrinsic and scale-dependent properties of aligned nanofibers (NFs) and their assembly into 3D architectures motivate their use as dry adhesives and shape-engineerable materials. While controlling NF-substrate adhesion is critical for scaled manufacturing and application-specific performance, current understanding of how this property evolves with processing conditions is limited. In this report, we introduce substrate adhesion predictive capabilities by using an exemplary array of NFs, aligned carbon nanotubes (CNTs), studied as a function of their processing. Substrate adhesion is found to scale non-monotonically with process time in a hydrocarbon environment and is investigated via the tensile pull-off of mm-scale CNT arrays from their growth substrate. CNT synthesis follows two regimes: Mode I ('Growth') and Mode II ('Post-Growth'), separated by growth termination. Within 10 minutes of post-growth, experiments and modeling indicate an order-of-magnitude increase in CNT array-substrate adhesion strength (∼40 to 285 kPa) and effective elastic array modulus (∼6 to 47 MPa), and a two-orders-of-magnitude increase in the single CNT-substrate adhesion force (∼0.190 to 12.3 nN) and work of adhesion (∼0.07 to 1.5 J m-2), where the iron catalyst is found to remain on the substrate. Growth number decay in Mode I and carbon accumulation in Mode II contribute to the mechanical response, which may imply a change in the deformation mechanism. Predictive capabilities of the model are assessed for previously studied NF arrays, suggesting that the current framework can enable the future design and manufacture of high-value NF array applications.

12.
ACS Appl Mater Interfaces ; 12(29): 33256-33266, 2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32559363

ABSTRACT

The impressive toughness and strength of natural nacre, attributed to its multi-scale and -material hierarchical architecture, has inspired biomimicry and bioinspired materials development, and here we show that material compliance gradients are a motif that can help explain their advantaged mechanical performance. We present experiments enabled via additive manufacturing that allow direct evaluation of a compliance grading motif of the mortar between the relatively stiff bricks of the nacreous material. Spatial grading of the mortar compliance redistributes stresses away from critical regions (at, and around, brick corners), resulting in overall increases of ∼60% in strength, ∼ 70% in toughness, and ∼30% in strain-to-break, while maintaining macroscopic stiffness. Mechanistically, failure initiation threshold is delayed due to enhanced strain-tolerance and strain-localization as revealed in prefailure experimental strain maps, and in agreement with numerical analyses. We further demonstrate that this modulus grading motif, beyond the stiffness mismatch between the brick and mortar periodic architecture, is a significant contributor to the performance of the much-studied nacreous systems and is suggested as a natural but overlooked mechanism in such systems.


Subject(s)
Nacre/chemistry , Particle Size , Surface Properties
13.
Nanoscale ; 11(45): 21964-21973, 2019 Nov 21.
Article in English | MEDLINE | ID: mdl-31709443

ABSTRACT

Separators in energy storage devices such as batteries and supercapacitors are critical elements between the much-researched anodes and cathodes. Here we present a new "structural separator" comprised of electrically-insulating aligned alumina nanotubes, which realizes a structural, or mechanically robust, function in addition to allowing charge transfer. The polymer nanocomposite structural separator is demonstrated in a supercapacitor cell and also as an interface reinforcement in an aerospace-grade structural carbon fiber composite. Relative to a polymeric commercial separator, the structural separator shows advantages both electrically and structurally: ionic conductivity in the supercapacitor cell is doubled due to the nanotubes disrupting the semi-crystallinity in the polymer electrolyte, and the structural separator creates an interface that is 50% stronger in the advanced composite. In addition to providing direct benefits to existing energy storage devices, the structural separator is best suited to multifunctional structural energy storage applications.

14.
ACS Appl Mater Interfaces ; 11(38): 35212-35220, 2019 Sep 25.
Article in English | MEDLINE | ID: mdl-31514497

ABSTRACT

Passive oxide layers on metal substrates impose remarkable interfacial resistance for electron and phonon transport. Here, a scalable surface activation process is presented for the breakdown of the passive oxide layer and the formation of nanowire/nanopyramid structured surfaces on metal substrates, which enables high-efficiency catalysis of high-crystallinity carbon nanotubes (CNTs) and the direct integration of the CNT-metal hierarchical architectures with flexible free-form configurations. The CNT-metal hierarchical architecture facilitates a dielectric free-energy-carrier transport pathway and blocks the reformation of passive oxide layer, and thus demonstrates a 5-fold decrease in interfacial electrical resistance with 66% increase in specific surface area compared with those without surface activation. Moreover, the CNT-metal hierarchical architectures demonstrate omnidirectional blackbody photoabsorption with the reflectance of 1 × 10-5 over the range from ultraviolet to terahertz region, which is 1 order of magnitude lower than that of any previously reported broadband absorber material. The synergistically incorporated CNT-metal hierarchical architectures offer record-high broadband optical absorption with excellent electrical and structural properties as well as industrial-scale producibility.

15.
Nanoscale ; 11(35): 16327-16335, 2019 Sep 21.
Article in English | MEDLINE | ID: mdl-31233061

ABSTRACT

Carbon nanostructure (CNS) based polymer nanocomposites (PNCs) are of interest due to the superior properties of the CNS themselves, scale effects, and the ability to transfer these properties anisotropically to the bulk material. However, measurements of physical properties of such materials are not in agreement with theoretical predictions. Recently, the ability to characterize the 3D morphology of such PNCs at the nanoscale has been significantly improved, with rich, quantitative data extracted from tomographic transmission electron microscopy (TEM). In this work, we use new, nanoscale quantitative 3D morphological information and stochastic modeling to re-interpret experimental measurements of continuous aligned carbon nanotube (A-CNT) PNC properties as a function of A-CNT packing/volume fraction. The 3D tortuosity calculated from tomographic reconstructions and its evolution with volume fraction is used to develop a novel definition of waviness that incorporates the stochastic nature of CNT growth. The importance of using randomly wavy CNTs to model these materials is validated by agreement between simulated and previously-measured PNC elastic moduli. Secondary morphological descriptors such as CNT-CNT junction density and inter-junction distances are measured for transport property predictions. The scaling of the junction density with CNT volume fraction is observed to be non-linear, and this non-linearity is identified as the primary reason behind the previously unexplained scaling of aligned-CNT PNC longitudinal thermal conductivity. By contrast, the measured electrical conductivity scales linearly with volume fraction as it is relatively insensitive to junction density beyond percolation. This result verifies prior hypotheses that electrical conduction in such fully percolated and continuous CNT systems is dominated by the bulk resistivity of the CNTs themselves. This combination of electron tomographic data and stochastic simulations is a powerful method for establishing a predictive capability for nanocomposite structure-property relations, making it an essential aid in understanding and tailoring the next-generation of advanced composites.

16.
Adv Mater ; 31(30): e1901916, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31157472

ABSTRACT

Nanocarbon electronic conductors combined with pseudocapacitive materials, such as conducting polymers, display outstanding electrochemical properties and mechanical flexibility. These characteristics enable the fabrication of flexible electrodes for energy-storage devices; that is, supercapacitors that are wearable or can be formed into shapes that are easily integrated into vehicle parts. To date, most nanocarbon materials such as nanofibers are randomly dispersed as a network in a flexible matrix. This morphology inhibits ion transport, particularly under the high current density necessary for devices requiring high power density. Novel flexible densified horizontally aligned carbon nanotube arrays (HACNTs) with controlled nanomorphology for improved ion transport are introduced and combined with conformally coated poly(3-methylthiophene) (P3MT) conducting polymer to impart pseudocapacitance. The resulting P3MT/HACNT nanocomposite electrodes exhibit high areal capacitance of 3.1 F cm-2 at 5 mA cm-2 , with areal capacitance remaining at 1.8 F cm-2 even at a current density of 200 mA cm-2 . The asymmetric supercapacitor cell also delivers more than 1-2 orders of magnitude improvement in both areal energy and power density over state-of-the-art cells. Furthermore, little change in cell performance is observed under high strain, demonstrating the mechanical and electrochemical stability of the electrodes.

17.
Angew Chem Int Ed Engl ; 58(27): 9204-9209, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31132208

ABSTRACT

Synthesis of low-dimensional carbon nanomaterials such as carbon nanotubes (CNTs) is a key driver for achieving advances in energy storage, computing, and multifunctional composites, among other applications. Here, we report high-yield thermal chemical vapor deposition (CVD) synthesis of CNTs catalyzed by reagent-grade common sodium-containing compounds, including NaCl, NaHCO3 , Na2 CO3 , and NaOH, found in table salt, baking soda, and detergents, respectively. Coupled with an oxidative dehydrogenation reaction to crack acetylene at reduced temperatures, Na-based nanoparticles have been observed to catalyze CNT growth at temperatures below 400 °C. Ex situ and in situ transmission electron microscopy (TEM) reveal unique CNT morphologies and growth characteristics, including a vaporizing Na catalyst phenomenon that we leverage to create CNTs without residual catalyst particles for applications that require metal-free CNTs. Na is shown to synthesize CNTs on numerous substrates, and as the first alkali group metal catalyst demonstrated for CNT growth, holds great promise for expanding the understanding of nanocarbon synthesis.

18.
Sci Rep ; 8(1): 13592, 2018 Sep 11.
Article in English | MEDLINE | ID: mdl-30206331

ABSTRACT

Material tailoring of bondlayer compliance is a known effective route to enhance performance of multilayers, and here spatial material-tailoring of compliance and morphology of the adherends is examined. Multimaterial jetting additive manufacturing (AM) allows us to realize for the first time compliance- and morphology-tailored adherends, and evaluate directly the mechanical performance, including failure, of the tensile-loaded multilayers. Adherend compliance-tailoring, unlike bondlayer tailoring, requires additional consideration due to adherend bending stiffness and moment influences on bondlayer stresses. We introduce anisotropic as well as layered/sandwich adherend tailoring to address this dependence. Numerical models show that for both sub-critical and critical bondlengths (at which shear-dominated load transfer occurs through the bondlayer), adherend tailoring reduces peak stresses significantly, particularly peel stress (reductions of 47-80%) that typically controls failure in such systems. At sub-critical bondlengths, the AM-enabled layered/sandwich adherend tailoring shows significantly increased experimental performance over the baseline multilayer: strength is increased by 20%, toughness by 48%, and strain-to-break by 18%, while retaining multilayer stiffness. The adherend tailoring demonstrated here adds to the techniques available to increase the performance of bonded multilayers, suggesting that adherend tailoring is particularly well-suited to additively manufactured multilayers, but can also have application in other areas such as layered electronics and advanced structural composite laminates.

19.
Phys Chem Chem Phys ; 20(6): 3876-3881, 2018 Feb 07.
Article in English | MEDLINE | ID: mdl-29319080

ABSTRACT

Capillary-mediated densification is an inexpensive and versatile approach to tune the application-specific properties and packing morphology of bulk nanofiber (NF) arrays, such as aligned carbon nanotubes. While NF length governs elasto-capillary self-assembly, the geometry of cellular patterns formed by capillary densified NFs cannot be precisely predicted by existing theories. This originates from the recently quantified orders of magnitude lower than expected NF array effective axial elastic modulus (E), and here we show via parametric experimentation and modeling that E determines the width, area, and wall thickness of the resulting cellular pattern. Both experiments and models show that further tuning of the cellular pattern is possible by altering the NF-substrate adhesion strength, which could enable the broad use of this facile approach to predictably pattern NF arrays for high value applications.

20.
Nanoscale ; 10(3): 1015-1022, 2018 Jan 18.
Article in English | MEDLINE | ID: mdl-29265129

ABSTRACT

Growth mechanisms of graphitic nanostructures on metal oxides by chemical vapor deposition (CVD) are observed at 750 °C, using titania nanowire aerogel (NWAG) as a three-dimensional substrate and without metal catalysts. We temporally observed catalytic transformation of amorphous carbon into few-layer graphene on the surface of 5-10 nm diameter titania nanowires. The graphitization spontaneously terminates when the titania nanowires are encapsulated by a shell of approximately three graphene layers. Extended CVD time beyond the termination point (>1125 seconds) yields only additional amorphous carbon deposits on top of the few-layer graphene. Furthermore, it was discovered that the islands of amorphous carbon do not graphitize unless they catalytically grow beyond a threshold size of 5-7 nm along the nanowire length, even after an extended thermal treatment. The electrical conductivity of the NWAG increased by four orders of magnitude, indicating that the graphene shell mediated by titania nanowires yielded a network of graphene throughout the three-dimensional nanostructure of the aerogel. Our results help us understand the growth mechanisms of few-layer graphene on nanostructured metal oxides, and inspire facile and controllable processing of metal oxide-nanocarbon fiber-shell composites.

SELECTION OF CITATIONS
SEARCH DETAIL
...