Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
iScience ; 25(6): 104386, 2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35620441

ABSTRACT

Recessive mutations in RNF216/TRIAD3 cause Gordon Holmes syndrome (GHS), in which dysfunction of the hypothalamic-pituitary-gonadal (HPG) axis and neurodegeneration are thought to be core phenotypes. We knocked out Rnf216/Triad3 in a gonadotropin-releasing hormone (GnRH) hypothalamic cell line. Rnf216/Triad3 knockout (KO) cells had decreased steady-state GnRH and calcium transients. Rnf216/Triad3 KO adult mice had reductions in GnRH neuron soma size and GnRH production without changes in neuron densities. In addition, KO male mice had smaller testicular volumes that were accompanied by an abnormal release of inhibin B and follicle-stimulating hormone, whereas KO females exhibited irregular estrous cycling. KO males, but not females, had reactive microglia in the hypothalamus. Conditional deletion of Rnf216/Triad3 in neural stem cells caused abnormal microglia expression in males, but reproductive function remained unaffected. Our findings show that dysfunction of RNF216/TRIAD3 affects the HPG axis and microglia in a region- and sex-dependent manner, implicating sex-specific therapeutic interventions for GHS.

3.
ASN Neuro ; 11: 1759091419843393, 2019.
Article in English | MEDLINE | ID: mdl-31003587

ABSTRACT

In humans, homozygous mutations in the TPP1 gene results in loss of tripeptidyl peptidase 1 (TPP1) enzymatic activity, leading to late infantile neuronal ceroid lipofuscinoses disease. Using a mouse model that targets the Tpp1 gene and recapitulates the pathology and clinical features of the human disease, we analyzed end-stage (4 months) transcriptional changes associated with lack of TPP1 activity. Using RNA sequencing technology, Tpp1 expression changes in the forebrain/midbrain and cerebellum of 4-month-old homozygotes were compared with strain-related controls. Transcriptional changes were found in 510 and 1,550 gene transcripts in forebrain/midbrain and cerebellum, respectively, from Tpp1-deficient brain tissues when compared with age-matched controls. Analysis of the differentially expressed genes using the Ingenuity™ pathway software, revealed increased neuroinflammation activity in microglia and astrocytes that could lead to neuronal dysfunction, particularly in the cerebellum. We also observed upregulation in the production of nitric oxide and reactive oxygen species; activation of leukocyte extravasation signals and complement pathways; and downregulation of major transcription factors involved in control of circadian rhythm. Several of these expression changes were confirmed by independent quantitative polymerase chain reaction and histological analysis by mRNA in situ hybridization, which allowed for an in-depth anatomical analysis of the pathology and provided independent confirmation of at least two of the major networks affected in this model. The identification of differentially expressed genes has revealed new lines of investigation for this complex disorder that may lead to novel therapeutic targets.


Subject(s)
Aminopeptidases/genetics , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Gene Expression Regulation/physiology , Neuronal Ceroid-Lipofuscinoses/genetics , Neuronal Ceroid-Lipofuscinoses/metabolism , Serine Proteases/genetics , Transcriptome/physiology , Animals , Brain/metabolism , Brain/pathology , Disease Models, Animal , Mice , Mutation , Neuronal Ceroid-Lipofuscinoses/pathology , Tripeptidyl-Peptidase 1
SELECTION OF CITATIONS
SEARCH DETAIL
...