Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
ACS Synth Biol ; 13(4): 1290-1302, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38526141

ABSTRACT

The important roles that protein glycosylation plays in modulating the activities and efficacies of protein therapeutics have motivated the development of synthetic glycosylation systems in living bacteria and in vitro. A key challenge is the lack of glycosyltransferases that can efficiently and site-specifically glycosylate desired target proteins without the need to alter primary amino acid sequences at the acceptor site. Here, we report an efficient and systematic method to screen a library of glycosyltransferases capable of modifying comprehensive sets of acceptor peptide sequences in parallel. This approach is enabled by cell-free protein synthesis and mass spectrometry of self-assembled monolayers and is used to engineer a recently discovered prokaryotic N-glycosyltransferase (NGT). We screened 26 pools of site-saturated NGT libraries to identify relevant residues that determine polypeptide specificity and then characterized 122 NGT mutants, using 1052 unique peptides and 52,894 unique reaction conditions. We define a panel of 14 NGTs that can modify 93% of all sequences within the canonical X-1-N-X+1-S/T eukaryotic glycosylation sequences as well as another panel for many noncanonical sequences (with 10 of 17 non-S/T amino acids at the X+2 position). We then successfully applied our panel of NGTs to increase the efficiency of glycosylation for three protein therapeutics. Our work promises to significantly expand the substrates amenable to in vitro and bacterial glycoengineering.


Subject(s)
Bacterial Proteins , Glycosyltransferases , Glycosylation , Glycosyltransferases/metabolism , Bacterial Proteins/metabolism , Glucosyltransferases/metabolism , Peptides/metabolism , Bacteria/metabolism
2.
Nat Protoc ; 18(7): 2374-2398, 2023 07.
Article in English | MEDLINE | ID: mdl-37328605

ABSTRACT

The advent of distributed biomanufacturing platforms promises to increase agility in biologic production and expand access by reducing reliance on refrigerated supply chains. However, such platforms are not capable of robustly producing glycoproteins, which represent the majority of biologics approved or in development. To address this limitation, we developed cell-free technologies that enable rapid, modular production of glycoprotein therapeutics and vaccines from freeze-dried Escherichia coli cell lysates. Here, we describe a protocol for generation of cell-free lysates and freeze-dried reactions for on-demand synthesis of desired glycoproteins. The protocol includes construction and culture of the bacterial chassis strain, cell-free lysate production, assembly of freeze-dried reactions, cell-free glycoprotein synthesis, and glycoprotein characterization, all of which can be completed in one week or less. We anticipate that cell-free technologies, along with this comprehensive user manual, will help accelerate development and distribution of glycoprotein therapeutics and vaccines.


Subject(s)
Escherichia coli , Vaccines , Escherichia coli/genetics , Glycoproteins , Vaccines/therapeutic use , Protein Biosynthesis , Bacteria
3.
Glycobiology ; 33(5): 358-363, 2023 06 03.
Article in English | MEDLINE | ID: mdl-36882003

ABSTRACT

Lectins are important biological tools for binding glycans, but recombinant protein expression poses challenges for some lectin classes, limiting the pace of discovery and characterization. To discover and engineer lectins with new functions, workflows amenable to rapid expression and subsequent characterization are needed. Here, we present bacterial cell-free expression as a means for efficient, small-scale expression of multivalent, disulfide bond-rich, rhamnose-binding lectins. Furthermore, we demonstrate that the cell-free expressed lectins can be directly coupled with bio-layer interferometry analysis, either in solution or immobilized on the sensor, to measure interaction with carbohydrate ligands without purification. This workflow enables the determination of lectin substrate specificity and estimation of binding affinity. Overall, we believe that this method will enable high-throughput expression, screening, and characterization of new and engineered multivalent lectins for applications in synthetic glycobiology.


Subject(s)
Lectins , Rhamnose , Lectins/chemistry , Carbohydrates/chemistry , Recombinant Proteins/genetics , Interferometry/methods
4.
Front Mol Biosci ; 10: 1085887, 2023.
Article in English | MEDLINE | ID: mdl-36936989

ABSTRACT

Enterotoxigenic Escherichia coli (ETEC) is the primary etiologic agent of traveler's diarrhea and a major cause of diarrheal disease and death worldwide, especially in infants and young children. Despite significant efforts over the past several decades, an affordable vaccine that appreciably decreases mortality and morbidity associated with ETEC infection among children under the age of 5 years remains an unmet aspirational goal. Here, we describe robust, cost-effective biosynthetic routes that leverage glycoengineered strains of non-pathogenic E. coli or their cell-free extracts for producing conjugate vaccine candidates against two of the most prevalent O serogroups of ETEC, O148 and O78. Specifically, we demonstrate site-specific installation of O-antigen polysaccharides (O-PS) corresponding to these serogroups onto licensed carrier proteins using the oligosaccharyltransferase PglB from Campylobacter jejuni. The resulting conjugates stimulate strong O-PS-specific humoral responses in mice and elicit IgG antibodies that possess bactericidal activity against the cognate pathogens. We also show that one of the prototype conjugates decorated with serogroup O148 O-PS reduces ETEC colonization in mice, providing evidence of vaccine-induced mucosal protection. We anticipate that our bacterial cell-based and cell-free platforms will enable creation of multivalent formulations with the potential for broad ETEC serogroup protection and increased access through low-cost biomanufacturing.

5.
ACS Synth Biol ; 12(1): 95-107, 2023 01 20.
Article in English | MEDLINE | ID: mdl-36548479

ABSTRACT

Cell-free protein synthesis systems that can be lyophilized for long-term, non-refrigerated storage and transportation have the potential to enable decentralized biomanufacturing. However, increased thermostability and decreased reaction cost are necessary for further technology adoption. Here, we identify maltodextrin as an additive to cell-free reactions that can act as both a lyoprotectant to increase thermostability and a low-cost energy substrate. As a model, we apply optimized formulations to produce conjugate vaccines for ∼$0.50 per dose after storage at room temperature (∼22 °C) or 37 °C for up to 4 weeks, and ∼$1.00 per dose after storage at 50 °C for up to 4 weeks, with costs based on raw materials purchased at the laboratory scale. We show that these conjugate vaccines generate bactericidal antibodies against enterotoxigenic Escherichia coli (ETEC) O78 O-polysaccharide, a pathogen responsible for diarrheal disease, in immunized mice. We anticipate that our low-cost, thermostable cell-free glycoprotein synthesis system will enable new models of medicine biosynthesis and distribution that bypass cold-chain requirements.


Subject(s)
Escherichia coli , Mice , Animals , Vaccines, Conjugate/metabolism , Escherichia coli/metabolism , Drug Compounding
6.
ACS Synth Biol ; 11(12): 3892-3899, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36399685

ABSTRACT

Ribosome display is a powerful in vitro method for selection and directed evolution of proteins expressed from combinatorial libraries. However, the ability to display proteins with complex post-translational modifications such as glycosylation is limited. To address this gap, we developed a set of complementary methods for producing stalled ribosome complexes that displayed asparagine-linked (N-linked) glycoproteins in conformations amenable to downstream functional and glycostructural interrogation. The ability to generate glycosylated ribosome-nascent chain (glycoRNC) complexes was enabled by integrating SecM-mediated translation arrest with methods for cell-free N-glycoprotein synthesis. This integration enabled a first-in-kind method for ribosome stalling of target proteins modified efficiently and site-specifically with different N-glycan structures. Moreover, the observation that encoding mRNAs remained stably attached to ribosomes provides evidence of a genotype-glycophenotype link between an arrested glycoprotein and its RNA message. We anticipate that our method will enable selection and evolution of N-glycoproteins with advantageous biological and biophysical properties.


Subject(s)
Protein Biosynthesis , Ribosomes , Cell Extracts , Ribosomes/genetics , Ribosomes/metabolism , RNA, Messenger/metabolism , Glycoproteins/genetics , Glycoproteins/metabolism
7.
Biotechnol J ; 16(7): e2000572, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33964860

ABSTRACT

Reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) diagnostic tests for SARS-CoV-2 are the cornerstone of the global testing infrastructure. However, these tests require cold-chain shipping to distribute, and the labor of skilled technicians to assemble reactions and interpret the results. Strategies to reduce shipping and labor costs at the point-of-care could aid in diagnostic testing scale-up and response to the COVID-19 outbreak, as well as in future outbreaks. In this study we test both lab-developed and commercial SARS-CoV-2 diagnostic RT-qPCR mixes for the ability to be stabilized against elevated temperature by lyophilization. Fully assembled reactions were lyophilized and stored for up to a month at ambient or elevated temperature and were subsequently assayed for their ability to detect dilutions of synthetic SARS-CoV-2 RNA. Of the mixes tested, we show that one commercial mix can maintain activity and sensitivity after storage for at least 30 days at ambient temperature after lyophilization. We also demonstrate that lyoprotectants such as disaccharides can stabilize freeze-dried diagnostic reactions against elevated temperatures (up to 50°C) for at least 30 days. We anticipate that the incorporation of these methods into SARS-CoV-2 diagnostic testing will improve testing pipelines by reducing labor at the testing facility and eliminating the need for cold-chain shipping.


Subject(s)
COVID-19 , Freeze Drying , Humans , RNA, Viral/genetics , SARS-CoV-2 , Sensitivity and Specificity , Temperature
8.
Nat Commun ; 12(1): 2363, 2021 04 22.
Article in English | MEDLINE | ID: mdl-33888690

ABSTRACT

Cell-free gene expression (CFE) systems from crude cellular extracts have attracted much attention for biomanufacturing and synthetic biology. However, activating membrane-dependent functionality of cell-derived vesicles in bacterial CFE systems has been limited. Here, we address this limitation by characterizing native membrane vesicles in Escherichia coli-based CFE extracts and describing methods to enrich vesicles with heterologous, membrane-bound machinery. As a model, we focus on bacterial glycoengineering. We first use multiple, orthogonal techniques to characterize vesicles and show how extract processing methods can be used to increase concentrations of membrane vesicles in CFE systems. Then, we show that extracts enriched in vesicle number also display enhanced concentrations of heterologous membrane protein cargo. Finally, we apply our methods to enrich membrane-bound oligosaccharyltransferases and lipid-linked oligosaccharides for improving cell-free N-linked and O-linked glycoprotein synthesis. We anticipate that these methods will facilitate on-demand glycoprotein production and enable new CFE systems with membrane-associated activities.


Subject(s)
Cell-Derived Microparticles/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/cytology , Glycoproteins/biosynthesis , Hexosyltransferases/metabolism , Membrane Proteins/metabolism , Protein Biosynthesis , Cell Membrane/genetics , Cell Membrane/metabolism , Cell-Derived Microparticles/genetics , Chromatography, High Pressure Liquid/methods , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/isolation & purification , Glycoproteins/isolation & purification , Hexosyltransferases/genetics , Hexosyltransferases/isolation & purification , Mass Spectrometry/methods , Membrane Proteins/genetics , Membrane Proteins/isolation & purification , Oligosaccharides/metabolism , Protein Engineering , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
9.
Sci Adv ; 7(6)2021 02.
Article in English | MEDLINE | ID: mdl-33536221

ABSTRACT

Conjugate vaccines are among the most effective methods for preventing bacterial infections. However, existing manufacturing approaches limit access to conjugate vaccines due to centralized production and cold chain distribution requirements. To address these limitations, we developed a modular technology for in vitro conjugate vaccine expression (iVAX) in portable, freeze-dried lysates from detoxified, nonpathogenic Escherichia coli. Upon rehydration, iVAX reactions synthesize clinically relevant doses of conjugate vaccines against diverse bacterial pathogens in 1 hour. We show that iVAX-synthesized vaccines against Francisella tularensis subsp. tularensis (type A) strain Schu S4 protected mice from lethal intranasal F. tularensis challenge. The iVAX platform promises to accelerate development of new conjugate vaccines with increased access through refrigeration-independent distribution and portable production.

10.
ACS Synth Biol ; 9(7): 1534-1562, 2020 07 17.
Article in English | MEDLINE | ID: mdl-32526139

ABSTRACT

Protein glycosylation, the attachment of sugars to amino acid side chains, can endow proteins with a wide variety of properties of great interest to the engineering biology community. However, natural glycosylation systems are limited in the diversity of glycoproteins they can synthesize, the scale at which they can be harnessed for biotechnology, and the homogeneity of glycoprotein structures they can produce. Here we provide an overview of the emerging field of synthetic glycobiology, the application of synthetic biology tools and design principles to better understand and engineer glycosylation. Specifically, we focus on how the biosynthetic and analytical tools of synthetic biology have been used to redesign glycosylation systems to obtain defined glycosylation structures on proteins for diverse applications in medicine, materials, and diagnostics. We review the key biological parts available to synthetic biologists interested in engineering glycoproteins to solve compelling problems in glycoscience, describe recent efforts to construct synthetic glycoprotein synthesis systems, and outline exemplary applications as well as new opportunities in this emerging space.


Subject(s)
Proteins/metabolism , Synthetic Biology/methods , Animals , Bacteria/metabolism , Biotechnology , Fungi/metabolism , Glycosylation , Glycosyltransferases/metabolism , Plants/metabolism , Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...