Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Genet ; 53(2): 135-142, 2021 02.
Article in English | MEDLINE | ID: mdl-33495597

ABSTRACT

Hypertrophic cardiomyopathy (HCM) is a common, serious, genetic heart disorder. Rare pathogenic variants in sarcomere genes cause HCM, but with unexplained phenotypic heterogeneity. Moreover, most patients do not carry such variants. We report a genome-wide association study of 2,780 cases and 47,486 controls that identified 12 genome-wide-significant susceptibility loci for HCM. Single-nucleotide polymorphism heritability indicated a strong polygenic influence, especially for sarcomere-negative HCM (64% of cases; h2g = 0.34 ± 0.02). A genetic risk score showed substantial influence on the odds of HCM in a validation study, halving the odds in the lowest quintile and doubling them in the highest quintile, and also influenced phenotypic severity in sarcomere variant carriers. Mendelian randomization identified diastolic blood pressure (DBP) as a key modifiable risk factor for sarcomere-negative HCM, with a one standard deviation increase in DBP increasing the HCM risk fourfold. Common variants and modifiable risk factors have important roles in HCM that we suggest will be clinically actionable.


Subject(s)
Cardiomyopathy, Hypertrophic/genetics , Polymorphism, Single Nucleotide , Adolescent , Adult , Aged , Blood Pressure/genetics , Cardiac Myosins/genetics , Carrier Proteins/genetics , Case-Control Studies , Formins/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Heterozygote , Humans , Middle Aged , Myosin Heavy Chains/genetics , Risk Factors , Sarcomeres/genetics , Young Adult
2.
J Med Genet ; 58(8): 556-564, 2021 08.
Article in English | MEDLINE | ID: mdl-32732227

ABSTRACT

BACKGROUND: Although rare missense variants in Mendelian disease genes often cluster in specific regions of proteins, it is unclear how to consider this when evaluating the pathogenicity of a gene or variant. Here we introduce methods for gene association and variant interpretation that use this powerful signal. METHODS: We present statistical methods to detect missense variant clustering (BIN-test) combined with burden information (ClusterBurden). We introduce a flexible generalised additive modelling (GAM) framework to identify mutational hotspots using burden and clustering information (hotspot model) and supplemented by in silico predictors (hotspot+ model). The methods were applied to synthetic data and a case-control dataset, comprising 5338 hypertrophic cardiomyopathy patients and 125 748 population reference samples over 34 putative cardiomyopathy genes. RESULTS: In simulations, the BIN-test was almost twice as powerful as the Anderson-Darling or Kolmogorov-Smirnov tests; ClusterBurden was computationally faster and more powerful than alternative position-informed methods. For 6/8 sarcomeric genes with strong clustering, Clusterburden showed enhanced power over burden-alone, equivalent to increasing the sample size by 50%. Hotspot+ models that combine burden, clustering and in silico predictors outperform generic pathogenicity predictors and effectively integrate ACMG criteria PM1 and PP3 to yield strong or moderate evidence of pathogenicity for 31.8% of examined variants of uncertain significance. CONCLUSION: GAMs represent a unified statistical modelling framework to combine burden, clustering and functional information. Hotspot models can refine maps of regional burden and hotspot+ models can be powerful predictors of variant pathogenicity. The BIN-test is a fast powerful approach to detect missense variant clustering that when combined with burden information (ClusterBurden) may enhance disease-gene discovery.


Subject(s)
Cardiomyopathy, Hypertrophic/diagnosis , Cardiomyopathy, Hypertrophic/genetics , Mutation, Missense/genetics , Case-Control Studies , Computer Simulation , Humans , Models, Statistical , Sarcomeres/genetics
3.
Circ Genom Precis Med ; 13(3): e002783, 2020 06.
Article in English | MEDLINE | ID: mdl-32163302

ABSTRACT

BACKGROUND: The common intronic deletion, MYBPC3Δ25, detected in 4% to 8% of South Asian populations, is reported to be associated with cardiomyopathy, with ≈7-fold increased risk of disease in variant carriers. Here, we examine the contribution of MYBPC3Δ25 to hypertrophic cardiomyopathy (HCM) in a large patient cohort. METHODS: Sequence data from 2 HCM cohorts (n=5393) was analyzed to determine MYBPC3Δ25 frequency and co-occurrence of pathogenic variants in HCM genes. Case-control and haplotype analyses were performed to compare variant frequencies and assess disease association. Analyses were also undertaken to investigate the pathogenicity of a candidate variant MYBPC3 c.1224-52G>A. RESULTS: Our data suggest that the risk of HCM, previously attributed to MYBPC3Δ25, can be explained by enrichment of a derived haplotype, MYBPC3Δ25/-52, whereby a small subset of individuals bear both MYBPC3Δ25 and a rare pathogenic variant, MYBPC3 c.1224-52G>A. The intronic MYBPC3 c.1224-52G>A variant, which is not routinely evaluated by gene panel or exome sequencing, was detected in ≈1% of our HCM cohort. CONCLUSIONS: The MYBPC3 c.1224-52G>A variant explains the disease risk previously associated with MYBPC3Δ25 in the South Asian population and is one of the most frequent pathogenic variants in HCM in all populations; genotyping services should ensure coverage of this deep intronic mutation. Individuals carrying MYBPC3Δ25 alone are not at increased risk of HCM, and this variant should not be tested in isolation; this is important for the large majority of the 100 million individuals of South Asian ancestry who carry MYBPC3Δ25 and would previously have been declared at increased risk of HCM.


Subject(s)
Asian People/genetics , Base Sequence , Cardiomyopathy, Hypertrophic/genetics , Carrier Proteins/genetics , Introns , Sequence Deletion , Adult , Aged , Asia , Cardiomyopathy, Hypertrophic/ethnology , Case-Control Studies , Female , Haplotypes , Humans , Male , Middle Aged , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL