Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Environ Pollut ; 349: 123954, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38604307

ABSTRACT

Agricultural run-off in Australia's Mackay-Whitsunday region is a major source of nutrient and pesticide pollution to coastal and inshore ecosystems of the Great Barrier Reef. While the effects of run-off are well documented for the region's coral and seagrass habitats, the ecological impacts on estuaries, the direct recipients of run-off, are less known. This is particularly true for fish communities, which are shaped by the physico-chemical properties of coastal waterways that vary greatly in tropical regions. To address this knowledge gap, we used environmental DNA (eDNA) metabarcoding to examine fish assemblages at four locations (three estuaries and a harbour) subjected to varying levels of agricultural run-off during a wet and dry season. Pesticide and nutrient concentrations were markedly elevated during the sampled wet season with the influx of freshwater and agricultural run-off. Fish taxa richness significantly decreased in all three estuaries (F = 164.73, P = <0.001), along with pronounced changes in community composition (F = 46.68, P = 0.001) associated with environmental variables (largely salinity: 27.48% contribution to total variance). In contrast, the nearby Mackay Harbour exhibited a far more stable community structure, with no marked changes in fish assemblages observed between the sampled seasons. Among the four sampled locations, variation in fish community composition was more pronounced within the wet season (F = 2.5, P = 0.001). Notably, variation in the wet season was significantly correlated with agricultural contaminants (phosphorus: 6.25%, pesticides: 5.22%) alongside environmental variables (salinity: 5.61%, DOC: 5.57%). Historically contaminated and relatively unimpacted estuaries each demonstrated distinct fish communities, reflecting their associated catchment use. Our findings emphasise that while seasonal effects play a key role in shaping the community structure of fish in this region, agricultural contaminants are also important contributors in estuarine systems.


Subject(s)
Agriculture , Coral Reefs , DNA, Environmental , Environmental Monitoring , Fishes , Salinity , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/analysis , Australia , Pesticides , Estuaries , Ecosystem
2.
Article in English | MEDLINE | ID: mdl-37994614

ABSTRACT

Waterways that drain the Great Barrier Reef catchment area (GBRCA) transport pollutants to marine habitats, provide a critical corridor between freshwater and marine habitats for migratory fish species, and are of high socioecological value. Some of these waterways contain concentrations of pesticide active ingredients (PAIs) that exceed Australian ecotoxicity threshold values (ETVs) for ecosystem protection. In this article, we use a "pathway to harm" model with five key criteria to assess whether the available information supports the hypothesis that PAIs are or could have harmful effects on fish and arthropod populations. Strong evidence of the first three criteria and circumstantial weaker evidence of the fourth and fifth criteria are presented. Specifically, we demonstrate that exceedances of Australian and New Zealand ETVs for ecosystem protection are widespread in the GBRCA, that the PAI contaminated water occurs (spatially and temporally) in important habitats for fisheries, and that there are clear direct and indirect mechanisms by which PAIs could cause harmful effects. The evidence of individuals and populations of fish and arthropods being adversely affected species is more circumstantial but consistent with PAIs causing harmful effects in the freshwater ecosystems of Great Barrier Reef waterways. We advocate strengthening the links between PAI concentrations and fish health because of the cultural values placed on the freshwater ecosystems by relevant stakeholders and Traditional Owners, with the aim that stronger links between elevated PAI concentrations and changes in recreationally and culturally important fish species will inspire improvements in water quality. Integr Environ Assess Manag 2024;00:1-24. © 2023 Commonwealth of Australia and The Commonwealth Scientific and Industrial Research Organisation. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

3.
Environ Toxicol Chem ; 42(12): 2614-2629, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37477462

ABSTRACT

Bioavailability models, for example, multiple linear regressions (MLRs) of water quality parameters, are increasingly being used to develop bioavailability-based water quality criteria for metals. However, models developed for the Northern Hemisphere cannot be adopted for Australia and New Zealand without first validating them against local species and local water chemistry characteristics. We investigated the applicability of zinc chronic bioavailability models to predict toxicity in a range of uncontaminated natural waters in Australia and New Zealand. Water chemistry data were compiled to guide a selection of waters with different zinc toxicity-modifying factors. Predicted toxicities using several bioavailability models were compared with observed chronic toxicities for the green alga Raphidocelis subcapitata and the native cladocerans Ceriodaphnia cf. dubia and Daphnia thomsoni. The most sensitive species to zinc in five New Zealand freshwaters was R. subcapitata (72-h growth rate), with toxicity ameliorated by high dissolved organic carbon (DOC) or low pH, and hardness having a minimal influence. Zinc toxicity to D. thomsoni (reproduction) was ameliorated by both high DOC and hardness in these same waters. No single trophic level-specific effect concentration, 10% (EC10) MLR was the best predictor of chronic toxicity to the cladocerans, and MLRs based on EC10 values both over- and under-predicted zinc toxicity. The EC50 MLRs better predicted toxicities to both the Australian and New Zealand cladocerans to within a factor of 2 of the observed toxicities in most waters. These findings suggest that existing MLRs may be useful for normalizing local ecotoxicity data to derive water quality criteria for Australia and New Zealand. The final choice of models will depend on their predictive ability, level of protection, and ease of use. Environ Toxicol Chem 2023;42:2614-2629. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Cladocera , Water Pollutants, Chemical , Animals , Linear Models , New Zealand , Hydrogen-Ion Concentration , Australia , Organic Chemicals , Zinc/toxicity , Fresh Water , Water Pollutants, Chemical/toxicity
4.
Ecotoxicol Environ Saf ; 241: 113729, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35667310

ABSTRACT

Coastal ecosystems such as those in the Great Barrier Reef (GBR) lagoon, are exposed to stressors in flood plumes including low light (caused by increased turbidity) and agricultural pesticides. Photosystem II (PSII)-inhibiting herbicides are the most frequently detected pesticides in the GBR lagoon, but it is not clear how their toxicity to phototrophic species depends on light availability. This study investigated the individual and combined effects of PSII-inhibiting herbicide, diuron, and reduced light intensity (as a proxy for increased turbidity) on the marine diatom, Phaeodactylum tricornutum. Effective quantum yield (EQY) and cell density were measured to calculate responses relative to the controls over 72-h, in tests with varying stressor intensities. Individually, diuron concentrations (0.1-3 µg l-1) were not high enough to significantly reduce growth (cell density), but led to decreased EQY; while, low light generally led to increased EQY, but only reduced growth at the lowest tested light intensity (5 µmol photons m-2 s-1) after 48-hours. P. tricornutum was less affected by diuron when combined with low light scenarios, with increased EQY (up to 163% of the controls) that was likely due to increased electron transport per photon, despite lesser available photons at this low light intensity. In contrast, growth was completely inhibited relative to the controls when algae were simultaneously exposed to the highest stressor levels (3 µg l-1 diuron and 5 µmol photons m-2 s-1). This study highlights the importance of measuring more than one biological response variable to capture the combined effects of multiple stressors. Management of water quality stressors should consider combined impacts rather than just the impacts of individual stressors alone. Reducing suspended sediment and diuron concentrations in marine waters can decrease harmful effects and bring synergistic benefits to water quality.


Subject(s)
Diatoms , Herbicides , Microalgae , Water Pollutants, Chemical , Diuron/toxicity , Ecosystem , Herbicides/analysis , Photosystem II Protein Complex , Water Pollutants, Chemical/analysis
5.
Proc Biol Sci ; 289(1974): 20220348, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35538782

ABSTRACT

Coastal ecosystems are exposed to multiple anthropogenic stressors. Effective management actions would be better informed from generalized predictions of the individual, combined and interactive effects of multiple stressors; however, few generalities are shared across different meta-analyses. Using an experimental study, we present an approach for analysing regression-based designs with generalized additive models that allowed us to capture nonlinear effects of exposure duration and stressor intensity and access interactions among stressors. We tested the approach on a globally distributed marine diatom, using 72 h photosynthesis and growth assays to quantify the individual and combined effects of three common water quality stressors; photosystem II-inhibiting herbicide exposure, dissolved inorganic nitrogen (DIN) enrichment and reduced light (due to excess suspended sediment). Exposure to DIN and reduced light generally resulted in additivity, while exposure to diuron and reduced light resulted in additive, antagonistic or synergistic interactions, depending on the stressor intensity, exposure period and biological response. We thus find the context of experimental studies to be a primary driver of interactions. The experimental and modelling approaches used here bridge the gap between two-way designs and regression-based studies, which provides a way forward to identify generalities in multiple stressor interactions.


Subject(s)
Ecosystem , Herbicides , Herbicides/toxicity , Photosynthesis
6.
Sci Total Environ ; 823: 153556, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35104522

ABSTRACT

The widely used neonicotinoid insecticide imidacloprid has emerged as a significant risk to surface waters and the diverse aquatic and terrestrial fauna these ecosystems support. While herbicides have been the focus of research on pesticides in Australia's Great Barrier Reef catchment area, imidacloprid has been monitored in catchments across the region since 2009. This study assessed the spatial and temporal dynamics of imidacloprid in 14 waterways in Queensland, Australia over seven years in relation to land use and concentration trends. Imidacloprid could be quantified (i.e., concentrations were greater than the limit of reporting) in approximately 54% of all samples, but within individual waterways imidacloprid was quantified in 0 to 99.7% of samples. The percent of each catchment used to grow bananas, sugar cane and urban explained approximately 45% of the variation in imidacloprid concentrations and waterway discharge accounted for another 18%. In six waterways there were significant increases in imidacloprid concentrations and the frequency and magnitude of exceedances of aquatic ecosystem protection guidelines over time. Overall, the risk posed by imidacloprid was low with 74% of samples protecting at least 99% of species but it was estimated that upto 42% of aquatic species would experience harmful chronic effects. Potential explanations of the changes in imidacloprid were examined. Not surprisingly, the only plausible explanation of the increases was increased use of imidacloprid. While field-based measurement of the effects of imidacloprid are limited in the Great Barrier Reef Catchment Area (GBRCA) the risk assessment indicates that biological harm to aquatic organisms is highly likely. Action to reduce imidacloprid concentrations in the GBRCA waterways is urgently required to reverse the current trends and mitigate environmental impacts.


Subject(s)
Insecticides , Water Pollutants, Chemical , Ecosystem , Insecticides/analysis , Neonicotinoids/analysis , Nitro Compounds , Water Pollutants, Chemical/analysis
7.
Environ Sci Technol ; 54(22): 14361-14371, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33136377

ABSTRACT

Rivers discharging to the Great Barrier Reef carry complex pesticide mixtures. Here we present a first comprehensive ecotoxicological risk assessment using species sensitivity distributions (SSDs), explore how risk changes with time and land use, and identify the drivers of mixture risks. The analyzed data set comprises 50 different pesticides and pesticide metabolites that were analyzed in 3741 samples from 18 river and creek catchments between 2011 and 2016. Pesticide mixtures were present in 82% of the samples, with a maximum of 23 pesticides and a median of five compounds per sample. Chemical-analytical techniques were insufficiently sensitive for at least seven pesticides (metsulfuron-methyl, terbutryn, imidacloprid, clothianidin, ametryn, prometryn, and thiamethoxam). The classical mixture concepts of concentration addition and independent action were applied to the pesticide SSDs, focusing on environmental threshold values protective for 95% of the species. Both concepts produced almost identical risk estimates. Mixture risk was therefore finally assessed using concentration addition, as the sum of the individual risk quotients. The sum of risk quotients ranges between 0.05 and 122 with a median of 0.66. An ecotoxicological risk (i.e., a sum of individual risk quotients exceeding 1) was indicated in 38.5% of the samples. Sixteen compounds accounted for 99% of the risk, with diuron, imidacloprid, atrazine, metolachlor, and hexazinone being the most important risk drivers. Analysis of land-use patterns in catchment areas showed an association between sugar cane farming and elevated risk levels, driven by the presence of diuron.


Subject(s)
Pesticides , Water Pollutants, Chemical , Australia , Environmental Monitoring , Pesticides/analysis , Risk Assessment , Rivers , Water Pollutants, Chemical/analysis
8.
Integr Environ Assess Manag ; 16(6): 968-982, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32533812

ABSTRACT

Knowledge of the types and impacts of contaminants occurring in the freshwater wetlands of the Great Barrier Reef catchment area (GBRCA) is limited. The present study examined the presence and concentrations of pesticides occurring in 22 floodplain wetlands, situated in moderate to high-intensity land uses in the GBRCA. The dominant land use within 1 km of the wetlands was sugar cane for 12 wetlands, grazing for 6 wetlands, plantation forestry and conservation for 2 wetlands, and one with an equal mix of land uses. Fifty-nine pesticides and pesticide degradates were detected in the wetlands during 2 consecutive early wet seasons. These included 27 herbicides, 11 herbicide degradates, 11 insecticides, 8 fungicides, 1 nematicide, and 1 pesticide synergist. Each wetland sampled contained between 12 and 30 pesticides with an average of 21 pesticides detected per wetland sampling. Temporal differences existed in the number, types, and average concentrations of pesticides detected. No exceedances of Australian and New Zealand water guideline values were found during the first sampling season, while 10 wetlands had concentrations of at least 1 pesticide exceeding the guidelines during the following sampling season. For 1 wetland, concentrations of 4 pesticides were greater than the prescribed guideline values. Individually, the vast majority of aquatic species would be protected, but in some wetlands, diuron would affect 49% of species and atrazine up to 24% of species. Statistically significant correlations between the number of pesticides and the percentage of intensive land use, primarily sugar cane growing in a 1 km radius of the wetlands, were found. Integr Environ Assess Manag 2020;16:968-982. © 2020 SETAC.


Subject(s)
Pesticides , Water Pollutants, Chemical , Agriculture , Australia , Environmental Monitoring , Pesticides/analysis , Water Pollutants, Chemical/analysis , Wetlands
9.
Environ Sci Technol ; 54(2): 1102-1110, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31845576

ABSTRACT

Increased frequency of summer heatwaves and poor water quality are two of the most prevalent and severe pressures faced by coral reefs. While these pressures often co-occur, their potential risks to tropical marine species are usually considered independently. Here, we extended the application of multisubstance-Potentially Affected Fraction (ms-PAF) to a nonchemical stressor, elevated sea surface temperature. We then applied this method to calculate climate-adjusted water quality guideline values (GVs) for two reference toxicants, copper and the herbicide diuron, for tropical marine species. First, we developed a species sensitivity distribution (SSD) for thermal stress based on published experimental data for 41 tropical benthic marine species using methods adapted from water quality GV derivation. This enabled quantitative predictions of community effects as temperatures exceeded acclimation values. The resulting protective temperature values (PTx) were similar to temperatures known to initiate coral bleaching and are therefore relevant for application in multistressor risk assessments. The extended ms-PAF method enabled the adjustment of current water quality GVs to account for thermal stress events. This approach could be applied to other ecosystems and other non-contaminant stressors (e.g., sediment, low salinity, anoxia, and ocean acidification), offering an alternative approach for deriving environmental GVs, reporting and assessing the risk posed by multiple stressors.


Subject(s)
Anthozoa , Water Quality , Animals , Coral Reefs , Ecosystem , Hydrogen-Ion Concentration , Oceans and Seas , Seawater , Temperature
11.
Sci Total Environ ; 669: 570-578, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-30889446

ABSTRACT

Increased water demands due to population growth and increased urbanisation have driven adoption of various water reuse practices. The irrigation of greywater (water from all household uses, except toilets) has been proposed as one potential sustainable practice. Research has clearly identified environmental harm from the presence of micro-pollutants in soils, groundwater and surface water. Greywater contains a range of micro pollutants yet very little is known about their potential environmental fate when greywater is irrigated to soil. Therefore, this study assessed whether organic micro-pollutants in irrigated greywater were transferred to shallow groundwater and an adjacent surface waterway. A total of 22 organic micro-pollutants were detected in greywater. Six of these (acesulfame, caffeine, DEET, paracetamol, salicylic acid and triclosan) were selected as potential tracers of greywater contamination. Three of these chemicals (acesulfame, caffeine, DEET) were detected in the groundwater, while salicylic acid was also detected in adjacent surface water. Caffeine and DEET in surface water were directly attributable to greywater irrigation. Thus the practice of greywater irrigation can act as a source of organic micro-pollutants to shallow groundwater and nearby surface water. The full list of micro-pollutants that could be introduced via greywater and the risk they pose to aquatic ecosystems is not yet known.


Subject(s)
Agricultural Irrigation/methods , Environmental Monitoring , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis , Fresh Water/chemistry , Groundwater/chemistry , Wastewater
12.
Mar Environ Res ; 140: 299-321, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29983192

ABSTRACT

Barramundi (Lates calcarifer) were collected at the beginning (1st sampling) and end (2nd sampling) of the wet season from Sandy Creek, an agriculturally impacted catchment in the Mackay Whitsundays region of the Great Barrier Reef catchment area, and from Repulse Creek, located approximately 100 km north in Conway National Park, to assess the impacts of pesticide exposure. Gill and liver histology, lipid class composition in muscle, and the hepatic transcriptome were examined. The first sample of Repulse Creek fish showed little tissue damage and low transcript levels of xenobiotic metabolism enzymes. Sandy Creek fish showed altered transcriptomic patterns, including those that regulate lipid metabolism, xenobiotic metabolism, and immune response; gross histological alterations including lipidosis; and differences in some lipid classes. The second sampling of Repulse Creek fish showed similar alterations in hepatic transcriptome and tissue structure as fish from Sandy Creek. These changes may indicate a decrease in health of pesticide exposed fish.


Subject(s)
Environmental Monitoring , Pesticides/toxicity , Water Pollutants, Chemical/toxicity , Animals , Fishes/physiology , Pesticides/analysis , Transcriptome , Water Pollutants, Chemical/analysis
14.
Environ Sci Pollut Res Int ; 25(4): 3151-3169, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29332279

ABSTRACT

Triazine and urea herbicides are two groups of photosystem II inhibiting herbicides frequently detected in surface, ground and marine waters. Yet, there are few water quality guidelines for herbicides. Ecotoxicity thresholds (ETs) for ametryn, hexazinone and simazine (triazine herbicides) and diuron (a urea herbicide) were calculated using the Australian and New Zealand method for deriving guideline values to protect fresh and marine ecosystems. Four ETs were derived for each chemical and ecosystem that should theoretically protect 99, 95, 90 and 80% of species (i.e. PC99, PC95, PC90 and PC80, respectively). For all four herbicides, the phototrophic species were significantly more sensitive than non-phototrophic species, and therefore, only the former data were used to calculate the ETs. Comparison of the ET values to measured concentrations in 2606 samples from 15 waterways that discharge to the Great Barrier Reef (2011-2015) found three exceedances of the simazine PC99, regular exceedances (up to 30%) of the PC99 in a limited number of rivers for ametryn and hexazinone and frequent (> 40%) exceedances of the PC99 and PC95 ETs in at least four waterways for diuron. There were no exceedances of the marine ETs in inshore reef areas. Further, ecotoxicity data are required for ametryn and hexazinone to fresh and marine phototrophic species, for simazine to marine phototrophic species, for tropical phototrophic species, repeated pulse exposures and long-term (2 to 12 months) exposures to environmentally relevant concentrations.


Subject(s)
Ecotoxicology/legislation & jurisprudence , Environmental Monitoring/standards , Fresh Water/chemistry , Herbicides/toxicity , Seawater/chemistry , Water Pollutants, Chemical/toxicity , Water Quality/standards , Australia , Diuron/analysis , Diuron/standards , Ecosystem , Ecotoxicology/standards , Ecotoxicology/statistics & numerical data , Environmental Monitoring/statistics & numerical data , Herbicides/analysis , Herbicides/standards , New Zealand , Simazine/analysis , Simazine/standards , Triazines/analysis , Triazines/standards , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/standards
15.
Environ Toxicol Chem ; 37(3): 674-689, 2018 03.
Article in English | MEDLINE | ID: mdl-29193235

ABSTRACT

Environmental risk assessment of chemical mixtures is challenging because of the multitude of possible combinations that may occur. Aquatic risk from chemical mixtures in an agricultural landscape was evaluated prospectively in 2 exposure scenario case studies: at field scale for a program of 13 plant-protection products applied annually for 20 yr and at a watershed scale for a mixed land-use scenario over 30 yr with 12 plant-protection products and 2 veterinary pharmaceuticals used for beef cattle. Risk quotients were calculated from regulatory exposure models with typical real-world use patterns and regulatory acceptable concentrations for individual chemicals. The results could differentiate situations when there was concern associated with single chemicals from those when concern was associated with a mixture (based on concentration addition) with no single chemical triggering concern. Potential mixture risk was identified on 0.02 to 7.07% of the total days modeled, depending on the scenario, the taxa, and whether considering acute or chronic risk. Taxa at risk were influenced by receiving water body characteristics along with chemical use profiles and associated properties. The present study demonstrates that a scenario-based approach can be used to determine whether mixtures of chemicals pose risks over and above any identified using existing approaches for single chemicals, how often and to what magnitude, and ultimately which mixtures (and dominant chemicals) cause greatest concern. Environ Toxicol Chem 2018;37:674-689. © 2017 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.


Subject(s)
Agriculture , Ecotoxicology/methods , Environmental Pollutants/toxicity , Risk Assessment , Prospective Studies , Triticum/chemistry , United Kingdom , United States , Zea mays/chemistry
16.
Sci Total Environ ; 616-617: 1638-1648, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29079092

ABSTRACT

There are over 40,000 chemical compounds registered for use in Australia, and only a handful are monitored in the aquatic receiving environments. Their effects on fish species in Australia are largely unknown. Mosquitofish (Gambusia holbrooki) were sampled from six river sites in Southeast Queensland identified as at risk from a range of pollutants. The sites selected were downstream of a wastewater treatment plant discharge, a landfill, two agricultural areas, and two sites in undeveloped reaches within or downstream of protected lands (national parks). Vitellogenin analysis, histopathology of liver, kidney and gonads, morphology of the gonopodium, and chemical body burden were measured to characterize fish health. Concentrations of trace organic contaminants (TrOCs) in water were analyzed by in vitro bioassays and chemical analysis. Estrogenic, anti-estrogenic, anti-androgenic, progestagenic and anti-progestagenic activities and TrOCs were detected in multiple water samples. Several active pharmaceutical ingredients (APIs), industrial compounds, pesticides and other endocrine active compounds were detected in fish carcasses at all sites, ranging from <4-4700ng/g wet weight, including the two undeveloped sites. While vitellogenin protein was slightly increased in fish from two of the six sites, the presence of micropollutants did not cause overt sexual endocrine disruption in mosquitofish (i.e., no abnormal gonads or gonopodia). A correlation between lipid accumulation in the liver with total body burden warrants further investigation to determine if exposure to low concentrations of TrOCs can affect fish health and increase stress on organs such as the liver and kidneys via other mechanisms, including disruption of non-sexual endocrine axes involved in lipid regulation and metabolism.


Subject(s)
Cyprinodontiformes/physiology , Environmental Monitoring , Vitellogenins/metabolism , Water Pollutants, Chemical/metabolism , Animals , Body Burden , Endocrine Disruptors/analysis , Endocrine Disruptors/metabolism , Queensland , Water Pollutants, Chemical/analysis
17.
Mar Environ Res ; 129: 166-179, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28601346

ABSTRACT

Resource managers need to differentiate between sites with and without contaminants and those where contaminants cause impacts. Potentially, transcriptomes could be used to evaluate sites where contaminant-induced effects may occur, to identify causative stressors of effects and potential adverse outcomes. To test this hypothesis, the hepatic transcriptomes in Barramundi, a perciforme teleost fish, (Lates calcarifer) from two reference sites, two agriculturally impacted sites sampled during the dry season, and an impacted site sampled during the wet season were compared. The hepatic transcriptome was profiled using RNA-Seq. Multivariate analysis showed that transcriptomes were clustered based on site and by inference water quality, but not sampling time. The largest differences in transcriptomic profile were between reference sites and a site sampled during high run-off, showing that impacted sites can be identified via RNA-Seq. Transcripts with altered abundance were linked to xenobiotic metabolism, peroxisome proliferation and stress responses, indicating putative stressors with the potential for adverse outcomes in barramundi.


Subject(s)
Environmental Monitoring/methods , Liver/metabolism , Perciformes/physiology , Transcriptome/genetics , Water Pollutants, Chemical/toxicity , Animals , Queensland , Rivers , Water Pollutants, Chemical/analysis
19.
Environ Toxicol Chem ; 36(1): 103-112, 2017 01.
Article in English | MEDLINE | ID: mdl-27219023

ABSTRACT

Most catchments discharging into the Great Barrier Reef lagoon have elevated loads of suspended sediment, nutrients, and pesticides, including photosystem II inhibiting herbicides, associated with upstream agricultural land use. To investigate potential impacts of declining water quality on fish physiology, RNA sequencing (RNASeq) was used to characterize and compare the hepatic transcriptomes of barramundi (Lates calcarifer) captured from 2 of these tropical river catchments in Queensland, Australia. The Daintree and Tully Rivers differ in upstream land uses, as well as sediment, nutrient, and pesticide loads, with the area of agricultural land use and contaminant loads lower in the Daintree. In fish collected from the Tully River, transcripts involved in fatty acid metabolism, amino acid metabolism, and citrate cycling were also more abundant, suggesting elevated circulating cortisol concentrations, whereas transcripts involved in immune responses were less abundant. Fish from the Tully also had an increased abundance of transcripts associated with xenobiotic metabolism. Previous laboratory-based studies observed similar patterns in fish and amphibians exposed to the agricultural herbicide atrazine. If these transcriptomic patterns are manifested at the whole organism level, the differences in water quality between the 2 rivers may alter fish growth and fitness. Environ Toxicol Chem 2017;36:103-112. © 2016 SETAC.


Subject(s)
Environmental Monitoring/methods , Perciformes/genetics , Pesticides/toxicity , Rivers/chemistry , Transcriptome/drug effects , Water Pollutants, Chemical/toxicity , Agriculture , Animals , Gene Expression Profiling , Male , Pesticides/analysis , Queensland , Water Pollutants, Chemical/analysis
20.
Integr Environ Assess Manag ; 13(4): 746-753, 2017 Jul.
Article in English | MEDLINE | ID: mdl-27743466

ABSTRACT

Pollutant loads are a means for assessing regulatory compliance and setting targets to reduce pollution entering receiving waterbodies. However, a pollutant load is often comprised of multiple chemicals, which may exert joint toxicity on biota. When the ultimate goal for assessing pollutant loads is to protect ecosystems from adverse effects of toxicants, then the total pollutant load needs to be calculated based on the principles of mixture toxicology. In this article, an improved method is proposed to convert a pollutant load to a toxicity-based load (toxic load) using a modified toxic equivalency factor (TEF) derivation method. The method uses the relative potencies (RePs) of multiple species to represent the response of the ecological community. The TEF is calculated from a percentile of a cumulative distribution function (CDF) fitted to the RePs. The improvements permit the determination of which percentile of the CDF generates the most environmentally relevant and robust toxic loads. That is, environmental relevance ensures that a reduction in the toxic load is likely to result in a corresponding improvement in ecosystem health and robustness ensures that the calculation of the toxic loads is not biased by the reference chemical used. The improved methodology will therefore ensure that correct management decisions will be made and ultimately, a reduction in the toxic load will lead to a commensurate improvement in water quality. Integr Environ Assess Manag 2017;13:746-753. © 2016 SETAC.


Subject(s)
Hazardous Substances/toxicity , Toxicity Tests/methods , Carcinogens/toxicity , Toxicity Tests/standards
SELECTION OF CITATIONS
SEARCH DETAIL
...