Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 239
Filter
Add more filters










Publication year range
2.
ACS Appl Mater Interfaces ; 16(17): 22326-22333, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38635965

ABSTRACT

Low-temperature large-area growth of two-dimensional (2D) transition-metal dichalcogenides (TMDs) is critical for their integration with silicon chips. Especially, if the growth temperatures can be lowered below the back-end-of-line (BEOL) processing temperatures, the Si transistors can interface with 2D devices (in the back end) to enable high-density heterogeneous circuits. Such configurations are particularly useful for neuromorphic computing applications where a dense network of neurons interacts to compute the output. In this work, we present low-temperature synthesis (400 °C) of 2D tungsten diselenide (WSe2) via the selenization of the W film under ultrahigh vacuum (UHV) conditions. This simple yet effective process yields large-area, homogeneous films of 2D TMDs, as confirmed by several characterization techniques, including reflection high-energy electron diffraction, atomic force microscopy, transmission electron microscopy, and different spectroscopy methods. Memristors fabricated using the grown WSe2 film are leveraged to realize a novel compact neuron circuit that can be reconfigured to enable homeostasis.

3.
Nat Commun ; 15(1): 2334, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38485722

ABSTRACT

The ability to scale two-dimensional (2D) material thickness down to a single monolayer presents a promising opportunity to realize high-speed energy-efficient memristors. Here, we report an ultra-fast memristor fabricated using atomically thin sheets of 2D hexagonal Boron Nitride, exhibiting the shortest observed switching speed (120 ps) among 2D memristors and low switching energy (2pJ). Furthermore, we study the switching dynamics of these memristors using ultra-short (120ps-3ns) voltage pulses, a frequency range that is highly relevant in the context of modern complementary metal oxide semiconductor (CMOS) circuits. We employ statistical analysis of transient characteristics to gain insights into the memristor switching mechanism. Cycling endurance data confirms the ultra-fast switching capability of these memristors, making them attractive for next generation computing, storage, and Radio-Frequency (RF) circuit applications.

4.
Adv Mater ; 36(23): e2308711, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38381601

ABSTRACT

Batteries utilizing a sodium (Na) metal anode with a liquid electrolyte are promising for affordable large-scale energy storage. However, a deep understanding of the intrinsic degradation mechanisms is limited by challenges in accessing the buried interfaces. Here, cryogenic electron microscopy of intact electrode:separator:electrode stacks is performed and degradation and failure of symmetric Na||Na coin cells occurs through the infiltration of Na metal through the pores of the separator rather than by mechanical puncturing by dendrites is revealed. It is shown the interior structure of the cell (electrode:separator:electrode) must be preserved and deconstructing the cell into different layers for characterization results in artifacts. In intact cell stacks, minimal liquid is found between the electrodes and separator, leading to intimate electrode:separator interfaces. After electrochemical cycling, Na infiltrates into the pore free-volume, growing through the separator to create electrical shorts and degradation. The Na infiltration occurs at interfacial regions devoid of solid-electrolyte interphase (SEI), revealing SEI plays an important role in preventing Na from growing into the separator by being a physical barrier that the plated Na cannot penetrate. These results shed new light on the fundamental failure mechanisms in Na batteries and demonstrate the importance of preserving the cell structure and buried interfaces.

5.
Aesthetic Plast Surg ; 48(6): 1142-1155, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37845550

ABSTRACT

INTRODUCTION: Reduction mammaplasties are routinely performed on women of child-bearing age, yet there still exists some uncertainty regarding a patient's ability to breastfeed following the procedure. This is due to inconsistent definitions of "successful" breastfeeding, a variety of pedicles implemented, and inadequate follow-up in the published literature. Our aim was to summarize the current data and provide clear recommendations for counseling patients on expected breastfeeding outcomes following reduction mammaplasty. METHODS: A systematic review and meta-analysis in accordance with the PRISMA guidelines was conducted. We included papers that reported proportion of breastfeeding ability following reduction mammaplasty. RESULTS: We identified 33 papers that met our inclusion criteria. We found that women who undergo reduction mammaplasty are at a 3.5 times increased odds of not being able to breastfeed compared to controls. Overall, reduction mammaplasty patients have a breastfeeding success rate of 62%. The breastfeeding success rate for patients with inferior pedicles was 64%, superior pedicles was 59%, and lateral pedicles was 55%. No conclusions could be drawn regarding medial, central, vertical, and horizontal pedicles on breastfeeding ability. CONCLUSION: Current data suggest that women undergoing reduction mammaplasty have an increased odds of unsuccessful breastfeeding when compared to similar women who have not undergone the procedure. Based on the current literature, pedicle type does play a role in rate of breastfeeding success, although there is a need for further research on the aforementioned pedicles. Physicians should be aware of the likelihood of successful breastfeeding following reduction mammaplasty so that patients can be more thoroughly counseled prior to a decision for surgery. LEVEL OF EVIDENCE I: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Subject(s)
Breast Feeding , Mammaplasty , Humans , Female , Follow-Up Studies , Treatment Outcome , Retrospective Studies , Mammaplasty/methods , Esthetics , Hypertrophy/surgery
6.
ACS Nano ; 17(22): 22499-22507, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37926957

ABSTRACT

Bimetallic nanoparticles often show properties superior to their single-component counterparts. However, the large parameter space, including size, structure, composition, and spatial arrangement, impedes the discovery of the best nanoparticles for a given application. High-throughput methods that can control the composition and spatial arrangement of the nanoparticles are desirable for accelerated materials discovery. Herein, we report a methodology for synthesizing bimetallic alloy nanoparticle arrays with precise control over their composition and spatial arrangement. A dual-channel nanopipet is used, and nanofluidic control in the nanopipet further enables precise tuning of the electrodeposition rate of each element, which determines the final composition of the nanoparticle. The composition control is validated by finite element simulation as well as electrochemical and elemental analyses. The scope of the particles demonstrated includes Cu-Ag, Cu-Pt, Au-Pt, Cu-Pb, and Co-Ni. We further demonstrate surface patterning using Cu-Ag alloys with precise control of the location and composition of each pixel. Additionally, combining the nanoparticle alloy synthesis method with scanning electrochemical cell microscopy (SECCM) allows for fast screening of electrocatalysts. The method is generally applicable for synthesizing metal nanoparticles that can be electrodeposited, which is important toward developing automated synthesis and screening systems for accelerated material discovery in electrocatalysis.

7.
ACS Nano ; 17(20): 19600-19612, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37791789

ABSTRACT

Moiré superlattices in graphene arise from rotational twists in stacked 2D layers, leading to specific band structures, charge density and interlayer electron and excitonic interactions. The periodicities in bilayer graphene moiré lattices are given by a simple moiré basis vector that describes periodic oscillations in atomic density. The addition of a third layer to form trilayer graphene generates a moiré lattice comprised of multiple harmonics that do not occur in bilayer systems, leading to nontrivial crystal symmetries. Here, we use atomic resolution 4D-scanning transmission electron microscopy to study atomic structure in bilayer and trilayer graphene moiré superlattices and use 4D-STEM to map the electric fields to show subtle variations in the long-range moiré patterns. We show that monolayer graphene folded into an S-bend graphene pleat produces trilayer moiré superlattices with both small (<2°) and larger twist angles (7-30°). Annular in-plane electric field concentrations are detected in high angle bilayers due to overlapping rotated graphene hexagons in each layer. The presence of a third low angle twisted layer in S-bend trilayer graphene, introduces a long-range modulation of the atomic structure so that no real space unit cell is detected. By directly imaging trilayer moiré harmonics that span from picoscale to nanoscale using 4D-STEM, we gain insights into the complex spatial distributions of atomic density and electric fields in trilayer twisted layered materials.

8.
Adv Mater ; 35(40): e2304074, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37395476

ABSTRACT

Photoluminescence blinking behavior from single quantum dots under steady illumination is an important but controversial topic. Its occurrence has impeded the use of single quantum dots in bioimaging. Different mechanisms have been proposed to account for it, although controversial, the most important of which is the non-radiative Auger recombination mechanism whereby photocharging of quantum dots can lead to the blinking phenomenon. Here, the singly charged trion, which maintains photon emission, including radiative recombination and non-radiative Auger recombination, leads to fluorescence non-blinking which is observed in photocharged single graphene quantum dots (GQDs). This phenomenon can be explained in terms of different energy levels in the GQDs, caused by various oxygen-containing functional groups in the single GQDs. The suppressed blinking is due to the filling of trap sites owing to a Coulomb blockade. These results provide a profound understanding of the special optical properties of GQDs, affording a reference for further in-depth research.

9.
Nano Lett ; 23(15): 6807-6814, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37487233

ABSTRACT

Defects in crystalline lattices cause modulation of the atomic density, and this leads to variations in the associated electrostatics at the nanoscale. Mapping these spatially varying charge fluctuations using transmission electron microscopy has typically been challenging due to complicated contrast transfer inherent to conventional phase contrast imaging. To overcome this, we used four-dimensional scanning transmission electron microscopy (4D-STEM) to measure electrostatic fields near point dislocations in a monolayer. The asymmetry of the atomic density in a (1,0) edge dislocation core in graphene yields a local enhancement of the electric field in part of the dislocation core. Through experiment and simulation, the increased electric field magnitude is shown to arise from "long-range" interactions from beyond the nearest atomic neighbor. These results provide insights into the use of 4D-STEM to quantify electrostatics in thin materials and map out the lateral potential variations that are important for molecular and atomic bonding through Coulombic interactions.

11.
ACS Catal ; 13(14): 9558-9566, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37497376

ABSTRACT

Single-site catalysts (SSCs) have attracted significant research interest due to their high metal atom utilization. Platinum single sites trapped in the defects of carbon substrates (trapped Pt-SSCs) have been proposed as efficient and stable electrocatalysts for the hydrogen evolution reaction (HER). However, the correlation between Pt bonding environment, its evolution during operation, and catalytic activity is still unclear. Here, a trapped Pt-SSC is synthesized by pyrolysis of H2PtCl6 chemisorbed on a polyaniline substrate. In situ heated scanning transmission electron microscopy and temperature-dependent X-ray photoelectron spectroscopy clarify the thermally induced structural evolution of Pt during pyrolysis. The results show that the nitrogen in polyaniline coordinates with Pt ions and atomically disperses them before pyrolysis and traps Pt sites at pyridinic N defects generated during the substrate graphitization. Operando X-ray absorption spectroscopy confirms that the trapped Pt-SSC is stable at the HER working potentials but with inferior electrocatalytic activity compared with metallic Pt nanoparticles. First principle calculations suggest that the inferior activity of trapped Pt-SSCs is due to their unfavorable hydrogen chemisorption energy relative to metallic Pt(111) surfaces. These results further the understanding of the structure-property relationship in trapped Pt-SSCs and motivate a detailed techno-economic analysis to evaluate their commercial applicability.

12.
Nat Nanotechnol ; 18(9): 1036-1043, 2023 09.
Article in English | MEDLINE | ID: mdl-37142710

ABSTRACT

Cognitive functions such as learning in mammalian brains have been attributed to the presence of neuronal circuits with feed-forward and feedback topologies. Such networks have interactions within and between neurons that provide excitory and inhibitory modulation effects. In neuromorphic computing, neurons that combine and broadcast both excitory and inhibitory signals using one nanoscale device are still an elusive goal. Here we introduce a type-II, two-dimensional heterojunction-based optomemristive neuron, using a stack of MoS2, WS2 and graphene that demonstrates both of these effects via optoelectronic charge-trapping mechanisms. We show that such neurons provide a nonlinear and rectified integration of information, that can be optically broadcast. Such a neuron has applications in machine learning, particularly in winner-take-all networks. We then apply such networks to simulations to establish unsupervised competitive learning for data partitioning, as well as cooperative learning in solving combinatorial optimization problems.


Subject(s)
Neural Networks, Computer , Neurons , Animals , Feedback , Neurons/physiology , Machine Learning , Brain , Mammals
13.
Article in English | MEDLINE | ID: mdl-37034422

ABSTRACT

Cerebral venous sinus stenting (CVSS) is a minimally invasive procedure using endovascular stent placement to relieve elevated intracranial pressure secondary to venous sinus stenosis. Increased venous sinus pressure secondary to stenosis is commonly associated with elevated intracranial pressure without intracranial lesions on imaging or idiopathic intracranial hypertension (IIH). While the etiology of IIH remains unknown, stenosis of one or more of the dural sinuses has been implicated as a possible underlying mechanism. The manifestations of IIH include headaches, transient vision loss, pulsatile tinnitus, and neck pain. In this review, we discuss the recent studies that have demonstrated the e!ectiveness of CVSS for patients with IIH and also the indications, technical challenges, potential complications, and emerging developments in CVSS.

14.
Nano Lett ; 23(7): 2952-2957, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-36996390

ABSTRACT

Threshold switches based on conductive metal bridge devices are useful as selectors to block sneak leakage paths in memristor arrays used in neuromorphic computing and emerging nonvolatile memory. We demonstrate that control of Ag-cation concentration in Al2O3 electrolyte and Ag filament size and density play an important role in the high on/off ratio and self-compliance of metal-ion-based volatile threshold switching devices. To control Ag-cation diffusion, we inserted an engineered defective graphene monolayer between the Ag electrode and the Al2O3 electrolyte. The Ag-cation migration and the Ag filament size and density are limited by the pores in the defective graphene monolayer. This leads to quantized conductance in the Ag filaments and self-compliance resulting from the formation and dissolution of the Ag conductive filament.

15.
ACS Appl Mater Interfaces ; 15(14): 18012-18021, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-36977206

ABSTRACT

The ultrathin nature of two-dimensional (2D) materials opens up opportunities for creating devices that are substantially thinner than using traditional bulk materials. In this article, monolayer 2D materials grown by the chemical vapor deposition method are used to fabricate ultrathin all-2D lateral diodes. We show that placing graphene electrodes below and above the WS2 monolayer, instead of the same side, results in a lateral device with two different Schottky barrier heights. Due to the natural dielectric environment, the bottom graphene layer is wedged between the WS2 and the SiO2 substrate, which has a different doping level than the top graphene layer that is in contact with WS2 and air. The lateral separation of these two graphene electrodes results in a lateral metal-semiconductor-metal junction with two asymmetric barriers but yet retains its ultrathin form of two-layer thickness. The rectification and diode behavior can be exploited in transistors, photodiodes, and light-emitting devices. We show that the device exhibits a rectification ratio up to 90 under a laser power of 1.37 µW at a bias voltage of ±3 V. We demonstrate that both the back-gate voltage and laser illumination can tune the rectification behavior of the device. Furthermore, the device can generate strong red electroluminescence in the WS2 area across the two graphene electrodes under an average flowing current of 2.16 × 10-5 A. This work contributes to the current understanding of the 2D metal-semiconductor heterojunction and offers an idea to obtain all-2D Schottky diodes by retaining the ultrathin device concept.

16.
Bioengineering (Basel) ; 10(1)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36671664

ABSTRACT

Pancreatic and ampullary cancers remain highly morbid diseases for which accurate clinical predictions are needed for precise therapeutic predictions. Patient-derived cancer organoids have been widely adopted; however, prior work has focused on well-level therapeutic sensitivity. To characterize individual oligoclonal units of therapeutic response, we introduce a low-volume screening assay, including an automated alignment algorithm. The oligoclonal growth response was compared against validated markers of response, including well-level viability and markers of single-cell viability. Line-specific sensitivities were compared with clinical outcomes. Automated alignment algorithms were generated to match organoids across time using coordinates across a single projection of Z-stacked images. After screening for baseline size (50 µm) and circularity (>0.4), the match efficiency was found to be optimized by accepting the diffusion thresholded with the root mean standard deviation of 75 µm. Validated well-level viability showed a limited correlation with the mean organoid size (R = 0.408), and a normalized growth assayed by normalized changes in area (R = 0.474) and area (R = 0.486). Subclonal populations were defined by both residual growth and the failure to induce apoptosis and necrosis. For a culture with clinical resistance to gemcitabine and nab-paclitaxel, while a therapeutic challenge induced a robust effect in inhibiting cell growth (GΔ = 1.53), residual oligoclonal populations were able to limit the effect on the ability to induce apoptosis (GΔ = 0.52) and cell necrosis (GΔ = 1.07). Bioengineered approaches are feasible to capture oligoclonal heterogeneity in organotypic cultures, integrating ongoing efforts for utilizing organoids across cancer types as integral biomarkers and in novel therapeutic development.

17.
Nanotechnology ; 34(11)2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36595236

ABSTRACT

Quantum emitters in two-dimensional hexagonal boron nitride (hBN) are of significant interest because of their unique photophysical properties, such as single-photon emission at room temperature, and promising applications in quantum computing and communications. The photoemission from hBN defects covers a wide range of emission energies but identifying and modulating the properties of specific emitters remain challenging due to uncontrolled formation of hBN defects. In this study, more than 2000 spectra are collected consisting of single, isolated zero-phonon lines (ZPLs) between 1.59 and 2.25 eV from diverse sample types. Most of ZPLs are organized into seven discretized emission energies. All emitters exhibit a range of lifetimes from 1 to 6 ns, and phonon sidebands offset by the dominant lattice phonon in hBN near 1370 cm-1. Two chemical processing schemes are developed based on water and boric acid etching that generate or preferentially interconvert specific emitters, respectively. The identification and chemical interconversion of these discretized emitters should significantly advance the understanding of solid-state chemistry and photophysics of hBN quantum emission.

18.
Adv Mater ; 34(43): e2205403, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36043938

ABSTRACT

Artificially introduced small twist angles at the interfaces of vertical layered heterostructures (VLHs) have allowed deterministic tuning of electronic and optical properties such as strongly correlated electronic phases and Moiré excitons. But creating a Moiré twist in van der Waals (vdWs) systems by manual stacking is challenging in reproducibility, uniformity, and accuracy of the twist angle, which hinders future studies. Here, it is demonstrated that contrary to the commonly believed 0°-orientation in vdWs epitaxy, these VLHs show small twist angles controlled by the low-order commensurate phase with low energy and local atomic relaxation. A commensurate multilevel map is proposed to predict possible orientations. Remarkably, high-mismatch VLHs show discrete and sometimes non-zero twist angles dependent on their natural mismatch value. Such framework is experimentally confirmed in five epitaxially grown VLHs under high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM), and can provide significant insights for large-scale engineering of twist angle in VLHs.

19.
ACS Nano ; 16(7): 10260-10272, 2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35829720

ABSTRACT

Two-dimensional (2D) materials form heterostructures in both the lateral and vertical directions when two different materials are interfaced, but with totally different bonding mechanisms of covalent in-plane to van der Waal's layered interactions. Understanding how the competition between lateral and vertical forces influences the epitaxial growth is important for future materials development of complex mixed layered heterostructures. Here, we use atomic-resolution annular dark-field scanning transmission electron microscopy to study the detailed atomic arrangements at mixed 2D heterostructure interfaces composed of two semiconductors with distinctly different crystal symmetry and elemental composition, Pd2Se3:MoS2, in order to understand the role of different chemical bonds on the resultant epitaxy. Pd2Se3 is grown off the step edge in bilayer MoS2, and the vertical and lateral epitaxial relationships of the Pd2Se3-MoS2 heterostructures are investigated. We find that the similarity of geometry at the interface with one metal (Pd or Mo) atoms bonded with two chalcogens (S or Se) are the crucial factors to make the atomically stitched lateral junction of 2D heterostructures. In addition, the vertical van der Waal interactions that are normally dominant in layered materials can be overcome by in-plane forces if the interfacial atomic stitching is high in quality and low in defect density. This knowledge should help guide the approaches for improving the epitaxy in mixed 2D heterostructures and seamless stitching of in-plane 2D heterostructures with various complex monolayer structures.

20.
ACS Catal ; 12(5): 3173-3180, 2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35558899

ABSTRACT

Platinum single-site catalysts (SSCs) are a promising technology for the production of hydrogen from clean energy sources. They have high activity and maximal platinum-atom utilization. However, the bonding environment of platinum during operation is poorly understood. In this work, we present a mechanistic study of platinum SSCs using operando, synchrotron-X-ray absorption spectroscopy. We synthesize an atomically dispersed platinum complex with aniline and chloride ligands onto graphene and characterize it with ex-situ electron microscopy, X-ray diffractometry, X-ray photoelectron spectroscopy, X-ray absorption near-edge structure spectroscopy (XANES), and extended X-ray absorption fine structure spectroscopy (EXAFS). Then, by operando EXAFS and XANES, we show that as a negatively biased potential is applied, the Pt-N bonds break first followed by the Pt-Cl bonds. The platinum is reduced from platinum(II) to metallic platinum(0) by the onset of the hydrogen-evolution reaction at 0 V. Furthermore, we observe an increase in Pt-Pt bonding, indicating the formation of platinum agglomerates. Together, these results indicate that while aniline is used to prepare platinum SSCs, the single-site complexes are decomposed and platinum agglomerates at operating potentials. This work is an important contribution to the understanding of the evolution of bonding environment in SSCs and provides some molecular insights into how platinum agglomeration causes the deactivation of SSCs over time.

SELECTION OF CITATIONS
SEARCH DETAIL